概率论与数理统计:假设检验的两类错误
- 格式:docx
- 大小:29.25 KB
- 文档页数:2
概率论与数理统计(8)假设检验第八章假设检验第一节假设检验问题第二节正态总体均值的假设检验第三节正态总体方差的检验第四节大样本检验法第五节 p值检验法第六节假设检验的两类错误第七节非参数假设检验第一节假设检验问题前一章我们讨论了统计推断中的参数估计问题,本章将讨论另一类统计推断问题——假设检验.在参数估计中我们按照参数的点估计方法建立了参数的估计公式,并利用样本值确定了一个估计值,认为参数真值。
由于参数是未知的,只是一个假设(假说,假想),它可能是真,也可能是假,是真是假有待于用样本进行验证(检验).下面我们先对几个问题进行分析,给出假设检验的有关概念,然后总结给出检验假设的思想和方法.一、统计假设某大米加工厂用自动包装机将大米装袋,每袋的标准重量规定为10kg,每天开工时,需要先检验一下包装机工作是否正常. 根据以往的经验知道,自动包装机装袋重量X服从正态分布N( ).某日开工后,抽取了8袋,如何根据这8袋的重量判断“自动包装机工作是正常的”这个命题是否成立?请看以下几个问题:问题1引号内的命题可能是真,也可能是假,只有通过验证才能确定.如果根据抽样结果判断它是真,则我们接受这个命题,否则就拒绝接受它,此时实际上我们接受了“机器工作不正常”这样一个命题.若用H0表示“”,用H1表示其对立面,即“”,则问题等价于检验H0:是否成立,若H0不成立,则H1:成立.一架天平标定的误差方差为10-4(g2),重量为的物体用它称得的重量X服从N( ).某人怀疑天平的精度,拿一物体称n次,得n 个数据,由这些数据(样本)如何判断“这架天平的精度是10-4(g2)”这个命题是否成立?问题2记H0: =10-4,H1: ,则问题等价于检验H0成立,还是H1成立.某种电子元件的使用寿命X服从参数为的指数分布,现从一批元件中任取n个,测得其寿命值(样本),如何判定“元件的平均寿命不小于5000小时”这个命题是否成立?记问题3则问题等价于检验H0成立,还是H1成立.某种疾病,不用药时其康复率为,现发明一种新药(无不良反应),为此抽查n位病人用新药的治疗效果,设其中有s人康复,根据这些信息,能否断定“该新药有效”?记问题4则问题等价于检验H0成立,还是H1成立.自1965年1月1日至1971年2月9日共2231天中,全世界记录到震级4级及以上的地震共计162次,问相继两次地震间隔的天数X是否服从指数分布?问题5记服从指数分布,不服从指数分布.则问题也等价于检验H0成立,还是H1成立.在很多实际问题中,我们常常需要对关于总体的分布形式或分布中的未知参数的某个陈述或命题进行判断,数理统计学中将这些有待验证的陈述或命题称为统计假设,简称假设.如上述各问题中的H0和H1都是假设.利用样本对假设的真假进行判断称为假设检验。
概率论与数理统计期末复习重要知识点第二章知识点:1.离散型随机变量:设X 是一个随机变量,如果它全部可能的取值只有有限个或可数无穷个,则称X 为一个离散随机变量。
2.常用离散型分布:(1)两点分布(0-1分布): 若一个随机变量X 只有两个可能取值,且其分布为12{},{}1(01)P X x p P X x p p ====-<<,则称X 服从12,x x 处参数为p 的两点分布。
两点分布的概率分布:12{},{}1(01)P X x p P X x pp ====-<<两点分布的期望:()E X p =;两点分布的方差:()(1)D X p p =-(2)二项分布:若一个随机变量X 的概率分布由式{}(1),0,1,...,.k kn k n P x k C p p k n -==-=给出,则称X 服从参数为n,p 的二项分布。
