五年级数学统计与可能性同步练习题2
- 格式:doc
- 大小:1.27 MB
- 文档页数:2
五年级数学统计与可能性同步练习题
统计
1、五年级(1)班进行踢毽比赛,第二组7名同学1分钟踢毽成绩如下(单位:个)
(1)把这组数据从小到大排列。
(2)分别求出这组数据的中位数和平均数。
(3)用哪一个数代表这组数据的一般水平更合适?
2、下面是五年级(2)班女同学测量身高的记录单(单位:cm):
130 140 131 142 145 144 140 139
141 152 137 151 138 144 143 148
(1)这组数据的中位数,平均数各是多少?哪个数大,你发现了什么?
(2)如果身高135cm以上为正常:有多少名同学身高正常,这个班身高情况如何?
1、下面记录的是某班男生的一次跳远成绩(单位:cm)
(1)分别求出这组数据的平均数和中位数。
(得数保留二位小数)(2)用哪个数代表这组数据的一般水平更合适?
(3)一位同学的成绩是3.28他的成绩处于什么水平?。
填一填。
1、盒子里有5个红球,3个白球,任意摸一个球,摸到白球的可能性是〔〕,摸到红球的可能性是〔〕。
1题图2题图2、掷一个骰子,单数朝上的可能性是〔〕,双数朝上的可能性是〔〕。
如果掷40次,“3”朝上的次数大约是〔〕。
3、从卡片 2 、3 、5 中任意抽取两,积是双数的可能性是〔〕,积是单数的可能性是〔〕。
在一个装有2个黄球和2个红球的袋子中摸球,每次摸2个,有〔〕种不同的摸法,可能发生的总次数是〔〕,摸到2个红球的可能性是〔〕。
4、小红和小华同时各掷一个骰子。
⑴朝上的两个数的和是5的可能性是〔〕;⑵朝上的两个数的和是12的可能性是〔〕;⑶朝上的两个数的和是2的倍数的可能性是〔〕;⑷朝上的两个数的和是单数的可能性是〔〕。
强强和贝贝玩掷骰子的游戏,同时掷两个骰子,强强说:“和是单数,我赢;和是双数,你赢。
〞贝贝认为不公平,你说对吗?假设两个骰子的和是7时,强强赢,和是12时贝贝赢,强强赢的可能性是〔〕,贝贝赢的可能性是〔〕。
三、请你来当小裁判。
1、某城市一日的天气预报为:多云转小雨,29℃~~18℃,降水概率80%,这一天一定会下雨。
〔〕2、掷一枚硬币,国徵朝上的可能性是12。
〔〕3、在一次彩票有奖销售活动中,中奖的可能性是15。
叔叔买了100彩票,一定能有20中奖。
〔〕5、指针停在三个区域的可能性是相等的。
四、做一做。
用空白的圆形做转盘,请你按要求涂色。
1、使指针停在黄色区域和蓝色区域的可能性都是12。
2、使指针停在黄色区域和蓝色区域的可能性都是18。
3、使指针停在黄色区域的可能性是38,停在蓝色区域的可能性是18。
4、使指针停在黄色区域的可能性是蓝色区域的2倍。
第1题第2题第3题第4题五、解决问题。
1、家电商场搞促销活动,中奖率是百分之百。
⑴你认为获得几等奖的可能性最小?获几等奖的可能性最大?⑵说说你的想法?2、桌上摆着9数字卡片,分别写着1—9各数。
两人同时摸一,谁的数字大谁就赢。
①如果男孩拿到了5 ,你觉得他会赢吗? 输赢的可能性各是多少?②当男孩拿到的数字是几时,女孩一定能赢。
五年级数学上册第四单元《可能性》测试题及答案练习及答案⼀⼀.选择。
(12分)1. ⼀个不透明袋⼦⾥装着除颜⾊不同外,其它都相同的6个⽩球和8个红球,从袋⼦⾥任意摸出1个球,摸到()球的可能性⼤。
A. ⽩B.⿊C.红2. ⼀个盒⼦⾥装着质地、⼤⼩完全相同的两种颜⾊的球,任意摸出⼀个球,摸出后放回,共摸30次,摸到⿊球12次,摸到蓝球18次。
这个盒⼦⾥可能()球的数量多。
A. ⽩B.⿊C.蓝3. ⼀个盒⼦⾥装着5⽀绿⾊铅笔,2⽀红⾊铅笔,从中任意摸出⼀⽀,摸到的()是⽩⾊铅笔。
A. 不可能B.⼀定C.可能⼆.下表是五年级⼀班的同学们在20分钟内统计的学校⼗字路⼝的车流量情况,依据表格⾥的信息判断下⾯的说法是否正确,正确的画“√”,错误的画“×”。
(12分)种类⼩轿车电动车公交车货车⾃⾏车数量/辆5045306301. ⼤⽩说:“下⼀辆车很有可能是⼩轿车。
” ()2. ⼩李说:“下⼀辆车⼀定是⼩轿车。
” ()3. ⼩王说:“下⼀辆车是电动车的可能性最⼤。
” ()4. ⼩徐说:“下⼀辆车是货车的可能性最⼩。
” ()三.看图回答问题。
(18分)A B C1. 转动哪个转盘,指针停在阴影部分的可能性最⼤?2. 转动哪个转盘,指针停在阴影部分的可能性最⼩?3. 转动哪个转盘,指针停在阴影部分和空⽩区域的可能性相等?四.7名同学每个⼈抽⼀张卡⽚表演节⽬,各⾃分别抽到如下卡⽚,根据信息进⾏判断并回答问题。
(12分)1. 如果让⼩明抽,⼩明抽到()节⽬的可能性最⼤。
A. 跳舞B.诗朗诵C.冷笑话2. 如果让⼩红抽,⼩红抽到()节⽬的可能性是最⼩的。
A. 冷笑话B.诗朗诵C.冷笑话和诗朗诵3. 这⾥有()名同学抽到唱歌节⽬。
A.3B.2C.1五.东东和西西两名同学给⼀个正⽅体的六个⾯上分别写上数字1~6,他们吧这个正⽅体向上抛50次,记录各个数字朝上的情况如下图所⽰。
(22分)数字123456朝上的次数8次10次7次8次9次8次1. ()朝上的次数最少,()朝上的次数最多。
统计与可能1、连一连,从下面的5个盒子里,分别摸出1个球。
2、把小明的眼睛蒙上,让他猜一猜哪个格子里有书包,是猜到的可能性大,还是猜不到的可能性大?为什么?3、下图是病人4月7日-4月9日体温变化统计图,你能读出哪些信息?(1)上面的统计图是折线统计图。
其中横线表示的时间,纵线表示的是体温,从图中读出护士每格( )小时给病人量一次体温。
(2)这位病人的最高体温是(),最低体温是()。
(3)折线统计图可以读出体温的增减变化,从统计图来看,这位病人的病情是逐渐恶化还是好转?4、下图是李欣和刘云练习10天的跳绳训练成绩折线统计图。
(1)上面的折线统计图是复式折线统计图。
从图中读出李欣的最好成绩是多少次?刘云呢?(2)从统计图中可以读出,谁的进步快些?答案:1、2、猜到的可能性大。
3、(1)6 (2)39.5 36.5 (3)体温逐渐降低,病人逐渐好转。
4、(1)上面的折线统计图是复式折线统计图。
从图中读出李欣的最好成绩是多少次?刘云呢?(2)从统计图中可以读出,谁的进步快些?数学广角1、在一条长2500米的公路一侧架设电线杆,每隔50米架设一根,若公路两端都不架设,共需电线多少根?2、在一条长250米的路两旁栽树,起点和终点都栽,一共栽了102棵,每两棵相邻的树之间的距离都相等,你知道是多少米吗?3、一个圆形池塘,它的周长是300米,每隔5米栽种一棵柳树,需要树苗多少棵?4、某木工把一根长4米的圆柱形木料锯成80厘米的小段,需40分钟;如果改锯成50厘米的小段,需要多少时间?5、5瓶钙片,有一瓶轻一些分量不足,你能想办法自己找出来吗?乐乐用表示找次品的过程,你知道至少需要几次就一定能找到次品吗?6、9个零件里有1个是次品(次品重一些),假如用天平称,至少几次就一定能找到次品?(1)如果平均分成3份,至少需要几次?(2)如果按4、4、1个地分,至少需要几次?(3)如果按2、2、2、2、1地分,至少需要几次?(4)如果按1、1、1、1、1、1、1、1、1地分,至少需要几次?答案:1、2500÷50-1=49(棵)2、250÷(102÷2-1)=250÷50=5(米)3、300÷5=60(棵)4、4米=400厘米 400÷80-1=4(次) 40÷4=10(分钟) 400÷50-1=7(次)10×7=70(分钟)5、5号 2次6、(1)2(2)3 (3)3 (4)4。
