建设真正意义上的数字化电厂(FCS的作用)
- 格式:ppt
- 大小:82.50 KB
- 文档页数:45
全面解读智慧电厂智慧电厂是指通过应用先进的信息技术和物联网技术,对电厂进行全面的数字化、智能化改造,实现电厂运行管理的高效、智能和可持续发展。
智慧电厂的建设旨在提高电厂的运行效率、降低能耗和排放,从而实现可持续发展和绿色生产。
下面将对智慧电厂进行全面解读。
一、智慧电厂的概念和背景智慧电厂是在信息技术和物联网技术的支持下,将电厂的各个环节进行数字化、智能化改造的新型电厂模式。
智慧电厂的建设背景是随着信息技术和物联网技术的不断发展,电力行业也面临着转型升级的需求。
传统的电厂运行模式存在效率低下、能源浪费、环境污染等问题,而智慧电厂的建设可以有效解决这些问题,提高电厂的运行效率和环保水平。
二、智慧电厂的主要特点和技术支持1. 数据集成和分析:智慧电厂通过对电厂各个环节的数据进行采集、传输和分析,实现对电厂运行状态的实时监控和分析。
通过数据集成和分析,可以及时发现问题,优化运行策略,提高电厂的运行效率。
2. 自动化控制:智慧电厂利用先进的自动化控制技术,实现对电厂设备和系统的自动化控制和调度。
通过自动化控制,可以减少人为干预,提高运行的稳定性和可靠性。
3. 能源管理:智慧电厂通过能源管理系统对电厂的能源消耗进行监控和管理,实现能源的高效利用和节约。
通过合理的能源管理,可以降低电厂的能耗和排放,提高电厂的环保水平。
4. 安全监测和预警:智慧电厂通过安全监测和预警系统,对电厂的安全状况进行实时监测和预警。
通过及时发现和处理安全隐患,可以保障电厂的安全运行。
5. 人机交互界面:智慧电厂通过人机交互界面,实现对电厂运行状态的可视化展示和操作。
通过直观的界面,可以方便操作人员对电厂的运行进行监控和管理。
三、智慧电厂的应用领域和优势智慧电厂的应用领域主要包括火力发电厂、水电站、核电站等各类电厂。
智慧电厂的优势主要体现在以下几个方面:1. 提高运行效率:智慧电厂通过数据分析和自动化控制,可以提高电厂的运行效率,减少能源浪费和产能损失。
浅析智慧电厂的建设与发展-以火电厂建设为例摘要:发电厂是电力生产的重要环节,随着智能化话的深入发展,智慧电厂的建设势在必行。
以火电厂的建设为例,介绍了目前智慧电厂的建设与发展的特点以及研究现状。
提出了建设智慧电厂的优势和下一步的发展趋势,指出了目前需要解决的瓶颈问题。
为智慧电厂尤其是火电厂的建设提供了理论支持和技术指导。
关键词:智慧电厂;建设与发展;火电厂引言我国火力发电机组的信息化建设经历了分散控制阶段和网络化阶段,随着大量的现场设备、元器件等局部系统的信息无法自动启动,实现实时准确的上传,这些方面的因素严重制约可企业信息的发展,对于企业的过程监控,现代化管理、高效执行等十分不利,使得在电力市场竞争中处于不利地位。
为了实现与智慧电网的同步发展没实现精细管理和高效管理,作为供电企业的发电厂,必须向着智能化、集约化、系统化的方向发展。
1 智慧电厂概述1.1 智慧电厂的定义智慧电厂是以物理电厂为基础,在现有的技术、管理水平的基础上,通过对局部或者是分系统的科技含量和管理内涵等资源进行深入挖掘和全面梳理后,采用系统性的理论和内部资源配置最优化的理念,重新对所有内部资源的应用价值的再认识、再整合,同时融入了现代先进管理和先进技术形成的新型电厂。
智慧电厂的网络模型如图1所示,它使得准备更加可靠,技术更加先进,系统更加合理,管理更加柔性,发展更加持续,经济效益和社会效益更加提高.1.2 智慧电厂结构内容智慧电厂与数字化电厂具有相同的体系结构,都包含基础设备层、实时控制层、系统优化层、生产管理层和电厂决策层等,智能化电厂在数字化电厂结构内容的基础上进行了不同程度的丰富和发展。
在实时控制层,数字化电厂与智能化电厂都包括锅炉、汽机、电气、辅机等的DCS一体化控制系统,保证火电厂的安全平稳运行。
智能化电厂在此基础上,通过使用预测控制、模糊控制、神经网络控制、模糊神经网络控制和遗传算法等各种智能控制和算法,实现机组的优化控制,从而提高机组效率和安全性,达到节能降耗的目的。