记为X~b(n,p)(或B(n,p)).两点分布的概率分布:{}(1),0,1,...,.k k n kn P x k C p p k n -==-= 二项分布的期望:()E X np =;二项分布的方差:()(1)D X np p =-(3)泊松分布:若一个随机变量X 的概率分布为{},0,0,1,2,...!kP X k ek k λλλ-==>=,则称X 服从参数为λ的泊松分布,记为X~P (λ)泊松分布的概率分布:{},0,0,1,2,...!kP X k ek k λλλ-==>=泊松分布的期望:()E X λ=;泊松分布的方差:()D X λ=4.连续型随机变量:如果对随机变量X 的分布函数F(x),存在非负可积函数()f x ,使得对于任意实数x ,有(){}()xF x P X x f t dt-∞=≤=⎰,则称X 为连续型随机变量,称()f x 为X 的概率密度函数,简称为概率密度函数。
5.常用的连续型分布: (1)均匀分布:若连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧<<-=其它,0,1)(bx a a b x f ,则称X 在区间(a,b )上服从均匀分布,记为X~U(a,b)均匀分布的概率密度:⎪⎩⎪⎨⎧<<-=其它,0,1)(b x a a b x f 均匀分布的期望:()2a bE X +=;均匀分布的方差:2()()12b a D X -= (2)指数分布:若连续型随机变量X 的概率密度为00()0xe xf x λλλ-⎧>>=⎨⎩,则称X 服从参数为λ的指数分布,记为X~e (λ)指数分布的概率密度:00()0xe xf x λλλ-⎧>>=⎨⎩指数分布的期望:1()E X λ=;指数分布的方差:21()D X λ=(3)正态分布:若连续型随机变量X的概率密度为22()2()x f x x μσ--=-∞<<+∞则称X 服从参数为μ和2σ的正态分布,记为X~N(μ,2σ)正态分布的概率密度:22()2()x f x x μσ--=-∞<<+∞正态分布的期望:()E X μ=;正态分布的方差:2()D X σ=(4)标准正态分布:20,1μσ==,2222()()x t xx x e dtϕφ---∞=标准正态分布表的使用: (1)()1()x x x φφ<=--(2)~(0,1){}{}{}{}()()X N P a x b P a x b P a x b P a x b b a φφ<≤=≤≤=≤<=<<=-(3)2~(,),~(0,1),X X N Y N μμσσ-=故(){}{}()X x x F x P X x P μμμφσσσ---=≤=≤={}{}()()a b b a P a X b P Y μμμμφφσσσσ----<≤=≤≤=-定理1: 设X~N(μ,2σ),则~(0,1)X Y N μσ-=6.随机变量的分布函数: 设X 是一个随机变量,称(){}F x P X x =≤为X 的分布函数。
二项分布模型中的合并估计与假设检验二项分布是概率论与数理统计中常用的一种离散概率分布模型。
在实际应用中,我们经常需要对二项分布的参数进行估计,并进行假设检验。
合并估计和假设检验是二项分布模型中重要的研究内容,本文将就这两个方面进行探讨。
一、合并估计合并估计是指在统计推断中,当我们有多个独立二项分布的数据集时,如何通过合并这些数据来得到总体参数的估计结果。
这样的估计方法可以有效提高参数估计的精度。
假设我们有两组数据集,分别是$n_1$次和$n_2$次独立重复试验的结果。
对于每一组数据集,我们都有一个二项分布参数$p_1$和$p_2$,需要对这两个参数进行估计。
合并估计的核心思想是将这两组数据看作一个总体,采用最大似然估计法来估计总体参数。
最大似然估计法是一种常用的参数估计方法,通过选择使得观测数据出现的可能性最大化的参数值来进行估计。