五年级数学可能性同步练习题1、从标有1,2,3,4的四张卡片中任抽一张。
(1)抽到卡片“1”的可能性是()。
(2)抽到卡片“2”、“4”的可能性是()(3)抽到数字小于4的卡片的可能性是()2、(1(2)如果转动指针90次,估计大约会有多少次指针是停在数字1区域呢?3、6名学生玩“掷骰子”的游戏。
小红在一个正方体的各面公别写着1、2、3、4、、6。
每人选一个数,然后任意掷骰子,朝上的数是几,选这个数的人就唱一支歌,你认为小强设计的方案公平吗?1、口袋里有大小相同的6个球,1个红球,2个白球,3个黄球,从袋中任意摸出一个球。
(1)摸出什么颜色的球的可能性最大,是多少?(2)摸出什么颜色的球的可能性最小,是多少?(3)摸出不是红球的可能性是多少?2、盒子中装有3个红色的小正方体,4个黄色小正方体。
从中任意摸出1个正方体。
小芳和小豪约定,摸出红正方体,小芳赢。
摸出黄正方体,小豪赢,想一想,谁赢的可能性大些?请将下面各题中给出的数进行+、—、×、÷()运算,使结果为24。
① 2 3 7 11② 9 7 5 4③ 10 8 7 4可能性(二)别忘了设计公平的游戏规则。
1、(1)指针停在斜线、白、黑三种区域的可能性是多少?(2)如果转动指针100次,估计大约会有多少次指针是停在白色区域呢?2、盒子装有15个球,分别写着1—15各数。
如果摸到是2的倍数,小刚赢,如果摸到不是2的倍数,小强赢。
(1)这样约定公平吗?为什么?(2)小强一定会输吗?(3)你能设计一个公平的规则吗?1、甲、乙两人玩抽牌(9张牌上分别标的2,3,4,5,6,7,8,9,10)游戏。
约定任抽1张,抽出的数小于5,则甲胜,若抽出的数大于5,则乙胜。
(1)这样约定公平吗?为什么?(2)如果让你选择,你愿是甲,还是乙?(3)你能设计一个公平的规则吗?2、利用右边的空白转盘设计一个实验,使指针停在蓝色区域的可能性分别是停在绿色、黄色和红色区域的3倍。
小学数学统计与概率专项二可能性类型一不确定现象类型一不确定现象【知识讲解】1. 事件生活中,有些事件的发生是确定的,有些是不确定的。
事件分为确定事件(描述词:一定,不可能)和不确定事件(描述词:可能)2. 不确定事件,必定事件,不可能事件,确定事件生活中,有许多情况我们事先无法确信它会或可不能发生,这些情况就叫做不确定事件。
(随机事件)一定会发生的情况叫做必定事件。
一定可不能发生的情况叫做不可能事件。
关于必定事件与不可能事件,我们事先都能够明白它们的结果,这些情况叫做确定事件。
【典型例题】从下面五个盒子里分别摸出一个球,一定是红球吗?用线连一连。
【答案】【解析】依照每个盒子中球的颜色及个数的多少得出可能性,进而连线即可。
点评:解决此题关键是假如不需要准确地运算可能性的大小时,能够依照各种球个数的多少,直截了当判定可能性的大小。
【巩固练习】一、选择题。
1.粉笔盒中有4枝白粉笔,5枝黄粉笔,()。
A.可能摸出蓝粉笔B.不可能摸出蓝粉笔C.一定摸出蓝粉笔 D.可能摸出黄粉笔2.下面哪种情形是不可能发生的?()A.月亮绕着地球转B.后天早上太阳从西边升起C.抛一枚硬币,硬币落地后有“国徽”的一面朝上D.今天下雨,改日也会下雨3.改日()会下雨。
A.一定B.不可能C.可能4.下列说法正确的是()A.不太可能确实是不可能B.必定发生与不可能发生差不多上确定现象C.专门可能发生确实是必定发生D.可能发生的可能性没有大小之分5.吃饭时,人用左手拿筷子,这种现象是()的。
A.一定B.可能C.不可能6.刘翔在2021年北京奥运会上()能拿冠军。
A.不可能B.可能C.一定7.白菜是树上结的,太阳从东边落下。
①不可能②一定③可能8.我比妈妈年龄大是;地球绕着太阳转是A.一定B.不可能C.可能9.王佳和李明的这次数学考试,()都得满分。
A.可能B.不可能C.一定二、填空题。
1.用“可能”、“不可能”或“一定”填空.(1)改日会下雨.(2)没有了空气,人不能生存.(3)鱼的生命离开水.2.在下面括号里填上“一定”或“不一定”。
一定不可能可能 五年级上册数学试题-可能性(含答案)人教新课标专项测评三 统计与概率考点一 判断随机事件发生的可能性的大小 1.填空。
(1)上面每个袋中都有 5 个红球。
如果从袋中任意摸出一个球,那么从( )号袋中摸出红球的可能性最小。
(2)一个正方体的一个面涂红色,2 个面涂黄色,3 个面涂绿色。
掷一次,朝上的面是()色的可能性最大。
2.判断下面各题,选择相应的符号写在括号里。
(1)太阳从东边升起。
()(2)两位数乘一位数,积是三位数。
( )(3)用左手拿笔写字。
()(4)人类离开水也能生活。
()(5)今天是星期五,明天是星期六。
( )考点二 根据可能性的大小进行推测3.下面是五(1)班同学统计的校门口 30 分钟内的车流量情况。
判断下面 4 名同学的说法是否正确,正确的画“○”,不正确的画“●”。
(1)小琪说:“下一辆车一定是小汽车。
”( ) (2)小宇说:“下一辆车可能是面包车。
”()(3)小月说:“下一辆车是公共汽车的可能性最大。
”()○×√(4)小畅说:“下一辆车是摩托车的可能性最小。
”( )4.按要求写卡片。
纸袋里有 5 张卡片,随意摸出一张。
(1)如果使摸出的卡片一定是“A”,那么这5 张卡片分别是:(2)如果使摸出的卡片可能是“A”,那么这5 张卡片分别是:(3)如果使摸出的卡片不可能是“A”,那么这5 张卡片分别是:(4)如果使摸出卡片“A”的可能性最大,那么这5 张卡片分别是:参考答案1.(1)3 (2)绿2.(1)√(2)○(3)○(4)×(5)√3.(1)●(2)○(3)●(4)○人教版小学数学五年级上册《第四章可能性》单元测试卷(解析版)一.选择题(共10小题)1.根据题意选择恰当的词语填空.今天是星期五,明天()是星期六.A.不一定B.不可能C.可能D.一定2.小丁丁今年11岁,明年()12岁.A.一定B.不可能C.可能3.火车在天上飞.()A.可能B.不可能C.一定能4.口袋里装有红球和黄球各若干个,摸了96次球,72次摸到了红球,14次摸到了黄球,红球比黄球的可能()A.多B.少C.无法确定5.口袋里放有5个红球,1个白球,任意摸一个球,摸到白球的可能性比摸到红球的可能性()A.大B.小C.无法判断6.盒子中装有红、黄、绿三种颜色的球,小明每次摸出一个球后再放回去摇匀,这样摸了100次,其中摸到红球65次,黄球20次,绿球15次.如果小明再摸一次,摸到()球的可能性最大.A.红B.黄C.绿7.