全面解读智慧电厂智慧电厂是指通过物联网、大数据、人工智能等技术手段,将传统电厂进行数字化、智能化改造,实现全面监测、自动控制和智能化管理的电力生产和运营模式。
本文将对智慧电厂的定义、特点、应用领域、技术支持以及未来发展进行全面解读。
一、智慧电厂的定义智慧电厂是指利用先进的信息技术手段,对传统电厂进行数字化、智能化改造,实现对电力生产全过程的监测、控制和管理的一种新型电厂模式。
通过将传感器、数据采集设备、云计算、大数据分析和人工智能等技术应用于电力生产过程中,实现电厂的智能化运营和管理,提高电力生产效率、降低生产成本、提升安全可靠性。
二、智慧电厂的特点1. 全面监测:智慧电厂通过布置传感器和监测设备,实时监测电力生产过程中的各项参数,包括温度、压力、电流、电压等,确保电力生产过程的稳定性和安全性。
2. 自动控制:智慧电厂通过自动化控制系统,对电力生产过程进行实时调节和控制,提高电力生产效率,降低能耗和排放。
3. 智能化管理:智慧电厂利用大数据和人工智能技术,对电力生产过程中的数据进行分析和预测,优化生产计划和运维管理,提高电力生产的可靠性和经济性。
4. 绿色环保:智慧电厂通过优化能源利用和排放控制,减少对环境的影响,实现绿色、可持续发展。
三、智慧电厂的应用领域智慧电厂适合于各种类型的电厂,包括火力发电厂、水力发电厂、核电厂、风力发电厂等。
同时,智慧电厂也适合于各种规模的电厂,从小型分布式电源到大型集中式电厂都可以进行智能化改造。
智慧电厂的应用领域包括但不限于以下几个方面:1. 电力生产过程监测与控制:通过智能传感器和监测设备,实时监测电力生产过程中的各项参数,如温度、压力、电流、电压等,实现对电力生产过程的自动化调节和控制。
2. 能源管理与优化:通过大数据和人工智能技术,对电力生产过程中的数据进行分析和预测,优化能源利用和生产计划,降低能耗和排放。
3. 运维管理与故障诊断:通过智能化监测和分析系统,对电力设备进行实时监测和故障诊断,提前预警和处理设备故障,减少停机时间和维修成本。
数字化工厂建设方案核心功能要素与关键技术随着科学技术的不断发展,制造类企业也经历了几次变革,从实际发展来看,每一次变革都带来了制造水平的大幅提升,体现了科学技术的主导作用,研究认为制造类企业向智能化发展大致经历以下四个阶段:手工作业→自动化流水作业→数字化网络化作业→网络化智能化作业。
从历史发展规律来看,随着科学技术的不断进步,制造类企业变革也是一种必然,从大的发展周期角度,研究认为当前的制造类企业发展正处于第三阶段数字化网络化作业的发展时期,即信息化和工业化两化深度融合的阶段,同时正在初步探索网络化智能化作业。
1、数字化工厂的概念数字化工厂是随着数字仿真技术和虚拟现实技术发展而来的,它通过对真实工业生产的虚拟规划、仿真优化,实现对工厂产品研发、制造生产和服务的优化和提升,是现代工业化与信息化融合的应用体现。
随着产品需求的不断变化、产品周期的更新换代速度提升,以及3D打印、物联网、云计算、大数据等新兴信息技术的不断应用,为了缩短研发周期,降低生产成本,提升企业产品质量和效益,先进的制造类企业开始越来越重视数字化工厂的建设,如上汽、海尔、华为、西门子等制造企业均已着手开始建设自己的数字化工厂,以支撑企业实现新的突破和发展。
作为信息化和工业化融合应用的最佳结合点,研究数字化工厂如何建设,探讨虚拟设计与物理设备之间怎样实现无缝衔接,对驱动信息化和工业化的深度融合发展、以及未来智能工厂发展具有十分重要的意义。
数字化工厂具有广义和狭义的概念,其涉及的内容也随着分析的角度不同而有所区别。
本文数字化工厂结合国内离散型制造企业的实际情况(如兵器、航天等领域的部分制造企业),是以广义数字化工厂中核心制造企业为主,在满足自身生产和管理任务的同时,需要具备产品研发能力和售后服务保障能力,因此本论文中的“数字化工厂”不仅仅是生产的概念,它是向前延伸到设计,向后推移到服务,同时涵盖企业管理,包括产品研发设计过程、生产制造过程、企业管理过程、服务保障过程等产品全生命周期整个过程。