对于合并估计,我们可以构造一个新的数据集,其中包含$n_1+n_2$次试验的结果。
对于每次试验,成功的次数仍然服从二项分布。
因此,我们可以将这个合并数据集的参数估计问题转化为一个单一数据集的参数估计问题。
通过最大似然估计法,可以得到合并数据集的二项分布参数估计结果。
二、假设检验假设检验是统计推断中常用的方法之一。
它通过对样本数据进行分析,判断所观察到的现象是否符合某种假设。
在二项分布模型中,我们经常需要对某个参数的取值进行假设检验。
假设检验的基本步骤包括假设建立、统计量的选择、计算统计量的取值、给出拒绝域和作出决策等步骤。
其中,拒绝域是根据显著性水平和检验类型确定的。
对于二项分布模型的假设检验,一般有两种类型的检验:单样本检验和两样本检验。
单样本检验是指对于一个已知二项分布的数据集,我们需要判断总体参数是否等于某个给定值。
两样本检验是指对于两个独立二项分布的数据集,我们需要判断两个总体参数是否相等。
在进行假设检验时,常常会遇到两类错误:第一类错误和第二类错误。
第一类错误指的是拒绝了一个正确的假设,而第二类错误指的是接受了一个错误的假设。
一 、名词解释1、样本空间:随机试验E 的所有可能结果组成的集合,称为E 的样本空间。
2、随机事件:试验E 的样本空间S 的子集,称为E 的随机事件。
3、必然事件:在每次试验中总是发生的事件。
4、不可能事件:在每次试验中都不会发生的事件。
5、概率加法定理:P(A ∪B)=P(A)+P(B)-P(AB)6、概率乘法定理:P(AB)=P(A)P(B │A)7、随机事件的相互独立性:若P(AB)=P(A)P(B)则事件A,B 是相互独立的。
8、实际推断原理:概率很小的事件在一次试验中几乎是不会发生的。
9、条件概率:设A ,B 是两个事件,且P(A)>0,称P(B │A)=()()A P AB P 为在事件A 发生的条件下事件B 发生的条件概率。
10、全概率公式: P(A)=())/(1B B i A P ni i P ∑=11、贝叶斯公式: P(Bi │A)= ()()∑=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛ni j A P j P i A P i P B B B B 112、随机变量:设E 是随机试验,它的样本空间是S=﹛e ﹜。
如果对于每一个e ∈S,有一个实数X(e)与之对应,就得到一个定义的S 上的单值实值函数X=X(e),称为随机变量。
13、分布函数:设X 是一个随机变量,χ是任意实数,函数F(χ)=P(X ≤χ)称为X 的分布函数。
14、随机变量的相互独立性:设(χ,у)是二维随机变量 ,如果对于任意实数χ,у,有F(χ,у)=F x (χ)·F y (у)或 f (χ,у)= f x (χ)·f y (у)成立。
则称为X 与Y 相互独立。
15、方差:E ﹛〔X-E(χ)〕2〕16、数学期望:E(χ)= ()dx x xf ⎰∞-+∞(或)= i p i i x ∑+∞=117、简单随机样本:设X 是具有分布函数F 的随机变量,若χ1 , χ2 … , χn 是具有同一分布函数F 的相互独立的随机变量,则称χ1 , χ2 … , χn 为从总体X 得到的容量为n 的简单随机样本。
《概率论与数理统计》第七章假设检验.第七章假设检验学习⽬标知识⽬标:理解假设检验的基本概念⼩概率原理;掌握假设检验的⽅法和步骤。
能⼒⽬标:能够作正态总体均值、⽐例的假设检验和两个正态总体的均值、⽐例之差的假设检验。
参数估计和假设检验是统计推断的两种形式,它们都是利⽤样本对总体进⾏某种推断,然⽽推断的⾓度不同。
参数估计是通过样本统计量来推断总体未知参数的取值范围,以及作出结论的可靠程度,总体参数在估计前是未知的。