在口袋里放入9个球,任意摸一个球,要使摸到红球的可能性是,要放入()个红球.A.2B.4C.6D.88.从箱子中任意摸一个球,摸到黑球的可能性为的是()A.B.C.D.9.给一个正方体的表面涂上红、黄、蓝三种颜色,任意抛一次,红色朝上的次数最多,蓝色和黄色朝上的次数差不多,有()个面涂了红色.A.1B.2C.3D.410.宝宝拿两个硬币往下扔,两个都是正面朝上的概率是()A.B.C.D.二.填空题(共5小题)11.抛一枚硬币,连续抛了6次,6次都是正面朝上.如果再抛1次,(填“一定”“可能”或“不可能”)是背面朝上.12.今天太阳从东方升起(可能、一定、不可能),口袋里有6个红球、2个蓝球,摸到的可能性小.13.一个盒子里有7个苹果、4个桃子、8个梨,如果任意拿出一个水果,拿到的可能性最大.14.箱子里装着5个黄球和5个红球,随便摸一个球,一定是红球..15.口袋里有红、黄两种颜色的10个球,要求任意摸一次,使摸到红球的可能性比摸到黄球的可能性大,口袋里至少要放红球个.三.应用题(共2小题)16.在一个正方体的6个面上分别标上数字1、2、3.要使3朝上的可能性最大,6个面上的数字应怎样标?17.盒子里有5颗红珠子4颗蓝珠子、1颗绿珠子(这些珠子除颜色外其他,都相同).摇匀后,随意摸出1颗珠子.(1)摸到哪种颜色珠子的可能性最小?(2)小白摸出了1颗蓝珠子,放回后摇匀;小米接着摸,摸出的也是一颗蓝珠子,又放回摇匀.如果小西来摸,摸到哪种颜色珠子的可能性最大?(3)小白摸出了1颗红珠子,小米又摸出了1颗红珠子,都没有放回.这时小西来摸,摸到哪种颜色珠子的可能性最大?四.操作题(共2小题)18.下面是某组摸球游戏结果的记录表,请根据记录回答问题.正正正正正正(1)如果盒子中一共有4个球,红球和绿球可能各有几个?(2)如果再摸5次,你认为这5次中摸到绿球的次数有可能比红球的次数多吗?请在正确答案的〇内涂色.19.按要求涂一涂.(1)一定摸到黑球.(2)摸到黑球和白球的可能性一样大.五.解答题(共2小题)20.盒子里装有红、黄、蓝三种颜色的球,丽丽从中摸出一个球后再放回去摇匀,这样重复摸了100次,结果如表.(1)根据表中的数据推测,盒子里的球最多,球最少.(2)如果再摸一次,丽丽可能摸到什么颜色的球?21.有4张背面相同的卡片,正面分别写着1、2、3、4,把它们洗匀后反扣,每次抽出一张,记录结果,再放回去和其他卡片混合.(1)任意抽出一张卡片可能是.(2)抽出比4小的卡片的可能性.(填“大”或“小”)(3)抽出比2大的卡片有种可能,分别是.(4)可能抽到比4大的卡片吗?答:.2019年人教版小学数学五年级上册《第四章可能性》单元测试卷参考答案与试题解析一.选择题(共10小题)1.根据题意选择恰当的词语填空.今天是星期五,明天()是星期六.A.不一定B.不可能C.可能D.一定【分析】“一定”表示确定事件,“可能”表示不确定事件,“不可能”属于确定事件中的必然事件;由此进行解答即可.【解答】解:今天是星期五,明天一定是星期六;故选:D.【点评】此题考查的是事件的确定性和不确定性,应结合实际进行解答.2.小丁丁今年11岁,明年()12岁.A.一定B.不可能C.可能【分析】“一定”表示确定事件,“可能”表示不确定事件,“不可能”属于确定事件中的必然事件;由此进行分析解答即可.【解答】解:小丁丁今年11岁,明年一定12岁;故选:A.【点评】此题考查的是事件的确定性和不确定性,应结合实际进行解答.3.火车在天上飞.()A.可能B.不可能C.一定能【分析】根据事件的确定性和不确定性进行分析:因为火车在天上飞是不可能不发生的事件;进而判断即可.【解答】解:火车不可能在天上飞;属于确定性事件中的不可能性事件;故选:B.【点评】解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.口袋里装有红球和黄球各若干个,摸了96次球,72次摸到了红球,14次摸到了黄球,红球比黄球的可能()A.多B.少C.无法确定【分析】根据题意,摸了96次球,72次摸到了红球,14次摸到了黄球,72>14,红球出现的次数多,黄球出现的次数少,所以红球可能比黄球的数量多;据此判断即可.【解答】解:摸了96次球,72次摸到了红球,14次摸到了黄球72>14;红球出现的次数多,黄球出现的次数少所以红球可能比黄球的数量多;故选:A.【点评】解决本题根据可能性的大小,结合给出的数据的多少进行求解即可.5.口袋里放有5个红球,1个白球,任意摸一个球,摸到白球的可能性比摸到红球的可能性()A.大B.小C.无法判断【分析】因为口袋里红球和白球两种颜色的球,要比较可能性的大小,可以直接比较红球、白球的个数,因为红球比白球的个数多,所以摸到白球的可能性比摸到红球的可能性小,据此解答.【解答】解::因为口袋里红球和白球两种颜色的球,因为1<5,即白球比红球的个数少,所以摸到白球的可能性摸到红球的可能性小.故选:B.【点评】本题在比较可能性的大小时,没必要算出摸红球和白球的可能性,可以根据两种球颜色个数的多少直接判断.6.盒子中装有红、黄、绿三种颜色的球,小明每次摸出一个球后再放回去摇匀,这样摸了100次,其中摸到红球65次,黄球20次,绿球15次.如果小明再摸一次,摸到()球的可能性最大.A.红B.黄C.绿【分析】摸了100次,其中摸到红球65次,黄球20次,绿球15次;如果小明再摸一次,但由于是随机试验,不能确定下一次摸到的是红球、黄球还是绿球,但摸到红球的可能性比较大;据此解答即可.【解答】解:如果小明再摸一次,不一定摸到的是红球、黄球还是绿球,但摸到红球的可能性比较大;故选:A.【点评】此题考查了可能性大小的求解,要注意每一次摸球都是独立的随机试验,不能根据概率确定下一次一定摸到什么颜色的球.7.在口袋里放入9个球,任意摸一个球,要使摸到红球的可能性是,要放入()个红球.A.2B.4C.6D.8【分析】要使摸到红球的可能性是,那么红球的个数就是总数的,根据分数乘法的意义,用乘法解答即可.【解答】解:9×=6(个);答:要使摸到红球的可能性是,要放入6个红球.故选:C.【点评】此题先理解可能性的含义,再根据求一个数的几分之几是多少,用乘法计算.8.从箱子中任意摸一个球,摸到黑球的可能性为的是()A.B.C.D.【分析】首先求出各个箱子中球的总量,然后根据求可能性的方法:求一个数是另一个数的几分之几,用除法列式解答,用黑球的数量除以球的总量,判断出哪个箱子中摸到黑球的可能性为即可.【解答】解:A中摸到黑球的可能性为:3÷(3+3)=B中摸到黑球的可能性为:3÷(3+1+2)=C中摸到黑球的可能性为:2÷(2+1+3)=D中摸到黑球的可能性为:4÷(4+3+2)=故选:C.【点评】解决此类问题的关键是分两种情况:(1)需要计算可能性的大小的准确值时,根据求可能性的方法:求一个数是另一个数的几分之几,用除法列式解答即可;(2)不需要计算可能性的大小的准确值时,可以根据各种球数量的多少,直接判断可能性的大小.9.