求曲线方程的几种常用方法
- 格式:doc
- 大小:230.50 KB
- 文档页数:4
求曲线、曲面积分的方法与技巧一.曲线积分的计算方法与技巧计算曲线积分一般采用的方法有:利用变量参数化将曲线积分转化为求定积分、利用格林公式将曲线积分转化为二重积分、利用斯托克斯公式将空间曲线积分转化为曲面积分、利用积分与路径无关的条件通过改变积分路径进行计算、利用全微分公式通过求原函数进行计算等方法。
例一.计算曲线积分⎰+Lxdy ydx ,其中L 是圆)0(222>=+y x y x 上从原点)0,0(O 到)0,2(A 的一段弧。
本题以下采用多种方法进行计算。
解1:A O 的方程为⎪⎩⎪⎨⎧-==,2,2x x y x x L 由,A O →x 由,20→.212dx xx x dy --=⎰+Lxdy ydx dx xx x x x x ⎰--+-=222]2)1(2[dx xx x x dx xx x x xx x ⎰⎰--+----=20220222)1(2)1(220.00442=--=分析:解1是利用变量参数化将所求曲线积分转化为求定积分进行计算的,选用的参变量为.x 因所求的积分为第二类曲线积分,曲线是有方向的,在这种解法中应注意参变量积分限的选定,应选用对应曲线起点的参数的起始值作为定积分的下限。
解2:在弧A O上取)1,1(B 点,B O 的方程为⎪⎩⎪⎨⎧--==,11,2y x y y L 由,B O →y 由,10→.12dy y y dx -= A B 的方程为⎪⎩⎪⎨⎧-+==,11,2y x y y L 由,A B →y 由,01→.12dy y y dx --= ⎰+Lxdy ydx dy y y y dy y y y ⎰⎰-++--+--+-=012221222)111()111(dy yy ⎰-=102212dy y ⎰--10212dy yy ⎰-=10221210212yy --dyyy ⎰--+102212.0)011(2=---=分析:解2是选用参变量为,y 利用变量参数化直接计算所求曲线积分的,在方法类型上与解1相同。
(完整版)求曲线方程的六种常用方法求曲线方程的六种常用方法在数学中,求解曲线方程是一个非常重要的问题。
这篇文档将介绍六种常用的方法,帮助你解决这个问题。
方法一:代数法代数法是求解曲线方程最常用的方法之一。
它的基本思想是将给定的曲线方程转化为代数方程,然后通过求解代数方程来得到曲线方程的解。
方法二:几何法几何法是另一种常用的求解曲线方程的方法。
它的基本思想是通过几何性质和图形的特点来确定曲线方程的形式和参数。
方法三:微积分法微积分法在求解曲线方程中也起到了非常重要的作用。
它利用微积分的工具和技巧来对曲线进行分析和求解。
通过求导、积分等操作,我们可以推导出曲线的方程式。
方法四:插值法插值法是一种通过已知的离散数据点来推测出未知数据点的方法。
利用插值法,我们可以找到曲线方程经过的点,并进而求解出曲线方程。
方法五:拟合法拟合法和插值法类似,它也是一种通过已知的数据点来求解曲线方程的方法。
拟合法通常通过根据给定的数据点,选择合适的曲线方程形式,使得曲线与这些数据点最为接近。
方法六:数值计算法数值计算法是一种通过数值计算的方式来求解曲线方程的方法。
它利用计算机的高速计算能力,通过迭代等方法快速求解出曲线方程的解。
通过掌握这六种常用的方法,相信你能更加轻松地求解曲线方程。
选择适合你的方法,并进行实践,相信你一定能够取得理想的结果。
结论本文介绍了六种常用的求解曲线方程的方法,包括代数法、几何法、微积分法、插值法、拟合法和数值计算法。
通过掌握这些方法,你能够更加有效地求解曲线方程,解决数学问题。
希望这些方法能够对你有所帮助。
求曲线解析式的六种常用方法本文介绍了求解曲线解析式的六种常用方法。
这些方法能够帮助我们确定曲线的解析表达式,从而更好地理解和分析曲线的特性。
1. 利用已知点和斜率求解析式这种方法通过已知点和该点处曲线的斜率来确定曲线的解析式。