⽽在假设检验中,则是预先对总体参数的取值提出⼀个假设,然后利⽤样本数据检验这个假设是否成⽴,如果成⽴,我们就接受这个假设,如果不成⽴就拒绝原假设。
当然由于样本的随机性,这种推断只能具有⼀定的可靠性。
本章介绍假设检验的基本概念,以及假设检验的⼀般步骤,然后重点介绍常⽤的参数检验⽅法。
由于篇幅的限制,⾮参数假设检验在这⾥就不作介绍了。
第⼀节假设检验的⼀般问题关键词:参数假设;检验统计量;接受域与拒绝域;假设检验的两类错误⼀、假设检验的基本概念(⼀)原假设和备择假设为了对假设检验的基本概念有⼀个直观的认识,不妨先看下⾯的例⼦。
例7.1 某⼚⽣产⼀种⽇光灯管,其寿命X 服从正态分布)200 ,(2µN ,从过去的⽣产经验看,灯管的平均寿命为1550=µ⼩时,。
现在采⽤新⼯艺后,在所⽣产的新灯管中抽取25只,测其平均寿命为1650⼩时。
问采⽤新⼯艺后,灯管的寿命是否有显著提⾼?这是⼀个均值的检验问题。
灯管的寿命有没有显著变化呢?这有两种可能:⼀种是没有什么变化。
即新⼯艺对均值没有影响,采⽤新⼯艺后,X 仍然服从)200 ,1550(2N 。
另⼀种情况可能是,新⼯艺的确使均值发⽣了显著性变化。
这样,1650=X 和15500=µ之间的差异就只能认为是采⽤新⼯艺的关系。
究竟是哪种情况与实际情况相符合,这需要作检验。
假如给定显著性⽔平05.0=α。
在上⾯的例⼦中,我们可以把涉及到的两种情况⽤统计假设的形式表⽰出来。
概率论与数理统计试题及答案(自考)一、单选题1.如果D(X)=3,令Y=2X+5,则D(Y)为A、12B、18C、7D、11【正确答案】:A解析:D(C)=0,D(X+C)=D(X),D(CX)=C2D(X),因此D(Y)=D(2X+5)=D(2X)=4D(X)=4×3=12,因此选A。
2.设总体X~N(μ1,σ12),Y~N(μ2,σ22),σ12=σ22未知,关于两个正态总体均值的假设检验为H0:μ1≤μ2,H1:μ1 > μ2,则在显著水平α下,H0的拒绝域为A、B、C、D、【正确答案】:B解析:无3.设总体为来自X的样本,为样本值,s为样本标准差,则的无偏估计量为( )。
A、sB、C、D、【正确答案】:C解析:样本均值是总体均值的无偏估计量。
故选C.4.设随机变量X的方差D(X)=2,则利用切比雪夫不等式估计概率P{|X-E(X)|≥8}的值为( )。
A、B、C、D、【正确答案】:B解析:5.如果D(X)=2,令Y=3X+1,则D(Y)为A、2B、18C、3D、4【正确答案】:B解析:D(C)=0,D(X+C)=D(X),D(CX)=C2D(X),因此D(Y)=D(3X+1)=D(3X)=9D(X)=9×2=18,因此选B。
6.在假设检验中,H0为原假设,则显著性水平的意义是A、P{拒绝H0| H0为真}B、P {接受H0| H0为真}C、P {接受H0| H0不真}D、P {拒绝H0| H0不真}【正确答案】:A解析:本题考察假设检验“两类错误”内容。
选择A。
7.则k=A、0.1B、0.2C、0.3D、0.4【正确答案】:D解析:本题考察一维离散型随机变量分布律的性质:。
计算如下0.2 + 0.3 + k + 0.1=1,k=0.4故选择D。
8.掷四次硬币,设A表示恰有一次出现正面,则P(A)=A、1/2B、1/4C、3/16D、1/3【正确答案】:B解析:样本空间Ω={正正正正,正正正反,正正反正,正反正正,反正正正,正正反反,正反正反,反正正反,正反反正,反正反正,反反正正,正反反反,反反正反,反正反反,反反反正,反反反反};其中恰有一次正面向上的样本点是{正反反反,反反正反,反正反反,反反反正}所以概率就是1/4。
概率论与数理统计(经管类)-阶段测评4(2)1.单选题1.1 5.0假设检验时,若增加样本容量,则犯两类错误的概率()您没有作答∙ a不变∙ b都减小∙ c都增大∙ d一个增大一个减小见教材第八章两类错误的介绍。