给一个正方体的表面涂上红、黄、蓝三种颜色,任意抛一次,红色朝上的次数最多,蓝色和黄色朝上的次数差不多,有()个面涂了红色.A.1B.2C.3D.4【分析】因为正方体共有6个面,任意抛一次,红色朝上的次数最多,蓝色和黄色朝上的次数差不多,所以当红色有3面时,还剩3个面,就不能满足蓝色和黄色朝上的次数差不多,所以这个正方体可能有4面涂红色;据此解答.【解答】解:因为正方体共有6个面,任意抛一次,要使红色朝上的次数最多,蓝色和黄色朝上的次数差不多,这个正方体可能有4个涂红色.故选:D.【点评】此题考查了可能性的大小,应明确:正方体共有6个面,然后结合题意,进行分析即可得出解论.10.宝宝拿两个硬币往下扔,两个都是正面朝上的概率是()A.B.C.D.【分析】列举出所有情况,看两个正面向上的情况数占总情况数的多少即可.【解答】解:会出现的情况有:两正;两反;一正一反;一反一正;一共有4种情况,两个正面向上的有1种情况,这两个正面朝上的概率是:1÷4=.答:两个都是正面朝上的概率是.故选:A.【点评】本题还可利用列表法或树状图法求概率(可能性),用到的知识点为:概率=所求情况数与总情况数之比.二.填空题(共5小题)11.抛一枚硬币,连续抛了6次,6次都是正面朝上.如果再抛1次,可能(填“一定”“可能”或“不可能”)是背面朝上.【分析】根据随机事件发生的独立性,可得再抛一次这枚硬币的结果与前6次无关;然后根据硬币有正、反两面,可得这次抛这枚硬币,可能是正面朝上,也可能是反面朝上,据此解答即可.【解答】解:根据随机事件发生的独立性,所以再抛1次这枚硬币,可能是正面朝上,也可能是反面朝上;故答案为:可能.【点评】此题主要考查了随机事件发生的独立性,要熟练掌握,解答此题的关键是要明确:再抛1次这枚硬币的结果与前6次无关.12.今天太阳一定从东方升起(可能、一定、不可能),口袋里有6个红球、2个蓝球,蓝球摸到的可能性小.【分析】根据事件发生的确定性和不确定性进行分析:太阳从东方升起,是客观规律,属于确定事件中的必然事件;要比较可能性的大小,可以直接比较红球和蓝球的个数,因为红球比蓝球的个数多,所以摸到红球的可能性较大,摸到蓝球的可能性较小;据此解答.【解答】解:太阳从东方升起,是客观规律,属于确定事件中的必然事件,是一定的;因为口袋里有6个红球、2个蓝球,6>2,所以任意摸出一个球,摸到蓝球的可能性小.故答案为:一定,蓝球.【点评】解答此题应根据事件的确定性和不确定性进行解答即可;解决此题关键是如果不需要准确地计算可能性的大小时,可以根据各种球个数的多少,直接判断可能性的大小.13.一个盒子里有7个苹果、4个桃子、8个梨,如果任意拿出一个水果,拿到梨的可能性最大.【分析】因为一个盒子里有7个苹果、4个桃子、8个梨,8>7>4,所以从盘子里任意摸出一个水果,摸到梨的可能性最大;据此解答即可.【解答】解:8>7>4,梨的个数最多,所以摸到梨的可能性最大;故答案为:梨.【点评】解决此题关键是根据不需要准确地计算可能性的大小时,可以根据各种水果个数的多少,直接判断可能性的大小.14.箱子里装着5个黄球和5个红球,随便摸一个球,一定是红球.×.【分析】盒子里放有5个黄球和5个红球,有红、黄两种颜色的球,所以摸出球的结果有两种情况:可能是红球,也可能是黄球;由此判断即可.【解答】解:因为有红、黄两种颜色的球,所以摸出球的结果有两种情况:可能是红球,也可能是黄球;所以上面的说法是错误的.故答案为:×.【点评】根据生活经验:有几种颜色的球,摸时哪一种颜色的球都可能摸到.15.口袋里有红、黄两种颜色的10个球,要求任意摸一次,使摸到红球的可能性比摸到黄球的可能性大,口袋里至少要放红球6个.【分析】要使摸到红球的可能性比摸到黄球的可能性大,应使口袋中红球的个数至少比黄球个数多1个.【解答】解:10÷2+1=5+1=6(个);答:口袋里至少要放红球6个.故答案为:6.【点评】解答此题的关键:应明确可能性的计算方法,并能根据实际情况进行灵活运用.三.应用题(共2小题)16.在一个正方体的6个面上分别标上数字1、2、3.要使3朝上的可能性最大,6个面上的数字应怎样标?【分析】一个正方体有6个面,可标上数字1、2、3,要想掷一次后出现3的可能性大,只要尽可能多标3即可.【解答】解:一个正方体有6个面,一个面标1,一个面标2,剩下的4个面标3,这样掷一次后出现3的可能性最大;答:要使3朝上的可能性最大,一个面标1,一个面标2,剩下的4个面标3.【点评】此题根据可能性的大小进行解答即可.17.盒子里有5颗红珠子4颗蓝珠子、1颗绿珠子(这些珠子除颜色外其他,都相同).摇匀后,随意摸出1颗珠子.(1)摸到哪种颜色珠子的可能性最小?(2)小白摸出了1颗蓝珠子,放回后摇匀;小米接着摸,摸出的也是一颗蓝珠子,又放回摇匀.如果小西来摸,摸到哪种颜色珠子的可能性最大?(3)小白摸出了1颗红珠子,小米又摸出了1颗红珠子,都没有放回.这时小西来摸,摸到哪种颜色珠子的可能性最大?【分析】(1)首先比较出三种颜色的珠子数量的多少,然后根据:哪种颜色的珠子的数量越多,摸到的可能性就越大,判断出摸到哪种颜色珠子的可能性最小即可.(2)根据:哪种颜色的珠子的数量越多,摸到的可能性就越大,判断出摸到哪种颜色珠子的可能性最大即可.(3)首先比较出小白、小米摸后剩下的三种颜色的珠子数量的多少,然后根据:哪种颜色的珠子的数量越多,摸到的可能性就越大,判断出摸到哪种颜色珠子的可能性最大即可.【解答】解:(1)因为5>4>1,所以绿珠子最少,所以摸到绿珠子的可能性最小.答:摸到绿珠子的可能性最小.(2)因为5>4>1,所以红珠子最多,所以摸到红珠子的可能性最大.答:摸到红珠子的可能性最大.(3)5﹣1﹣1=3(个)因为4>3>1,所以小白、小米摸后剩下的珠子中,蓝珠子最多,所以摸到蓝珠子的可能性最大.答:摸到蓝珠子的可能性最大.【点评】解答此类问题的关键是分两种情况:(1)需要计算可能性的大小的准确值时,根据求可能性的方法:求一个数是另一个数的几分之几,用除法列式解答即可;(2)不需要计算可能性的大小的准确值时,可以根据各种珠子数量的多少,直接判断可能性的大小.四.操作题(共2小题)18.下面是某组摸球游戏结果的记录表,请根据记录回答问题.(1)如果盒子中一共有4个球,红球和绿球可能各有几个?(2)如果再摸5次,你认为这5次中摸到绿球的次数有可能比红球的次数多吗?请在正确答案的〇内涂色.【分析】(1)由统计表可知,一共摸了43次,摸到红球33次,绿球10次,33÷10≈3,所以可能红球是绿球的3倍,即红球有3个,绿球有1个;(2)根据事件的确定性与不确定性进行分析:因为口袋里有红球,也有绿球,所以随意摸出一个球.可能摸到红球,可能摸到绿球,如果再摸5次,这5次中摸到绿球的次数有可能比红球的次数多;据此解答.【解答】解:(1)33÷10≈3,所以可能红球是绿球的3倍,即红球有3个,绿球有1个;(2)如果再摸5次,这5次中摸到绿球的次数有可能比红球的次数多;【点评】此题考查简单的统计图,以及事件的确定性和不确定性.19.按要求涂一涂.(1)一定摸到黑球.(2)摸到黑球和白球的可能性一样大.【分析】(1)一定摸到黑球,所以都必须是黑球;(2)摸到黑球小学数学五年级上册第五单元简易方程测试卷一、仔细想,认真填。