我们可以选择一个已知点,并计算其在曲线上的斜率。
然后,使用该点和斜率来建立曲线的解析式。
2. 利用已知点和切线方程求解析式这种方法利用已知点处曲线的切线方程来确定曲线的解析式。
我们可以选择一个已知点,并计算该点处切线的方程。
然后,使用该方程来建立曲线的解析式。
3. 利用已知点和法线方程求解析式类似于方法2,这种方法利用已知点处曲线的法线方程来确定曲线的解析式。
我们可以选择一个已知点,并计算该点处法线的方程。
然后,使用该方程来建立曲线的解析式。
4. 利用已知点和曲线的导数求解析式这种方法依赖于已知点处曲线的导数,通过计算导数的值来确定曲线的解析式。
我们可以选择一个已知点,并计算该点处导数的值。
然后,使用该值来构建曲线的解析式。
5. 利用已知点和曲线的微分方程求解析式这种方法利用已知点处曲线的微分方程来确定曲线的解析式。
我们可以选择一个已知点,并计算该点处微分方程的形式。
然后,使用该方程来建立曲线的解析式。
6. 利用已知点和曲线的积分方程求解析式最后一种方法是利用已知点处曲线的积分方程来确定曲线的解析式。
我们可以选择一个已知点,并计算该点处积分方程的形式。
然后,使用该方程来建立曲线的解析式。
以上这些方法是求解曲线解析式时常用的六种方法。
根据具体情况,我们可以选择其中合适的方法来确定曲线的解析式。
在应用这些方法时,我们需要注意使用正确的数学工具和技巧,以确保求解的准确性和可靠性。
希望本文提供的信息能够对您有所帮助!。
求曲线方程的几种常用方法宜君县高级中学 马卫娟已知动点所满足的条件,求动点的轨迹方程是平面解析几何的一个重要题型。
下面就通过实例介绍几种求曲线方程的常用方法。
一.直接法:即课本中主要介绍的方法。
若命题中所求曲线上的动点与已知条件能直接发生关系,这时,设曲线上动点的坐标为(x,y),再根据命题中的已知条件,研究动点形成的几何特征,运用几何或代数的基本公式、定理等列出含有x,y 的关系式,从而得到轨迹方程。
例1.在直角△ABC 中,斜边是定长2a(a>0),求直角顶点C 的轨迹方程。
解法一:以AB 所在直线为x 轴,线段AB 的中垂线为y 轴建立直角坐标系(如图所示)则有:A(-a,0)、B(a,0),设动点C 的坐标为(x,y) 则满足条件的点C 的集合为}/{222AB BCAC C P =+=所以()()()22222222)()(a ya x ya x =+-+++即222a y x =+因为当点C 与A 、B 重合时,直角△ABC 不存在,所以轨迹中应除去A 、B 两点,既ax ±≠。
故所求点C 的轨迹方程为222ay x =+()a x ±≠。
解法二:如解法一建立直角坐标系,设A(-a,0)、B(a,0)、C(x,y) ∵A C ⊥BC ∴1-=⋅BC AC K K∴1-=-⋅+ax y ax y (1)化简得:222a y x =+(2)由于a x ±≠时,方程(1)与(2)不等价,所以所求点C 的轨迹方程为222ay x =+()a x ±≠。
解法三:如解法一建立直角坐标系,则:A(-a,0)、B(a,0),设C(x,y) 连接CO ,则有:AB CO 21=所以a a yx =⋅=+22122即222ay x =+轨迹中应除去A ,B 两点(理由同解法一) 故所求点C 的轨迹方程为222ay x =+()a x ±≠。
说明:利用直接法求曲线方程的一般步骤(1) 建立适当的直角坐标系,用(x,y)表示曲线上任意点M 的坐标; (2) 写出适合条件P 的点M 的集合P={M\p(m)}; (3) 用坐标表示条件P(M),列出方程f(x,y)=0; (4) 化方程f(x,y)为最简形式;(5) 证明以化简后的方程的解为坐标的点都是曲线上的点。