1.2 5.0设总体$X~N(mu,sigma^(2))$,$X_(1),…,X_(20)$为来自总体$X$的样本,则$sum_(i=1)^(20)(X_(i)-mu)^(2)/sigma^(2)$服从参数为()的$chi^(2)$分布。
您没有作答∙ a$19$∙ b$20$∙ c$21$$22$根据教材137页定义6-6得参数为$20$1.3 5.0设$hattheta$是未知参数$theta$的一个估计量,若$E(hattheta)=$(),则$hattheta$是$theta$的无偏估计。
您没有作答∙ a$theta$∙ b$2theta$∙ c$3theta$∙ d$4theta$根据教材153页定义7-3得$E(hattheta)=theta$1.4 5.0设$X_(1),X_(2),…X_(n)$为正态总体$N(mu,sigma^(2))$的样本,记$S^(2)=1/(n-1)sum_(i=1)^(n)(x_(i)-barx)^(2)$,则下列选项中正确的是()您没有作答∙ a$((n-1)S^(2))/sigma^(2)~chi^(2)(n-1)$∙ b$((n-1)S^(2))/sigma^(2)~chi^(2)(n)$∙ c$(n-1)S^(2)~chi^(2)(n-1)$$S^(2)/sigma^(2)~chi^(2)(n-1)$教材140页的定理6-41.5 5.0设总体$X~N(mu,sigma^(2)),X_(1),X_(2),…,X_(n)$为来自总体$X$的样本,$mu,sigma^(2)$均未知,则$sigma^(2)$的无偏估计是()您没有作答∙ a$1/(n-1)sum_(i=1)^(n)(X_(i)-barX)^(2)$∙ b$1/(n-1)sum_(i=1)^(n)(X_(i)-mu)^(2)$∙ c$1/nsum_(i=1)^(n)(X_(i)-barX)^(2)$∙ d$1/(n+1)sum_(i=1)^(n)(X_(i)-mu)^(2)$135页定理6-2的证明中找到:$E(sum_(i=1)^(n)(x_(i)-barx)^(2))=(n-1)sigma^(2)$ 将上式两边除以$n$,即得$ES_(n)^(2)=(n-1)/nsigma^(2)stackrel(->)(n->oo)sigma^(2)$1.6 5.0设总体$X$服从正态分布$N(mu,sigma^(2))$,$X_(1),X_(2),…,X_(n)$为来自该总体的一个样本,令$U=(sqrt(n)(barX-mu))/sigma$,则$D(U)=$()您没有作答∙ a$1$∙ b$2$∙ c$3$∙ d$4$利用教材134定理6-1知$barX~N(mu,sigma^(2)/n)$,将其标准化则为$U=(sqrt(n)(barX-mu))/sigma$知$U~N(0,1)$,则$D(U)=1$1.7 5.0设$x_(1),x_(2),…,x_(25)$来自总体$X$的一个样本,$X~N(mu,5^(2))$,则$mu$的置信度为$0.90$的置信区间长度为()。
一、单项选择题(共20题)1.设总体,x1,x2,x3是来自X的样本,则当常数a=()时候,=1/3x1+ax2+1/6x3是未知参数的无偏估计A.-1/2B.1/2C.0D.1【正确答案】B【您的答案】D【答案解析】如果=1/3x1+ax2+1/6x3是的无偏估计,那么E()=1/3E(x1)+aE(x2)+1/6E(x3)=1/3+a+1/6=,所以a=1/22.统计推断的内容是()A.用样本指标推断总体指标B.检验统计上的“假设”C.A、B均不是D.A、B均是【正确答案】D【您的答案】A【答案解析】统计推断的内容是用样本指标推断总体指标以及检验统计上的“假设”3.