五年级下册数学单元测试-2.折线统计图与可能性(含答案)一、单选题1.掷一枚骰子,奇数点朝上的可能性()偶数点朝上的可能性。
A. 等于B. 大于C. 小于D. 无法确定2.张阿姨开车去办事,半途中突然有一只狗冲在车前,她用力刹车才没撞它,张阿姨受惊后仍开车回家.右图曲线是张阿姨开车的速度记录。
张阿姨在什么时间为躲避那只狗而刹车?( )A. 8:01B. 8:06C. 8:08D. 8:113.如下图,甲、乙两人进行摸球比赛,甲摸到白球得1分,乙摸到黑球得1分,在()箱中摸球最公平。
A. B. C. D.4.如图是某商场跳绳销售情况统计图:买7米跳绳需要()元.A. 18B. 36C. 42D. 48二、判断题5.折线统计图可以清楚地表示出数量增减变化的情况.6.红红和亮亮是班里的学习委员候选人,老师准备在他们发表任职演讲后,让全班45名同学投票,得票多的当选为学习委员。
7.用瓶盖设计了一个游戏,任意掷一次瓶盖,规定盖口朝下女生胜,盖口朝上男生胜,这个游戏是公平的。
8.小聪按老师要求做抛硬币试验100次,有61次正面朝上,39次反面朝上.如果他再一次,正面朝上的可能性是61%.三、填空题9.在书包里放2颗绿珠子和2颗蓝珠子,每次摸一颗,任意摸30次.估计绿珠子和蓝珠子可能各摸到________次?10.有一个六个面上的数字分别是1、2、3、4、5、6的正方体骰子.掷一次骰子,得到合数的可能性是________ ,得到偶数的可能性是________ .11.下表是同学们做摸球游戏的记录。
(共摸12次,每次把摸出的球放回盒子里)(1)盒子里________球多,________球少。
(2)下次摸到________的可能性大。
12.用3、4、5 数字卡片组成一个三位数.是2的倍数的可能性是________,是3的倍数的可能性是________.13.李明(男生)所在的朝阳小学五三班有48名学生。
队列表演时,要求站成方队,可以有________种队形(行和列不重复)。
五年级上册数学可能性练习题五年级上册数学可能性练习题6、统计与可能性一、接力赛。
二、填一填。
1、盒子里有5个红球,3个白球,任意摸一个球,摸到白球的可能性是,摸到红球的可能性是。
1题图题图2、掷一个骰子,单数朝上的可能性是,双数朝上的可能性是。
如果掷40次,“3”朝上的次数大约是。
3、从卡片、、中任意抽取两张,积是双数的可能性是,积是单数的可能性是。
在一个装有2个黄球和2个红球的袋子中摸球,每次摸2个,有种不同的摸法,可能发生的总次数是,摸到2个红球的可能性是。
4、小红和小华同时各掷一个骰子。
⑴朝上的两个数的和是5的可能性是;⑵朝上的两个数的和是12的可能性是;⑶朝上的两个数的和是2的倍数的可能性是;⑷朝上的两个数的和是单数的可能性是。
强强和贝贝玩掷骰子的游戏,同时掷两个骰子,强强说:“和是单数,我赢;和是双数,你赢。
”贝贝认为不公平,你说对吗?若两个骰子的和是7时,强强赢,和是12时贝贝赢,强强赢的可能性是,贝贝赢的可能性是。
5、有一组数:3、5、6、8、9、22、24,这组数的平均数是中位数是。
可以看出,中位数不受或数据的影响,有时用它代表全体数据的更合适。
三、请你来当小裁判。
1、某城市一日的天气预报为:多云转小雨,29℃~~18℃,降水概率80%,这一天一定会下雨。
、5、6、7、8这组数的中位数是6.5。
13、掷一枚硬币,国徵朝上的可能性是。
14、在一次彩票有奖销售活动中,中奖的可能性是。
李叔叔买了100张彩票,一定能有20张中奖。
5、指针停在三个区域的可能性是相等的。
四、做一做。
用空白的圆形做转盘,请你按要求涂色。
11、使指针停在黄色区域和蓝色区域的可能性都是。
12、使指针停在黄色区域和蓝色区域的可能性都是。
313、使指针停在黄色区域的可能性是 ,停在蓝色区域的可能性是。
4、使指针停在黄色区域的可能性是蓝色区域的2倍。
第1题第2题第3题第4题五、解决问题。
1、家电商场搞促销活动,中奖率是百分之百。
2020年小升初数学专题复习训练—统计与概率可能性(2)知识点复习一.游戏规则的公平性【知识点归纳】游戏规则的公平性体现在参与游戏的任何一方的获胜可能性大小一致.【命题方向】【知识点归纳】1.抛钢镚实验、掷骰子实验和转盘实验,能够列出简单实验的所有可能发生的结果,每个结果发生的可能性都相等.2.用列举法求简单事件发生的可能性,可以用数值表示及其表示方法.【命题方向】三.预测简单事件发生的可能性及理由阐述【知识点归纳】用枚举,列表,画树状图等方法,统计简单事件发生的各种可能的结果数.【命题方向】除法解答,进而得出结论.四.生活中的可能性现象【知识点归纳】1.可能性:是指事物发生的概率,是包含在事物之中并预示着事物发展趋势的量化指标.有些事件的发生是确定的,有些是不确定的.用“可能”、“不可能”“一定”等表达事物发生的情况.2.常见方法有:抛骰子、摸球、转盘.【命题方向】一.选择题(共8小题)1.骑单车上斜坡,直骑上斜坡与绕S形上斜坡比较,较省力的是()A.直骑上斜坡B.一样C.绕S形上斜坡2.在一个物体的6个面上分别标上数字,使得“2”朝上的可能性为,怎么在面上标出数字?()A.只标上1个面为2B.标上两个面为2C.标上3个面为2D.标上4个面为23.两人玩扑克牌比大小的游戏,每人每次出一张牌,各出三次赢两次者胜.小红的牌是“9”、“7”、“5”;小芳的牌是“8”、“6”、“3”.当小红出“5”时,小芳出()才可能赢.A.8B.6C.3D.任意一张都行4.天气预报“明天下雨的概率是90%”,下面()这个判断是正确的.A.明天肯定下雨B.明天不大会下雨C.明天下雨的可能性很大5.有红桃2、3、4、5、6和黑桃2、3、4、5、6各一张扑克混合在一起,任意抽一张,抽到红桃的可能性()抽到质数的可能性.A.>B.=C.<6.小明和小华下棋,下列方法决定谁先走,不公平的是()A.抛硬币.正面朝上,小明先走,反面朝上,小华先走B.投骰子.点数大于3,小明先走,点数小于3,小华先走C.做1号和2号两个签,谁抽到1号谁先走D.袋子里装有1红3白4个球,轮流摸球,谁先摸到红球谁先走7.明明和亮亮用转盘做游戏,指针停在黄色区域算明明赢,停在蓝色区域算亮亮赢,停在红色区域重新进行.下面几种方案对游戏双方都公平的是()A.B.C.8.甲、乙两个队进行排球比赛,在一个正方体的6个面上分别写上数字“1~6”,掷到小于4的数甲队先开球,否则乙队先开球.这种游戏规则()A.公平B.不公平C.公平性不确定二.填空题(共8小题)9.袋子里有红球5个,白球3个,没有其他颜色的球,摸出球的可能性大,可能性是,要想使摸出红球的可能性为,应放入个.10.(北京市第一实验小学学业考)桌面上扣着8张数字卡片,分别写着1﹣﹣﹣8各数.如果摸到单数小明赢,摸到双数小芳赢,这个游戏规则.(填“公平”或“不公平”)11.一个正方体骰子六个面的数字分别是1﹣6,掷一次骰子得到质数的可能性是.12.袋子里有5个红球、3个蓝球和4个白球,取到蓝球的可能性大小是.13.