全面解读智慧电厂智慧电厂是指利用先进的信息技术和自动化控制技术,对电厂的运行、管理和维护进行智能化改造和升级的一种新型电厂模式。
它通过实时监测、数据分析和智能决策等手段,全面提升电厂的运行效率、安全性和可靠性,实现对电力生产全过程的智能化管理。
智慧电厂的核心是数据采集、传输和分析。
通过安装传感器和监测设备,实时采集电厂各个环节的运行数据,包括发机电组的负荷、温度、振动等参数,输电路线的电流、电压等参数,以及电厂的能耗、设备状态等信息。
这些数据通过网络传输到中央控制中心,经过数据分析和处理后,生成各种报表、图表和预警信息,为电厂管理者提供决策支持和运行指导。
智慧电厂的主要特点有:1. 实时监测和预警:智慧电厂能够实时监测电厂各个设备的运行状态,及时发现异常情况并进行预警。
例如,当某个设备温度超过设定值时,系统会自动发送警报,提醒运维人员进行处理,避免设备故障导致停机。
2. 数据分析和优化:智慧电厂通过对大量的历史数据进行分析,找出设备的潜在问题和性能瓶颈,并提出相应的优化方案。
例如,通过分析发机电组的负荷曲线,可以确定最佳的负荷分配方案,提高发电效率。
3. 自动化控制和调度:智慧电厂能够实现对电厂设备的自动化控制和调度。
例如,当负荷蓦地增加时,系统会自动调整发机电组的输出功率,以确保电网的稳定运行。
4. 能源管理和节能减排:智慧电厂通过对能源消耗的监测和分析,匡助电厂管理者制定合理的能源管理策略,实现节能减排的目标。
例如,通过对设备的能耗数据进行分析,可以找出能源消耗较大的设备,并提出相应的节能方案。
5. 远程监控和维护:智慧电厂支持远程监控和维护,运维人员可以通过互联网远程登录系统,实时监控电厂的运行情况,并进行设备维护和故障排除。
这样可以节省人力物力成本,提高电厂的运行效率和可靠性。
智慧电厂的应用范围广泛,包括火力发电厂、水电厂、核电厂、风电场等各类发电设施。
它不仅可以提高电厂的运行效率和可靠性,还可以降低能源消耗和环境污染,对于实现可持续发展和建设智慧城市具有重要意义。
FCS摘要FCS(Fidlebus Control System)即现场总线控制系统,它是用现场总线这一开放的、具有互操作性的网络将现场各个控制器和仪表及仪表设备互联,构成现场总线控制系统,同时控制功能彻底下放到现场,降低了安装成本和维修费用。
因此,FCS实质上是一种开放的、具有互操作性的、彻底分散的分布式控制系统,有望成为21世纪控制系统的主流产品。
基本介绍FCS的前身是DCS与PLC,FCS不仅具备两者的特点,而且跨出了革命性的一步。
而目前,新型的DCS与新型的PLC,都有向对方靠拢的趋势。
新型的DCS已有很强的顺序控制功能;而新型的PLC,在处理闭环控制方面也不差,并且两者都能组成大型网络,DCS与PLC的适用范围,已有很大的交叉。
DCS系统的关键是通信。
也可以说数据公路是分散控制系统DCS 的脊柱。
由于它的任务是为系统所有部件之间提供通信网络,因此,数据公路自身的设计就决定了总体的灵活性和安全性。
数据公路的媒体可以是:一对绞线、同轴电缆或光纤电缆。
通过数据公路的设计参数,基本上可以了解一个特定DCS系统的相对优点与弱点。
为保证通信的完整,大部分DCS厂家都能提供冗余数据公路。
为了保证系统的安全性,使用了复杂的通信规约和检错技术。
所谓通信规约就是一组规则,用以保证所传输的数据被接收,并且被理解得和发送的数据一样。
目前在DCS系统中一般使用两类通信手段,即同步的和异步的,同步通信依靠一个时钟信号来调节数据的传输和接收,异步网络采用没有时钟的报告系统。
关键要点FCS的关键要点有三点:1、FCS系统的核心是总线协议,即总线标准2、FCS系统的基础是数字智能现场装置3、FCS系统的本质是信息处理现场化实现方式通过使用现场总线,用户可以大量减少现场接线,用单个现场仪表可实现多变量通信,不同制造厂生产的装置间可以完全互操作,增加现场一级的控制功能,系统集成大大简化,并且维护十分简便。