曲线和方程的概念【知识要点】定义 一般地,如果曲线C 与方程0),(=y x F 之间有以下两个关系:(1)曲线C 上的点的坐标都是方程0),(=y x F 的解;(2)以方程0),(=y x F 的解为坐标的点都在曲线C 上. 我们就把0),(=y x F 叫做曲线C 的方程,曲线C 叫做方程0),(=y x F 的曲线.注意:要建立曲线与方程间的对应关系,仅有条件“曲线C 上的点的坐标都是方程0),(=y x F 的解”是不够的,因为可能有满足方程0),(=y x F 的点不在曲线C 上;仅有条件“以方程0),(=y x F 的解为坐标的点都在曲线C 上”也是不够的,因为曲线C 上可能有不满足方程0),(=y x F 的点.只有同时具备这两个条件时,才能说方程0),(=y x F 是曲线C 的方程,曲线C 是方程0),(=y x F 的曲线.求曲线的方程【知识要点】1 求曲线的方程的步骤:①建立适当的直角坐标系(如果已给出,本步骤省略).②设曲线上任意一点的坐标为),(y x ,写出已知点的坐标,设出相关点的坐标.③根据曲线上点所适合的条件,写出等式.④用坐标表示这个等式(方程),并化简.⑤证明以化简后的方程的解为坐标的点都是曲线上的点(在本教材不作要求).(6)检验,该说明的要说明.2 求曲线方程的常用方法:定义法、直接法、代入法、参数法等.(1)定义法:根据题意可以得出或推出动点的轨迹是直线或圆或椭圆或双曲线或抛物线.根据所学知识可以写出或求出轨迹方程.若方程形式知道,往往用待定系数法求.(2)直接法:根据题设条件直接写出动点的坐标),(y x 所满足的关系式,即方程0),(=y x F .(3)相关点法(代入法):是所求轨迹上的动点),(y x P 随着另一个已知曲线上的动点),(11y x M 的运动而运动时,一般用代入法求动点P 的轨迹方程.其方法是根据题设条件求得两动点坐标),(y x 与),(11y x 之间的关系式,从中解出),(),,(11y x g y y x f x ==,由于),(11y x M 在已知曲线上,故),(11y x M 满足已知曲线方程,将11,y x 的表达式代入已知曲线方程,从而求得动点P 的轨迹方程.(4)参数法:根据题意得出动点P 的坐标y x ,用其他点的坐标或长度、角、斜率、时间等参数来表示.常用到的公式有两点间的距离公式、中点坐标公式、斜率公式、夹角公式、点到直线的距离公式.曲线的交点【知识要点】1 要求两条曲线的交点的坐标,只需解由这两条曲线的方程所组成的方程组.如果方程组没有实数解,那么这两个方程的曲线就没有交点.反过来,曲线有没有交点也可用来说明方程组有没有实数解.即可用几何图形的性质说明代数方程(组)有没有实数解.2 一般地,斜率为k 的直线b kx y l +=:与曲线C 相交于两点),(),,(2211y x B y x A ,则 ]4))[(1())(1()()(2122122212221221x x x x k x x k y y x x AB -++=-+=-+-=. 或]4))[(11())(11(2122122212y y y y k y y k AB -++=-+=.。
求曲线方程的几种常用方法
求曲线的方程,是学习解析几何的基础,求曲线的方程常用的方法主要有:
1.直接法:就是课本中主要介绍的方法。
若命题中所求曲线上的动点与已知条件能直接发生关系,这时,设曲线上动点坐标为(,x y )后,就可根据命题中的已知条件,研究动点形成的几何特征,在此基础上运用几何或代数的基本公式、定理等列出含有,x y 的关系式。
从而得到轨迹方程,这种求轨迹方程的方法称作直接法。
例1:在直角△ABC 中,斜边是定长2a (0)a >,求直角顶点C 的轨迹方程。
解法一:由于未给定坐标系,为此,首先建立直角坐标系,取AB 所在的直线为x 轴,AB 的有中点O 为坐标原点,过O 与AB 垂直的直线为y 轴(如图).则A (,0)a -,B (,0)a 。
设动点C 为(,)x y ,
∵222||||||AC BC AB +=,
∴2
224a +=,
即222x y a +=.