在横线里填上“一定”或“可能”或“不可能”.明年有366天下周下雪第三季度两个大月.14.我知道:对圆周率的研究有贡献的数学家有、和.15.多多和真真在一张纸上玩游戏:将一块橡皮任意扔在纸上,橡皮落在■格子上算多多赢,落在□格子上算真真赢.这个游戏规则.(填公平或者不公平)16.用三张分别写着2、6、9的数字卡片,任意摆一个三位数,摆出单数的可能性比摆出双数的可能性.(填“大”或“小”)三.判断题(共5小题)17.擅长游泳的人在河里游泳不可能会发生溺水事故.(判断对错)18.《九章算术》是我国古代最重要的数学著作.(判断对错)19.一个正方体的各个面上分别写着1,2,3,4,5,6,掷出落地后,每个数朝上的可能性相等.(判断对错)20.小明和小华采用“石头、剪刀、布”的方式决定谁先发球,这个游戏规则是公平的.(判断对错)21.把一枚硬币连续抛8次,正反面朝上的次数一定相同..(判断对错)四.操作题(共3小题)22.(北京市第一实验小学学业考)笑笑、淘气、奇思和妙想四个人玩转盘游戏,请你设计一个转盘,并确定一个对每一个参与游戏的人都公平的游戏规则.23.按格子给圆形转盘涂上不同的颜色(用红、黄等文字代替),使指针转动后停在红色区域的可能性是,停在黄色区域的可能性是.24.想一想,连一连.五.应用题(共4小题)25.柜子里有5顶款式、质地、大小都一样的帽子,其中2顶是黑色的,3顶是蓝色的.在停电的情况下,从中随意拿出2顶帽子,1顶蓝色和1顶黑色的可能性是多少?26.思思和妙妙做摸球游戏,每次任意摸一个球,然后放回摇勾,每人摸10次摸到白球思思得1分,摸到红球妙妙得1分,摸到其他颜色的球两人都不得分.你认为从哪几个盒子里摸球是公平的?27.灰太狼在青青草原上看到了喜羊羊和伙伴们在玩游戏,非常兴奋但狡猾的他表面上露出友善的笑脸走过去,对他们说:“小羊们,我们来做个游戏吧!输的一方什么都得听赢的一方的.“小羊们虽然不愿意,但也不敢反抗.于是灰太痕公布了游戏规则:“我拿1、2、3,你们拿4、5、6,我们各自任意出一张牌,两张牌的数字相乘积大于10,就算本大王赢,等于10算平局,小于10算你们赢.”(1)灰太狼制定的游戏规则公平吗?(2)灰大狼一定会赢吗?28.一批奖券,号码是001~125.(1)中二等奖的可能性是多少?(2)中三等奖的可能性是多少?奖别号码一等奖末两位是25二等奖末一位是0三等奖号码中有一个数字是2参考答案与试题解析一.选择题(共8小题)1.【分析】根据数学常识可知,骑单车上斜坡,直骑上斜坡与绕S形上斜坡比较,较省力的是绕S形上斜坡.【解答】解:由数学常识可知,骑单车上斜坡,直骑上斜坡与绕S形上斜坡比较,较省力的是绕S形上斜坡.故选:C.【点评】考查了数学常识,是生活常识,比较简单.2.【分析】要使得“2”朝上的可能性为,那么6个面中标“2”的个数应占所标数字总个数(6个)的,根据一个数乘分数的意义,求出标“2”的个数,然后再进一步解答.【解答】解:6×=2(个)所以标“2”的个数是2个,也就是标上两个面为2.故选:B.【点评】此题属于简单事件的可能性大小语言阐述,根据一个数乘分数的意义,求出标“2”的个数,是解答此题的关键.3.【分析】根据“田忌赛马”的故事,用3对9,输一局;6对5,8对7,胜二局,由此即可能3局2胜获胜.【解答】解:小芳第一次出3,另一人出9,小芳输,第二次小芳出6,对方出5,小芳胜,第三次小芳出8,对方出7小芳胜,所以当小红出“5”时,小芳出6才可能赢.故选:B.【点评】本题主要是根据“田忌赛马”的故事,用最差的和对方最好的比,输一局,用中等的和对方最差的比,用最好的和对方最差的比,这样就可以胜二局,从而获胜.4.【分析】明天的降水概率是90%,说明下雨的可能性很大,它属于可能性中的不确定事件,在一定条件下可能发生,也可能不发生的事件;进而得出答案.【解答】解:由分析知:明天的下雨的概率是90%,说明明天下雨的可能性很大;故选:C.【点评】解答此题应根据可能性的大小,进行分析,进而得出结论.5.【分析】一共十张牌红桃黑桃各5张,抽到红桃的可能性是:.2、3、4、5各两张,其中质数有2张2、2张3、2张5,共6张.抽到质数的可能性是:.按照分数大小的比较方法比较两种的可能性大小即可.【解答】解:抽到红桃的可能性是:.抽到质数的可能性是:..故选:C.【点评】解答此题应根据可能性的求法:即求一个数是另一个数的几分之几用除法解答,进而得出结论.6.【分析】A、硬币只有反、正面,每面朝上的可能性都是,因此,用抛硬币的方法,正面朝上,小明先走,反面朝上,小华先走,游戏规则公平.B、骰子6个面的数字分别是1、2、3、4、5、6,其中小于3的有1、2,小化先走的可能性是2÷6=;大于3的有4、5、6,小明先走的可能性是3÷6=.<,游戏规则不公平.C、做1号和2号两个签,每人抽到1号的可能性都是1÷2=,戏规则公平.D、袋子里装有1红3白4个球,轮流摸球,每人摸到红球的可能性都是1÷(1+3+4)=,游戏规则公平.【解答】解:A、抛硬币.正面朝上,小明先走,反面朝上,小华先走.游戏规则公平.B、投骰子.点数大于3,小明先走,点数小于3,小华先走.游戏规则不公平.C、做1号和2号两个签,谁抽到1号谁先走.游戏规则公平.D、袋子里装有1红3白4个球,轮流摸球,谁先摸到红球谁先走.游戏规则公平.故选:B.【点评】看游戏是否公平,关键看双方是否具有均等的机会,如果机会是均等的,那就公平,否则,则不公平.7.【分析】明明和亮亮用转盘做游戏,指针停在黄色区域算明明赢,停在蓝色区域算亮亮赢,停在红色区域重新进行,要想游戏规则公平,转盘中黄色、蓝色区域的面积大小相同.【解答】解:明明和亮亮用转盘做游戏,指针停在黄色区域算明明赢,停在蓝色区域算亮亮赢,停在红色区域重新进行.下面几种方案对游戏双方都公平的是:故选:B.【点评】判断游戏规则是否公平的关键是看参与游戏的各方出现的可能性是否相同.相同规则公平,否则,游戏规则不公平.8.【分析】在1~6这六个数字中小于4的有1、2、3,其余的有4、5、6,即掷到小于4的数、其他数字都是3个,概率相同,这种游戏规则公平.【解答】解:在1~6这六个数字中小于4的有1、2、3共3个数字其余数字有4、5、6共三个数字因此,数字小于4的和其余数字面向上的概率都是(或),这种游戏规则公平.故选:A.【点评】游戏规则是否公平的关键是看参与游戏的双方出现的概率是否相同.二.填空题(共8小题)9.【分析】(1)分别求出摸出各种颜色球的概率,即可比较出摸出何种颜色球的可能性大.(2)另外放入非红球7个或白球7个,那么共有15个球,红球有5个,所以摸到红球的概率是.【解答】解:(1)摸到红球的可能性为:;摸到白球的可能性为.故摸到红球的概率大;(2)拿7个白球放入袋中,那么共有15个球,红球有5个,则摸出红球的可能性为;故答案为:红、、白球7.【点评】本题考查的是可能性大小的判断,解决这类题目要注意具体情况具体对待.用到的知识点为:可能性等于所求情况数与总情况数之比.10.