传统的过程控制仪表系统每个现场装置到控制室都需使用一对专用的双绞线,以传送4~20mA信号,现场总线系统中,每个现场装置到接线盒的双绞线仍然可以使用,但是从现场接线盒到中央控制室仅用一根双绞线完成数字通信。
现场总线控制系统(FCS)发展前景展望现场总线控制系统(Fieldbus Control System,FCS)是工业自动化领域中的一种重要技术,其发展前景广阔,正日益受到人们的关注。
以下是对FCS发展前景的展望。
一、背景介绍现场总线控制系统是一种用于工业过程控制的开放型、全数字化网络通信系统。
它将位于现场的各种自动化设备、仪器仪表、传感器等通过一根总线连接起来,实现设备间的信息交互和数据共享。
它具有现场设备分散、信息传输速度快、可扩展性强、可靠性高等优点,因此在石油、化工、电力、制药等许多行业得到了广泛应用。
二、概览随着科学技术的不断进步和工业自动化需求的不断增长,FCS在功能和性能上也不断得到提升。
未来的FCS将朝着更加高效、可靠、安全和智能化的方向发展。
同时,随着工业互联网的普及和发展,FCS将更好地与云计算、大数据、人工智能等先进技术进行融合,实现更加精准、高效、智能的工业过程控制。
三、价值分析FCS的价值不仅在于其技术优势,更在于其能够带来的经济效益和社会效益。
首先,FCS能够提高工业过程控制的精度和效率,减少能源浪费,降低生产成本。
其次,FCS能够提高产品质量和生产效率,增强企业的竞争力。
此外,FCS还能减少人员劳动强度,提高生产安全性和可靠性,改善企业的工作环境。
四、发展趋势1.技术创新未来,FCS将继续在技术创新方面进行探索和实践。
例如,采用更加先进的信号处理技术、通信协议和网络安全技术等,提高FCS的性能和可靠性;同时,探索适应不同工业过程的FCS解决方案,满足个性化的需求。
2.与工业互联网的融合工业互联网的普及和发展为FCS提供了更广阔的发展空间。
未来,FCS将更好地与工业互联网融合,实现各种数据的无缝集成和共享,优化生产流程,提高生产效率和质量。
同时,借助工业互联网平台,FCS可以实现远程监控和维护,提高系统的安全性和可靠性。
3.人工智能的应用人工智能技术的不断进步为FCS带来了新的发展机遇。
全面解读智慧电厂智慧电厂是指利用先进的信息技术和自动化控制技术,对传统电厂进行升级改造,实现智能化管理和运营的一种电力生产模式。
它通过应用物联网、大数据、云计算等技术,实现电厂设备的智能监测、故障预警、优化调度等功能,提高电厂的运行效率和安全性,降低能源消耗和环境污染。
智慧电厂的建设和运营需要包括以下几个方面的内容:1. 智能监测与诊断:智慧电厂应用物联网技术,实现对电厂设备的实时监测和数据采集。
通过传感器、监测设备等,对电厂设备的温度、压力、振动等参数进行监测,并将数据传输至中央控制系统进行分析和诊断。
通过实时监测,可以及时发现设备的异常情况,并进行故障预警和维护管理。
2. 能耗管理与优化:智慧电厂通过应用大数据和云计算技术,对电厂的能源消耗进行监测和分析。
通过对能源消耗的数据进行统计和建模,可以找出能源消耗的主要原因和潜在问题,并提出相应的优化方案。
通过优化能源消耗,可以降低电厂的运行成本,提高能源利用效率。
3. 运行调度与控制:智慧电厂通过应用自动化控制技术,实现对电厂设备的远程控制和调度。
通过中央控制系统,可以对电厂的发电机组、锅炉、汽轮机等设备进行远程监控和控制,实现对电厂运行状态的实时调度和优化。
通过自动化控制,可以提高电厂的运行效率和稳定性。
4. 安全管理与防护:智慧电厂通过应用视频监控、安全报警等技术,对电厂的安全进行监测和防护。
通过视频监控系统,可以实时监测电厂的安全状况,发现异常情况并及时报警。
通过安全报警系统,可以对电厂的火灾、泄漏等安全事故进行预警和应急处理。
通过安全管理和防护,可以保障电厂的运行安全和人员的生命财产安全。
5. 运维管理与维护:智慧电厂通过应用维修管理系统和设备管理系统,实现对电厂设备的运维管理和维护。
通过维修管理系统,可以对设备的维修计划和维修记录进行管理和跟踪。
通过设备管理系统,可以对设备的资产信息、维修历史、维护计划等进行管理和分析。