设总体X的分布中含有未知参数,由样本确定的两个统计量,如对给定的,能满足,则称区间()为的置信区间.【正确答案】D【您的答案】A【答案解析】4.已知一元线性回归直线方程为A.-6B.-3C.3D.6【正确答案】A【您的答案】C【答案解析】5.关于假设检验,下列那一项说法是正确的()A.单侧检验优于双侧检验B.采用配对t检验还是成组t检验是由实验设计方法决定的C.检验结果若P值大于0.05,则接受H0犯错误的可能性很小D.用u检验进行两样本总体均数比较时,要求方差相等【正确答案】B【您的答案】A【答案解析】关于假设检验采用配对t检验还是成组t检验是由实验设计方法决定的6.设是来自正态总体的样本,其中未知,则不是()A.样本的二阶中心矩B.的矩估计C.的极大自然估计D.的无偏估计【正确答案】D【您的答案】D 【答案正确】【答案解析】容量为n的样本的二阶中心矩,现n=50,故是样本的二阶中心矩,它是总体方差的矩估计,也是总体方差的极大自然估计,且它不包含未知参数,可看作统计量,但不是的无偏估计.7.区间的含义是()A.99%的总体均数在此范围内B.样本均数的99%可信区间C.99%的样本均数在此范围内D.总体均数的99%可信区间【正确答案】D【您的答案】A【答案解析】可信区间的确切含义指的是:总体参数是固定的,可信区间包含了总体参数的可能性是,而不是总体参数落在CI范围的可能性为.本题B、D均指样本均数,首先排除.A说总体均数在此范围内,显然与可信区间的含义相悖.因此答案为D.8.在假设检验中,检验两个独立正态总体方差是否相等所采用的方法为()A.u检验法B.t检验法C.检验法D.F检验法【正确答案】D【您的答案】A【答案解析】t检验法检验两个独立正态总体均值是否相等,但是假定方差相等,如果检验两个独立正态总体方差是否相等,则选择F检验法,因此选D。
假设检验[摘要]:假设检验是数理统计学中根据一定假设条件由样本推断总体的一种方法。
假设检验在经济和社会生活各个领域得到了极为广泛的应用。
本文主要阐述假设检验的基本思想,一般步骤,应用和几种常见的检验方法:U检验、T检验、比例检验、卡方检验等。
[关键词]:假设检验、检验方法、数理统计。
我在学习《概率论与数理统计》时通常的感觉是“课文看得懂,习题做不出”。
要做出题目,至少要弄清概念,有些还要掌握一定的技巧。
这句话说起来简单,但是真正的做起来就需要花费大量的力气。
我在学习时,只注重公式、概念的记忆和套用,自己不对公式等进行推导。
这就造成一个现象:虽然在平时的做题过程中,自我感觉还可以;尤其是做题时,看一眼题目看一眼答案,感觉自己已经掌握的不错了,但一上了考场,就考砸。
这就是平时的学习过程中只知其一、不知其二,不注重对公式的理解和推导造成的。
在看书的时候注意对公式的推导,这样才能深层次的理解公式,真正的灵活运用。
做到知其一,也知其二。
现在概率统计的考试考的是基础知识,主要涉及排列组合、导数、积分、极限这四部分。
说这部分是基础,本身就说明这些知识不是概率统计研究的内容,只是在研究概率统计的时候不可缺少的一些工具。
即然这样,在考试中就不会对这部分内容作过多的考察,也会尽量避免在这些方面丢分。
有些人花大量的力气学习微积分,甚至学习概率统计之前,将微积分重现学一边,这是不可取的。
对这部分内容,将教材上涉及到的知识选出来进行复习,理解就可以。
万不能让基础知识成为概率统计的拦路虎。
学习中要知道那是重点,那是难点。
如何掌握做题技巧?俗话说“孰能生巧”,对于数学这门课,用另一个成语更贴切“见多识广”。
对于我们而言,学习时间短,想利用“孰能生巧“不太现实,但是”见多识广“确实在短时间内可以做到。
这就是说,在平时不能一味的多做题,关键是多做一些类型题,不要看量,更重要的是看多接触题目类型。
假设检验的基本思想及其步骤1.1 假设检验的基本思想假设检验是指对总体提出某项假设,然后利用从总体中抽样所得的样本值来检验所提的假设是否正确。