【分析】根据题意可知,单数有4个:1、3、5、7;双数有4个:2、4、6、8,个数一样,所以,摸到单数和双数的可能性一样,游戏公平.【解答】解:因为1﹣﹣﹣8中,单数和双数的个数是一样的,所以游戏公平.故答案为:公平.【点评】此题考查了游戏的公平性,如果一个事件有可能,而且这些事件的可能性相同,可能性相等就公平,否则就不公平.11.【分析】首先判断出1、2、3、4、5、6中质数有3个:2、3、5,然后根据求可能性的方法:求一个数是另一个数的百分之几,用除法列式解答,用质数的个数除以数字的总个数6,求出得到质数可能性是多少即可.【解答】解:1、2、3、4、5、6中质数有3个:2、3、5,得到质数的可能性是:3÷6=50%;答:掷一次骰子得到质数的可能性是50%.故答案为:50%.【点评】解决此类问题的关键是分两种情况:(1)需要计算可能性的大小的准确值时,根据求可能性的方法:求一个数是另一个数的几分之几,用除法列式解答即可;(2)不需要计算可能性的大小的准确值时,可以根据各种骰子数量的多少,直接判断可能性的大小.12.【分析】先“3+4+5=12”求出袋子中的球的个数,求摸到蓝球的可能性,根据可能性的求法:即求一个数(3)是另一个数(12)的几分之几用除法解答即可.【解答】解:3÷(3+4+5)=3÷12=答:取到蓝球的可能性大小是.故答案为:【点评】解答此题应根据可能性的求法:即求一个数是另一个数的几分之几用除法解答,进而得出结论.13.【分析】根据事件发生的确定性和不确定性进行分析:(1)明年是2014年,是平年,属于确定事件中的不可能事件;(2)明天可能下雪,属于不确定事件中的可能性事件;(3)第三季度有7、8、9月,其中7月、8月是大月,所以第三季度一定两个大月,属于确定事件中的必然事件.【解答】解:(1)明年不可能有366天;(2)下周可能下雪;(3)第三季度一定两个大月;故答案为:不可能;可能,一定.【点评】解答此题的关键是先确定该事件是随机事件、必然事件还是不可能事件,然后进行分析得出答案.14.【分析】通过查阅资料可了解到,对圆周率的研究有贡献的数学家有祖冲之、阿基米德和刘徽.(合理即可,无固定答案.)【解答】解:我知道:对圆周率的研究有贡献的数学家有祖冲之、阿基米德和刘徽.(无固定答案.)故答案为:祖冲之;阿基米德;刘徽.【点评】本题主要考查数学常识,关键培养学生的积累能力.15.【分析】通过作辅助线不难看出:■格子13个,□格子12个,两种颜色的格子一共是25个,橡皮落在■格子的可能性占,落在□格子上的可能性占,根据两种格子出现的分率大小即可确定规则是否公平.【解答】解:如图橡皮落在■格子的可能性占,落在□格子上的可能性占>不个游戏规则不公平,多多赢的可能性大些.故答案为:不公平.【点评】参与游戏的各方出现的概率相同规则公平,否则不公平.16.【分析】根据单数(奇数)、双数(偶数)的意义,不是2的倍数的数是单数(奇数);是2的倍数的数是双数(偶数).再根据简单的排列组合的方法,用2、6、9三张数字卡片组成的三位数有:269、296、629、692、926、962;其中单数有269、629两个,双数有296、692、926、962四个,由事件发生的可能性得:摆出单数的可能性是,摆出双数的可能性是,据此解答即可.【解答】解:用2、6、9三张数字卡片组成的三位数有:269、296、629、692、926、962共六个;其中单数有269、629两个,双数有296、692、926、962四个,摆出单数的可能性是2÷6=,摆出双数的可能性是4÷6=,答:摆出单数的可能性比摆出双数的可能性小.故答案为:小.【点评】解决此题关键是先写出用2、6、9摆出的所有的三位数,进而根据单数和双数的意义,数出单数和双数的个数,再根据可能性的求解方法:可能性=所求情况数÷总情况数,据此解答即可.三.判断题(共5小题)17.【分析】根据生活经验可知:擅长游泳的人在合理游泳也有可能会发生溺水事故;由此解答即可.【解答】解:擅长游泳的人在合理游泳有可能会发生溺水事故;故答案为:×.【点评】此题考查了生活中的可能性现象,注意平时生活经验的积累.18.【分析】中国古代数学取得了极其辉煌的成就,直到明中叶以前,在数学的许多分支领域里,与世界各国相比,一直处于遥遥领先的地位.中国古代有不少数学名著,其中最重要的当推《九章算术》.据此解答即可.【解答】解:《九章算术》是我国古代最重要的数学著作,所以原题说法正确.故答案为:√.【点评】本题考查了数学知识,注意表述的准确性.19.【分析】因为共6个数字,每个数字都有1个,求掷出每个数字的可能性,根据可能性的求法:即求一个数是另一个数的几分之几,用除法解答即可.【解答】解:掷出每个数字的可能性:1÷6=,即每个数朝上的可能性都是,所以原题说法正确.故答案为:√.【点评】解答此题应根据可能性的求法:即求一个数是另一个数的几分之几用除法解答,进而得出结论.20.【分析】小明和小华采用“石头、剪刀、布”的方式决定谁先发球,可能出现的情况有:“石头﹣石头”(重来)、“石头﹣剪刀”(石头先发球)、“石头﹣布”(布先发球)、“剪刀﹣剪刀”(重来)、“剪刀﹣布”(剪刀先发球)、“布﹣布”(重来)6种情况.每人先发球的可能性都是3÷6=.【解答】解:小明和小华采用“石头、剪刀、布”的方式决定谁先发球,这个游戏规则是公平的原题说法正确.故答案为:√.【点评】此题考查游戏公平性的判断,判断游戏规则是否公平,就要计算每个参与者取胜的可能性,可能性相等就公平,否则就不公平.21.【分析】硬币只有正、反两面,抛出硬币,正面朝上的可能性为,一个硬币抛8次,正面朝上的可能性为,属于不确定事件中的可能性事件,而不是一定为,由此判断即可.【解答】解:根据题干分析可得:一个硬币抛8次,正面朝上的可能性为,所以正面朝上的可能性是4次;这属于不确定事件中的可能性事件,而不是一定为,即不一定一定是4次,原题说法错误.故答案为:×.【点评】此题考查确定事件与不确定事件的意义,用到的知识点为:可能性等于所求情况数与总情况数之比.四.操作题(共3小题)22.【分析】(1)游戏是否公平,关键要看是否游戏双方赢的机会是否相等,即判断双方取胜的可能性是否相等,或转化为在总情况明确的情况下,判断双方取胜所包含的情况数目是否相等,据此判断即可.(2)要使游戏公平就要使每个人先走的概率都相等,根据此知识点设计转盘游戏即可.【解答】解:如图设计:游戏规定:转动转盘时,指针分别指向1,2,3,4时,他们分别获得机会相等;他们赢的可能性都为:1÷4=,所以都公平.【点评】此题考查游戏规则公平性.游戏规则是否公平就要计算每个事件的可能性,可能性相等就公平,否则就不公平.用到的知识点为:可能性=所求情况数与总情况数之比.23.【分析】“转动指针,使指针转动后停在红色区域的可能性是,停在黄色区域的可能性是,=”;需要把转盘平均分成10份,红色区域占其中的5份,黄色区域占其中的4份;据此涂色即可.【解答】解:见下图:【点评】此题主要考查可能性的大小,涂色区域面积占圆面积的几分之几,指针指到这个区域的可能性就是几分之几.24.