通过运维管理和维护,可以提高设备的可靠性和延长设备的使用寿命。
FCS技术在电网变配电及用电管理中的应用摘要:现场总线(FCS)技术是一项新兴不久的技术,其数字化、智能化特征鲜明,该文结合当前电力系统中通信、检测、控制等技术密集的电网变配电和用户端用电管理的实际,对在电力系统中应用现场总线技术进行了论述。
关键词:变配电用电管理现场总线(FCS)技术概括起来说,电力系统由发电厂、电力网和用户组成,目前国家大力发展并最终形成智能化电网是必然趋势。
电网的变配电分支网络是继电力系统发输电之后的重要部分,这部分的特点是:经变配电后与用户联系紧密,网络分支多,生产参数检测和网络传输信息吞吐量很大,技术密集精细,集约化程度要求高。
现场总线(FCS)技术是一种用于智能化现场设备和自动化系统的开放式、数字化、双向串行、多节点的通信总线,现场总线是新型是低带宽的底层控制网络,其数字化程度高,技术精细,已在世界范围内广泛应用。
常见的典型现场总线现场总线有CAN总线、FF总线、Profi-Bus总线、Lonworks总线、CC-Link总线以及Device-Net总线和Word-Fip总线,这些总线都具有各自优势,在不同行业中都得到了具体广泛的应用。
电力行业也不例外,现场总线技术的不断发展以及在电力系统的逐步普及应用,为适应变配电发展变化的特点提供了一种良好的选择方向。
该文将结合当前现场总线技术在现场总线技术在电网变配电及电力需求侧中的应用作如下综述。
1 变电站监控应用现场总线技术作为信息网络变电所是一个内部现场监控设备繁多,信号采集量大的电能中转站,为了满足无人值守的目标要求,现场信号的采集包括电流、电压、功率、瓦斯、温度以及过压、过流、速断、短路保护等内容,这些信号的传输采集对现场设备的实时监控非常必要,传统意义上的RS-485模式的主从查询通信方式和负载容量已不能满足要求,另外它们的通信信速率低的缺点,也难以满足实时性较高的要求。
同时主从式通信方式也使得通信网络中主站点如果出现故障,那么就会导致整个系统瘫痪,这样主站点好坏便成了制约系统长期正常运行的“瓶颈”。
DCS系统在发电厂运行中的作用发电厂作为能源供应的重要环节,其稳定高效的运行对保障国家经济发展和人民生活至关重要。
为了实现对发电厂运行管理的精细化控制,提高运行效率和安全性,DCS(Distributed Control System,分布式控制系统)被广泛应用于发电厂的运行中。
本文将对DCS系统在发电厂运行中的作用进行探讨。
一、引言随着科技的不断进步,发电厂的运行模式和要求日益多样化和复杂化。
传统的中央控制系统已经无法满足对发电厂运行的实时监控、数据采集、控制指令下发等要求,因此DCS系统应运而生。
DCS系统通过将控制点分布在各个环节,实现了系统的分布式控制和集中管理,大大提高了发电厂运行的效率和可靠性。
二、DCS系统的基本架构DCS系统主要由上位机、下位机、通信网络以及相关的传感器和执行器组成。
上位机作为DCS系统的核心,负责数据采集、参数监测、故障诊断和控制指令下发等功能,通常采用高性能的工作站。
下位机是将上位机发出的控制指令通过通信网络传递到各个执行器上的控制设备,如PLC(Programmable Logic Controller,可编程逻辑控制器)等。
通信网络是连接上位机和下位机的纽带,确保数据的及时传递和交换。
三、DCS系统在发电厂运行中的作用1. 实时监控与远程操作DCS系统通过连接各种传感器和测量仪器,实时监测发电厂的温度、压力、流量等各项关键参数,将数据传输到上位机,实现对整个发电厂运行状态的实时监控。
运行人员可以通过上位机远程查看各个设备的状态,并进行必要的操作和调整,以保证发电厂运行在安全且高效的状态。
2. 高效控制与调度DCS系统的优势之一是能够实现对发电厂进行精细化控制和调度。
通过上位机下发控制指令,DCS系统可以自动对发电机组、锅炉、燃煤系统等进行调节,保持运行在最佳状态。
同时,DCS系统还能根据负荷需求进行智能调度,确保发电厂在不同负荷情况下的供电稳定性和高效性。