由于C 点到达A 、B 位置时直角三角形ABC 不存在,轨迹中应除去A 、B 两点, 故所求方程为222x y a +=(x a ≠±)。
解法二:如解法一建立直角坐标系,设A (,0)a -,B (,0)a ,C (,)x y
∵1AC BC k k =-, (1) ∴1y y x a x a =-+- , (2)
化简得:222x y a += , (3)
由于在x a ≠±时方程(2)与(3)不等价,故所求轨迹方程为222x y a +=(x a ≠±)。
解法三:如解法一建立直角坐标系,设A (,0)a -,B (,0)a ,且设动点C (,)x y 。
∵1||||2
CO
AB =, a =,即222x y a +=。
轨迹中应除去A 、B 两点(理由同解法一),故所求轨迹方程为222x y a +=(x a ≠±)。
说明:利用这种方法求曲线方程的一般方法步骤:
(1)建立适当的直角坐标系,用(,)x y 表示曲线上任意点M 的坐标;
(2)写出适合条件p 的点M 的集合{|()}p M p m =;
(3)用坐标表示()p m ,列出方程(,)0f x y =;
(4)化简方程(,)0f x y =为最简形式;
(5)证明以化简后的方程的解为坐标的点都是曲线上的点(此步骤经常省略,但一定要注意所求的方程中所表示的点是否都表示曲线上的点,要注意那些特殊的点。
)。
这种按照上述五个步骤来求曲线方程的方法,又称“五步法”或“条件直译法”,这是求曲线方程的基本方程。
本例虽然有三种解法,但实质上都是利用等量关系,直接求出轨迹的方程。
2.代入法(或利用相关点法):即利用动点是定曲线上的动点,另一动点依赖于它,那么可寻求它们坐标之间的关系,然后代入定曲线的方程进行求解,就得到原动点的轨迹。
例2:已知一条长为6的线段两端点A 、B 分别在x 、y 轴上滑动,点M 在线段AB 上,且:1:2AM MB =,求动点M 的轨迹方程。
解:设A (,0)a ,B (0,)b ,M (,)x y ,
一方面,∵||6AB =,∴2236a b +=, ①
另一方面,M 分AB 的比为12
, ∴1022133122130121312
a x a a x
b y b y b ⎧+⨯⎪==⎪⎪+⎧=⎪⎪⇒⎨⎨⎪⎪=+⎩⎪==⎪+⎪⎩ ② ②代入①得:223()(3)362
x y +=,即221164x y +=。
说明:本例中,由于M 点的坐标随着A 、B 的变化而变化,因而动点M 的坐标(,)x y 可以用
A 、
B 点的坐标来表示,而点M 又满足已知条件,从而得到M 的轨迹方程。
此外,与上例一样,求曲线的方程时,要充分注意化简过程是否完全同解变形,还要考虑曲线上的一些特殊点。
3.几何法:求动点轨迹问题时,动点的几何特征与平面几何中的定理及有关平面几何知识有着直接或间接的联系,且利用平面几何的知识得到包含已知量和动点坐标的等式,化简后就可以得到动点的轨迹方程,这种求轨迹方程的方法称作几何法。
例3:如图,已知两定点A (6,0-),B (2,0),O 为原点,动点P 与线段AO 、BO 所张的角
相等,求动点P 的轨迹方程。
解:设P (,)x y ,由题APO BPO ∠=∠,由三角形角平分线定理有||||||||
PA AO PB BO =,
3=,整理得22
60x y x +-=, 当0x =时,0y =,P 和O 重合,无意义,∴0x ≠,
又易知P 落在x 轴上时,除线段AB 以外的任何点均有00APO BPO ∠=∠=,∴0y =(6x <-或2x >)也满足要求。
综上,轨迹方程为2260x y x +-=(0x ≠)或0y =(6x <-或2x >)。