一.填空题(每空题2分,共计60分)1、A 、B 是两个随机事件,已知0.3)B (p ,5.0)(,4.0)A (p ===A B P ,则=)B A (p 0.6 ,=)B -A (p 0.1 ,)(B A P ⋅= 0.4 , =)B A (p 0.6。
2、一个袋子中有大小相同的红球6只、黑球4只。
(1)从中不放回地任取2只,则第一次、第二次取红色球的概率为: 1/3 。
(2)若有放回地任取2只,则第一次、第二次取红色球的概率为: 9/25 。
(3)若第一次取一只球观查球颜色后,追加一只与其颜色相同的球一并放入袋中后,再取第二只,则第一次、第二次取红色球的概率为: 21/55 。
3、设随机变量X 服从B (2,0.5)的二项分布,则{}=≥1X p 0.75, Y 服从二项分布B(98, 0.5), X 与Y 相互独立, 则X+Y 服从 B(100,0.5),E(X+Y)= 50 ,方差D(X+Y)= 25 。
4、甲、乙两个工厂生产同一种零件,设甲厂、乙厂的次品率分别为0.1、0.15.现从由甲厂、乙厂的产品分别占60%、40%的一批产品中随机抽取一件。
(1)抽到次品的概率为: 0.12 。
(2)若发现该件是次品,则该次品为甲厂生产的概率为: 0.5 . 5、设二维随机向量),(Y X 的分布律如右,则=a 0.1, =)(X E 0.4,Y X 与的协方差为: - 0.2 ,2Y X Z +=的分布律为:6、若随机变量X ~)4 ,2(N 且8413.0)1(=Φ,9772.0)2(=Φ,则=<<-}42{X P 0.815 ,(~,12N Y X Y 则+= 5 , 16 )。
7、随机变量X 、Y 的数学期望E(X)= -1,E(Y)=2, 方差D(X)=1,D(Y)=2, 且X 、Y 相互独立,则:=-)2(Y X E - 4 ,=-)2(Y X D 6 。
8、设2),(125===Y X Cov Y D X D,)(,)(,则=+)(Y X D 30 9、设261,,X X 是总体)16,8(N 的容量为26的样本,X 为样本均值,2S 为样本方差。
第八章 假设检验
1. 假设检验的基本思想:小概率事件在一次抽样中是几乎不可能发生的
例1 设总体X ~)1,(μN ,其中μ未知,n x x x ,,,21 为其样本
试在显著性水平α下检验假设
00:μμ=H ;01:μμ≠H
这里,α即为小概率事件的概率,当00:μμ=H 真时,n x n x u /1/00μσμ-=-=
~)1,0(N
则 αα=≥)(2/u u P
即事件)(2/αu u ≥即为小概率事件,当它发生时,即认为原假设0H 不真,从而接受对立假设01:μμ≠H
2. 两类错误
以例1为例,上述n x u /10
μ-=的取值完全由样本n x x ,,1 所决定,由于样本的随机性,
假设检验可能犯以下两类错误:
第一类错误:P =α(拒00H H 真),也即检验的显著性水平
第二类错误:P =β(接受00H H 不真)P =(接受10H H 真)
在样本容量n 固定时,βα,相互制约,当减小α时,β的值会增大,反之亦然。
3.正态总体),(2σμN 参数的假设检验
(1)首先要会判断所讨论问题是否为假设检验问题
例2 从一批灯泡中随机抽取50个,分别测得其寿命,算得其平均值1900=x (小时),样本标准差490=s (小时),问可否认为这批灯泡的平均寿命(μ)为2000小时。
分析:本题中虽然没说总体(寿命)服从什么分布,但由于样本容量50≥n ,可按正态总体处理,“可否认为平均寿命为2000小时”等价于作检验2000:0=μH
(2)检验问题主要是对提出的假设检验确定出检验的拒绝域,这可参考指定教材第八章正态总体检验一览表。