数字化电厂在火电厂的设计应用及解决方案摘要:本文介绍了数字化管理思想在企业管理思想和业务流程重组中的实现,通过应用一系列先进的科学技术、融入现代化的管理思想,旨在解决火力发电厂管理粗放水平低下、发电能耗高、污染物(气、水、渣)排放严重、辅助系统运行不稳定、设备故障率高、自动保护投入率低、运行人员多的现状,最终实现火力发电站现代化的运营和管理,达到企业运营成本最小、发电能耗最低、污染物零排放(废气达标排放)、设备可用系数高、人均产值高。
关键词:数字化;ERP;KKS编码;现场总线Digital plant design applications and solutions in thermal power plantsLI Wei(School of information and control engineering, Xi'an University Of Architecture And Technology , Xi'an Shan'xi 710055)Abstract: This article describes the digital management thinking in business management ideas and business process restructuring achieved through the application of a series of advanced science and technology, into modern management thinking, extensive management designed to address the low level of thermal power plants, high power consumption, pollution matter (gas, water, slag) emissions serious, auxiliary systems unstable, equipment failure rate, automatic protection investment rate, multi-operator status, and ultimately the modern thermal power station operation and management, to minimize the cost of business operations , lowest power consumption, zero emission (emission standard), equipment availability factor, high per capita GDP.Keywords: Digitization; ERP; KKS coding; Fieldbus引言数字化管理将火电厂的业务流程视为建立在企业管理系统上的价值链,可以对价值链上所有环节,如定单、采购、库存、计划、设备、质量、运行、检修、财务、人事等进行有效管理,强调动态监控生产技术和经营状况,及时掌握信息。
全面解读智慧电厂智慧电厂是指利用先进的信息技术和智能化装备,实现电厂生产运营过程的数字化、智能化和自动化的一种新型电厂模式。
它通过应用物联网、云计算、大数据分析等技术,实现对电厂各个环节的数据采集、监测、分析和控制,从而提高电厂的运行效率、降低成本、减少环境污染。
一、智慧电厂的背景和意义智慧电厂的出现是电力行业信息化和智能化发展的必然结果。
随着信息技术的不断发展和应用,电力行业也面临着转型升级的压力和机遇。
智慧电厂的建设可以提高电厂的运行效率和可靠性,降低能源消耗和环境污染,提高电力供应的可持续性,推动电力行业的绿色、低碳、可持续发展。
二、智慧电厂的基本架构和关键技术智慧电厂的基本架构包括数据采集与传输、数据存储与管理、数据分析与决策、智能控制与优化四个方面。
其中,关键技术包括物联网技术、云计算技术、大数据分析技术、人工智能技术等。