说明:本例利用平面几何的知识(三角形的角平分线定理进行解题),方便了求轨迹的方程。
4.参数法:有时很难直接找出动点的横、纵坐标之间关系。
如果借助中间量(参数),使(,)x y 之间的关系建立起联系,然后再从所求式子中消去参数,这便可得动点的轨迹方程。
例4:过不在坐标轴上的定点M (,)a b ,的动直线交两坐标轴于点A 、B ,过A 、B 作坐标轴的垂线交于点P ,求交点P 的轨迹方程。
解:设P (,)x y ,并设过M 的动直线为:()y b k x a -=-,
由于与坐标轴交于A 、B 两点,所以k 必存在,且0k ≠,
则A (0,b ak -),B (,0b a k -),所以P (,b a b ak k
--), 即b x a k y b ak
⎧=-⎪⎨⎪=-⎩,
消去参数k ,即:()()x a y b ab --=。
说明:本题由k 把,x y 联系在一起,k 称之为参数。
由于P 点是直线的交点,则P 的坐标一定会满足这两条动直线的方程,解出,x y ,消去参数k 就得到了,x y 的关系,这种求曲线方程的方法称为参数法。
以上介绍了求曲线方法的几种主要方法,即直译法、相关点法、几何法及参数法。
求曲线方程的关键是仔细审题,分析已知条件和曲线的特征,寻找曲线上任一点(动点)所满足的条件,然后把动点所适合的条件转化为动点坐标所适合的等式。
其间要注意同解变形,并考虑一些特征点是否适合方程。
5.定义法:当支点轨迹的条件符合某一基本轨迹的定义(如圆、椭圆、双曲线、抛物线),我们可以直接根据定义写出动点的轨迹方程。
这种方法称为定义法。
例:在△ABC 中固定底边BC 且||BC a =,如果三内角满足:1sin sin sin ,2C B A -=
试求顶点A 的轨迹方程。
分析:本题的基本关系为三角关系1sin sin sin ,2
C B A -=需将这三角关系转化为代数关系,这就需要借助于正、余弦定理等进行合理地转化。
解:以BC 所在的直线为x 轴,BC 的中点为坐标原点建立平面直角坐标系,如图所示,则(,0),(,0)22a a B C -。
设点A 的坐标为(,)x y ,由正弦定理及1sin sin sin ,2
C B A -=得1,:2c b a -=即11||||||()22
AB AC BC a -==定值。
由双曲线的定义知:点A 的轨迹为以B 、C 为焦点,焦距为a ,实轴长为2
a 的双曲线的右支(不包括顶点)
,虚轴长为22
b a == 故可得轨迹方程为22221()34
1616
x y a x a a -=> 评注:这里由已知条件推得1||||()2
AB AC a -=定值后,即由双曲线的定义得出轨迹方程,其中将已知条件进行转化是关键。
6.交轨法:在求动点的轨迹方程时,经常会遇到要求两动曲线的交点轨迹方程问题,这类问题的解法有一定技巧性,主要是想方设法消去动曲线中的参数,得出所求的轨迹方程,这种方法便称为交轨法。
例:已知点P 在直线2x =上移动,直线l 通过原点且与OP 垂直,通过点A (1,0)及点P 的直线m 和直线l 交于点Q ,求Q 点的轨迹方程,并指出轨迹的名称和它的焦点坐标。
分析:如图所示,纵观两条动直线l 与m ,它们的变化是随着点P 的变化而变化的,因此可以选取OP 的斜率为参数表示出动直线m, l 的方程。
解:设直线OP 的斜率为k ,则P 点的坐标为(2,2k ),从而得出直线l 的方程为0x ky +=,直线m 的方程为2(1)y k x =-,上述两式联立消去k ,得22
220(1).x y x x +-=≠ 即Q 点的轨迹方程为221()21(1)11
42
x y x -+=≠。
其轨迹为以1111(,)(,)2222
-和为焦点,除去点(1,0)的椭圆。