【分析】因为第一个袋子里,都是黑球,所以任意摸出一个球,一定是黑球,属于确定事件中的必然事件,不可能摸到白球,属于确定事件事件中的不可能事件;第二个袋子里,有白球和黑球,任意摸出一个,可能是黑球也可能是白球,属于不确定事件中的可能性事件;第三个袋子里,都是白球,任意摸出一个球,一定是白球,属于确定事件中的必然事件,不可能摸到黑球,属于确定事件事件中的不可能事件;由此解答即可.【解答】解:【点评】此题应根据事件发生确定性和不确定性进行分析、解答.五.应用题(共4小题)25.【分析】从中随意拿出2顶帽子,出现的结果有:两顶黑色,黑色蓝色、黑色蓝色、黑色蓝色、黑色蓝色、黑色蓝色、黑色蓝色、两顶蓝色、两顶蓝色、两顶蓝色共10种,从2顶是黑色的帽子中选一顶有2种选法,3顶是蓝色的的帽子中选一顶有3种选法;根据乘法原理,可得共有:3×2=6(种);然后根据求可能性的方法:求一个数是另一个数的几分之几,用除法列式解答即可.【解答】解:(3×2)÷10=6÷10=;答:从中随意拿出2顶帽子,1顶蓝色和1顶黑色的可能性是.【点评】解决此类问题的关键是分两种情况:(1)需要计算可能性的大小的准确值时,根据求可能性的方法:求一个数是另一个数的几分之几,用除法列式解答即可;(2)不需要计算可能性的大小的准确值时,可以根据硬币正反面的情况,直接判断可能性的大小.26.【分析】根据题意,若要使游戏公平,则摸到红球和白球的可能性应该是一样的,也就是红球和白球的数量应该是相等的.据此解答.【解答】解:2=2因为第一个盒子中红球和白球的数量相等,所以从第一个盒子里摸球是公平的.5>4所以第二个盒子中摸到红球和白球的可能性不相等,游戏不公平.3>0所以第三个盒子中摸到白球和摸到红球的可能性不相等,游戏规则不公平.3=3所以第四个盒子中的红球和白球个数相等,摸到的可能性也相等,游戏规则公平.答:从第一个和第四个盒子中摸,游戏规则是公平的.【点评】本题主要考查游戏规则的公平性,关键注意各色球的数量多少.27.【分析】(1)在1、2、3与4、5、6和乘积中有1×4=4、1×5=5,1×6=6、2×4=8、2×5=10、2×6=12、3×4=12、3×5=16、3×6=18,其中小于10的只有4可能,等于10的只有1种可能,大于10的有4种可能.小羊们和灰太狼赢(或输入)的可能性相等,这个游戏规则公平.(2)既然游戏规则公平,小羊位、灰太狼赢的可能性相等,因此,灰大狼不一定会赢.【解答】解:(1)1、2、3与4、5、6和乘积中有1×4=4、1×5=5,1×6=6、2×4=8、2×5=10、2×6=12、3×4=12、3×5=16、3×6=18其中小于10的只有4可能,等于10的只有1种可能,大于10的有4种可能小羊们、灰太狼赢的可能性相等,都占游戏规则公平.(2)小羊们、灰太狼赢的可能性相等,都占,戏规则公平,灰大狼不一定会赢.【点评】判断游戏规则公平的关键是看参与游戏的各方出现的可能性是否相等,相等,游戏规则公平,否则,游戏规则不公平.28.【分析】(1)一共有125个数,能中二等奖的数字有:10、20…90、100、110、120,一共有12个.中二等奖的可能性是12÷125.(2)一共有125个数,能中三等奖的数字有:2、12、22、32…92、102、112、122,一共有13个.中二等奖的可能性是13÷125.【解答】解:(1)符合二等奖的数字个数除以总数,就是获得二等奖的可能性:12÷125=.(2)符合三等奖的数字个数除以总数,就是获得三等奖的可能性:13÷125=.【点评】解答此题应根据可能性的求法:即求一个数是另一个数的几分之几用除法解答,进而得出结论.。
【导语】可能性是指事物发⽣的概率。
包含在事物之中并预⽰着事物发展趋势的量化指标,其是客观论证,⽽⾮主观验证。
以下是⽆忧考为⼤家精⼼整理的内容,欢迎⼤家阅读。
【篇⼀】⼩学五年级上册数学《可能性》知识点 1.可能性 事件的发⽣有确定性和不确定性,确定的事件⽤“⼀定”或“不可能”来描述,不确定的事件⽤“可能”来描述。
2.事件发⽣可能性的⼤⼩ 可能性的⼤⼩与数量的多少有关,相同条件下,在总数中所占数量越多,可能性越⼤;所占数量越少,可能性越⼩。
【篇⼆】⼩学五年级上册数学《可能性》练习题 ⼀、填空题。
1、掷⼀枚骰⼦(骰⼦的数字分别是1、2、3、4、5、6),单数朝上的可能性是( )。
2、某商家开展抽奖活动,10张奖卷有⼀个⼀等奖,两个⼆等奖,⼩明第⼀个去抽,他得到⼀等奖的可能性是( ),如果第⼀次他抽中⼆等奖,那他再次抽中⼆等奖的可能性是( )。
3、在⼀个正⽅体的六个⾯分别写上数字,使得正⽅体掷出后,“5”朝上的可能性为1/2。
正⽅体有( )⾯要写上“5”。
4、从⼀副扑克牌(四种花⾊、去掉⼤⼩王)中,抽到5的可能性是( ),抽到红⼼5的可能性是( ),抽到⿊桃的可能性是( )。
5、从1-9共9个数字中任取⼀个数字,则取出的数字为偶数的可能性为()。
A.0 B. 1 C.5/9 D.4/9 6、某⼈射击⼀次,击中0-10环的结果的可能性都相等,那么击中8环的可能性是()。
A.1/12 B.1/11 C.1/10 D.1/9 7、从写有1-6的6张卡⽚中任抽⼀张,抽到是2的可能性是()。
A.1/2 B.1/4 C.1/5 D.1/6 8、有10张卡⽚,分别写有1-10,从中随机抽出⼀张,则抽到5的可能性有多⼤?抽到偶数的`可能性有多⼤? 9、时扔两枚硬币,如果⼀个是反⾯则李丽胜,两个同时为正⾯或同时为反⾯则王军胜,这个游戏公平吗?说明理由。
如果扔100次,两个都是正⾯⼤约会出现多少次? 10、设⼀盒中有10个⽩球,6个红球,2个黄球,从盒中任取⼀球,哪种颜⾊的球被取到的可能性?哪种最⼩,分别为什么? 11、刘佳国庆节到北京旅游,她带了⽩⾊和黄⾊两件上⾐,蓝⾊、⿊⾊和红⾊3条裤⼦,她任意拿⼀件上⾐和⼀条裤⼦穿上,共有多少种可能? ⼆、下⾯哪些事情发⽣的可能性为1,哪些发⽣的可能性为0。
五年级数学统计与可能性同步练习题
统计
你认识中位数了吗?
1
钟踢毽成绩如下(单位:个)
姓
(1)把这组数据从小到大排列。
(2)分别求出这组数据的中位数和平均数。
(3)用哪一个数代表这组数据的一般水平更合适?
2、下面是五年级(2)班女同学测量身高的记录单(单位:cm):
130 140 131 142 145 144 140 139
141 152 137 151 138 144 143 148
(1)这组数据的中位数,平均数各是多少?哪个数大,你发现了什么?
(2)如果身高135cm以上为正常:有多少名同学身高正常,这个班身高情况如何?
1、下面记录的是某班男生的一次跳远成绩(单位:
cm )
(1)分别求出这组数据的平均数和中位数。
(得数保留二位小数)
(2)用哪个数代表这组数据的一般水平更合适?
(3)一位同学的成绩是3.28他的成绩处于什么水平?
2、请你调查本班同学的体重情况。
求出所收集数据的中位数。
甲、乙、丙三支球队进行一次足球比赛,每两队之间赛
一场。
已知甲队总进球数是0,并且有一场打了平局,乙队1:0胜了一场,0:2输了一场。
判断丙球队的成绩。