1. 数据采集与传输:通过传感器、仪表等设备对电厂各个环节的数据进行采集,并通过网络传输到数据中心进行处理和分析。
2. 数据存储与管理:将采集到的数据存储在云平台或大数据平台中,实现对数据的集中管理和存储。
3. 数据分析与决策:通过大数据分析技术对采集到的数据进行处理和分析,提取有价值的信息,为电厂的运行和管理提供决策支持。
4. 智能控制与优化:通过人工智能技术,对电厂的生产过程进行智能控制和优化,提高电厂的运行效率和可靠性。
三、智慧电厂的应用领域和效益智慧电厂的应用领域包括发电、输电、配电和用电四个环节。
在发电环节,智慧电厂可以实现对发电设备的实时监测和预测维护,提高发电效率和可靠性;在输电环节,智慧电厂可以实现对电网的实时监测和优化调度,提高电网的稳定性和安全性;在配电环节,智慧电厂可以实现对配电网络的实时监测和优化控制,提高配电效率和可靠性;在用电环节,智慧电厂可以实现对用户用电行为的实时监测和优化调整,提高用电效率和节能减排。
智慧电厂的应用可以带来很多效益。
首先,它可以提高电厂的运行效率和可靠性,降低电力生产成本和能源消耗。
华能伊敏发电厂数字化电厂简介[ 返回 ]解决方案华能伊敏发电厂数字化电厂方案的基本思路是利用科英(SIMCOIN)三位一体支撑平台,建立实时共享数据库,接收现场测量数据及控制系统数据、在线仿真系统实时计算的数据及生产管理数据,使实时共享数据库成为公共数据接口,实现信息的全面共享。
从功能上分,方案由控制系统(CS)、在线仿真系统(OLS)、生产优化与分析系统(POA)及管理优化决策系统(MOD )组成。
数字化电厂结构如下:华能伊敏发电厂数字化电厂技术方案中的CS主要是指计算机控制系统(DCS或FCS),其功能是实现电厂的自动控制,同时,把测量数据、操作和控制信息提供给OLS和POA,最终将实现CS和POA的闭环,将POA优化的控制方案或控制参数闭环反馈到CS。
OLS是仿真技术发展的最新成果,通过高精度仿真模型实时在线仿真,为POA和MOD提供反映系统状态的大量信息,特别是无法测量的中间变量,用于控制优化、状态分析、故障诊断及系统调试等。
POA系统实现发电厂各机组过程监控、设备状态分析、经济性分析与控制优化及运行控制操作指导等功能。
对于企业管理,MOD通过POA与现场机组的有机结合,隔离了MOD与现场控制与优化系统的直接联系,保证系统的安全,同时POA又充当了企业管理层与运行控制间的桥梁,使企业管理层随时随地通过企业INTRANET/ INTERNET实时了解各机组的运行情况,获得决策所需的种种支持信息。
MOD将企业的信息进行集中处理、组织与分发,实现管理的信息化,并提供设备决策、竞价决策和决策分析支持等功能。
I.科英三位一体支撑环境(SIMCOIN)科英三位一体支撑平台是支持控制、仿真和信息系统的设计、开发、运行的大型支撑软件,其核心是实时共享数据库。
共享数据库也是华能伊敏发电厂数字化电厂的信息交换枢纽,为POA和MOD提供大量、安全的信息。
科英平台的主要功能概括如下。
▪开发管理系统:对整个数字化系统开发进行控制和管理,使系统能建立多个独立的开发系统,支持多人并行开发或多人合作开发。
什么叫FCS一.FCS在化学水系统的应用FCS技术作为第三代DCS的发展方向,其以全数字化,全分散化,全开放性的技术特点将逐步取代DCS成为发展企业主要控制方式,其控制领域将覆盖到电厂的各个系统。
1.现场总线及FCS简介1.1 现场总线(Fieldbus)是用于现场仪表与控制系统及与控制室之间的全分散,全数字化,智能,双向,多变量,多点多站的互连通讯网络,也被称为开放式,数字式多点通信的底层控制网络。
现场总线技术将专用微处理器置入传统的测量控制仪表或在传统的控制仪表上加挂智能模块,使它们各自具有了数字通信能力,用数字信号取代4—20mA的模拟信号。
采用可进行简单连接的双绞线等作为总线,把多个测量仪表连接成网络系统,并按公开规范的通讯协议,在位于现场的多个微机化测量控制设备之间及现场仪表与远程监控计算机之间,实现数据传输与信息交换,形成各种适应实际需要的自动控制系统。
其具体含义体现在以下几个方面:(1).现场通信网络:即用于过程自动化和制造自动化,现场仪表或现场设备互连的通信网络。
(2).现场设备互连:即现场的传感器、变送器、执行器等设备可以通过一对传输线实现互连。
(3).功能块分散:即将构成控制同路的功能块分散在多台现场设备中,使现场设备不仅具有I/O功能,还具有控制功能,实现彻底的分散控制。
(4).互操作性:即不同厂家的现场设备可以互相通信并能统一组态。
(5).通信线供电:即现场设备采用通信线供电,并可以提供本质安全。
(6).互连网络控制系统:即现场总线网络互连,网络数据共享,构成网络控制系统。
1.2 现场总线的类型1.2.1 目前国际上是多种现场总线并存,IEC于2000年1月4日公布IEC61 158采用以下8种现场总线类型1:IEC61158技术报告 (即FF H1)类型2:Control Net (美国Roc kwell)�类型3:Profibus (德国Siemens)�类型4:P�NET (丹麦P rocess Data)�类型5:FF HSE (美国Fisher�Rosemount)类型6:Swift N et (美国Boyin)�类型7:World FIP (美国A1ston)�类型8:Inter bus (德国Phoenix Contact)1.2.2 其余现场总线类型1:HART (美国Fisher�Rosemount)类型2:CAN (德国Bosch,IS011898,P hilips)类型3:LON (Lon Works)(美国Echelon)类型4:Dupline (瑞士Carlo Gavazzi) 1.3 现场总线控制系统(Fieldbus Control System简称FCS)将测控任务分散到现场设备中,上位机只负责监控一些复杂的优化和先进控制功能,FCS用现场总线这一开放的,可操作的网络成为智能设备或智能模块的联系纽带,把挂接在总线上,作为网络节点的智能设备或模块接为网络系统,并进一步构成自动化系统,实现基本控制、补偿计算、参数修改、报警、显示、监控、优化及控管一体化的综合自动化能力。
第四章现场总线控制系统(FCS)第一节现场总线控制系统基础现场总线控制系统(FCS)是基于现场总线技术的计算机控制系统,它是集计算机技术、网络技术和控制技术为一体的先进的计算机控制系统。
是一种全分散、全数字、全开放的控制系统。
它适用于工业过程控制、制造业及楼宇自动化等领域,将逐渐成为计算机控制系统的主流形式。
一、现场总线控制系统的特点根据IEC标准和现场总线基金会的定义,现场总线是连接智能现场设备和自动化系统的数字式、双向传输、多分支结构的通信网络。
现场总线控制系统是在现场总线的基础上发展起来的,它所带来的改进首先体现在现场通信网络方面,其次在结构、装置、功能等方面也有优势。
概括地说,它具有以下技术特点:(1)FCS采用的现场总线是一个全数字化的现场通信网络。
现场总线是用于过程控制系统和制造自动化系统中现场设备或现场仪表间互连的数字化通信网络,其传输抗干扰性强,测量精度高,大大提高了控制系统的性能。
(2)FCS的现场总线网络是开放式互连网络。
用户可以自由集成不同制造商的通信网络,通过网络将不同厂商生产的现场设备和功能块设备有机地融合为一体,构成统一的现场总线控制系统。
(3)FCS的所有现场设备直接通过一对传输线(现场总线)互连。
一对传输线互连多台现场设备,双向传输数据信息,大大减少连线数量,从而降低安装费用,更易于维护,并提高了可靠性。
(4)FCS普遍采用智能仪表,增强了系统的自治性,系统控制功能更加分散。
智能化的现场设备具有更加完善的功能,包括部分控制功能,从而将较简单的控制任务改由现场设备完成,使现场设备既有检测、变换功能,又有运算和控制功能,一机多用。
这样既节约了成本,又使控制更加安全和可靠。
FCS废除了DCS的I/O单元和控制站,把DCS控制站的功能块分散到现场设备,实现了彻底的分散控制。
二、FCS与DCS的分析比较FCS系统利用现场总线技术,针对现存的DCS的某些不足,改进控制系统的结构,提高了性能和通用性。