(完整版),2011年湖南省长沙市中考数学真题及答案,推荐文档
- 格式:pdf
- 大小:171.08 KB
- 文档页数:9
2011年长沙市初中毕业生学业水平考试试卷(与九年级报纸相同题对照)数 学●1.2-等于( )A .2B .2-C .12 D .12-相同题:中考课标版第27期第2版典型例题例1(2)-3的绝对值是( ).(A)-3 (B)3 (C)12- (D)13相同题:湖南专版27页第11题 11. 1________2-=.●2.下列长度的三条线段,能组成三角形的是( )A .1、1、2B .3、4、5C .1、4、6D .2、3、7相近题:湖南专版第25页模拟(四)第5题●3.下列计算正确的是( )A .133-=-B .26a a a =3·C .22(1)1x x +=+D .=相近题:湖南专版第15页模拟(六)第7题●4.如图,在平面直角坐标系中,点(12)P -,向右平移3个单位长度后的坐标是()A .22(,)B .(42-,)C .(15)-,D .(11--,)相同题:中考课标版第38期3版随堂练习第1题●6.若12x y =⎧⎨=⎩是关于x 、y 的二元一次方程31ax y -=的解,则a 的值为( )A .5-B .1-C .2D .7相近题:中考课标版第30期3版第9题●8.如图是每个面上都有一个9汉字的正方体的一种展开图,那么在原正方体的表面上,与汉字“美”相对的面上的汉字是( )A .我B .爱C .长D .沙相同题:湖南专版第25页模拟(六)第17题●10.如图,等腰梯形ABCD 中,45AD BC B ∠= ∥,,24AD BC ==,,则梯形的面积为( )A .3B .4C .6D .8相同题:中考课标版第36期1版随堂练习第1题●11.分解因式:22a b -=________________.相同题:中考课标版第27期4版典型例析例1(2)●12.反比例函数ky x =的图象经过点(23)A -,,则k 的值为______________.相同题:湘教九年级第24期1版“九年级下册复习指导”中第1章《反比例函数》例1AB CD ∥,100ACE ∠= ,则A ∠=●13.如图,CD 是ABC △的外角ACE ∠的平分线,____________ .相同题:湖南专版15页第11题●14.化简:11x x x +-=____________.相同题:中考课标版第28期3版第8题● 18.如图,P 是O ⊙的直径AB 延长线上的一点,PC 与O ⊙相切于点C ,若20P = ∠,则A ∠=________.相近题:人教版九年级第9期3版第18题●19.已知02011(2)a b c ===--,,求a b c -+的值.相同题:湖南专版29页第19题●20.解不等式2(2)63x x --≤,并写出它的正整数解.相近题:湖南专版第13页模拟(三)第11题●21.“珍惜能源从我做起,节约用电人人有责”.为了解某小区居民节约用电情况,牧业公司随机抽取了今年某一天本小区10户居民的日用电量,数据如下:(1)求这组数据的极差和平均数;(2)已知去年同一天这10户居民的平均日用电量为7.8度,请你估计,这天与去年同日相比,该小区200户居民这一天共节约了多少度电?相近题:湘教九年级第24期4版第4章《统计与估计》例2●23.某工程队承包了某标段全长1755米的过江隧道施工任务,甲、乙两个班组分别从东、西两端同时掘进.已知甲组比乙组平均每天多掘进0.6米,经过5天施工,两组共掘进了45米.(1)求甲、乙两个班组平均每天各掘进多少米?(2)为加快工程进行,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进0.2米,乙组平均每天能比原来多掘进0.3米.按此施工进度,能够比原来少用多少天完成任务?相近题:中考课标版46期第2版跟踪练习第3题。
某某14市州2011年中考数学试题分类解析汇编专题11:圆一、选择题1. (某某某某3分)已知⊙O1与⊙O2外切.半径分别是R和r,圆心距O1O2=5,R和r的值是A、R=4,r=2B、R=3,r=2C、R=4,r=3D、R=3,r=1【答案】B。
【考点】圆与圆的位置关系。
【分析】根据两圆的位置关系的判定:相切(两圆圆心距离等于两圆半径之和或两圆半径之差),相离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半径之差),内含(两圆圆心距离小于两圆半径之差)。
∵⊙O1与⊙O2外切.半径分别是R和r,圆心距O1O2=5,∴R+r=5。
∵2+4=6,故A错误;∵3+2=5,故B正确;∵4+3=7,故C错误;∵3+1=4,故D错误,故选B。
2.(某某某某3分)已知两圆相外切,连心线长度是10厘米,其中一圆的半径为6厘米,则另一圆的半径是A、16厘米B、10厘米C、6厘米D、4厘米【答案】D。
【考点】圆与圆的位置关系。
【分析】∵两圆相外切,连心线长度是10厘米,其中一圆的半径为6厘米,∴10-6=4(厘米),∴另一圆的半径是4厘米。
故选D。
3.(某某某某3分)若⊙O的半径为5cm,点A到圆心O的距离为4cm,那么点A与⊙O的位置关系是A、点A在圆外B、点A在圆上C、点A在圆内D、不能确定【答案】C。
【考点】点与圆的位置关系。
【分析】要确定点与圆的位置关系,主要确定点与圆心的距离与半径的大小关系:d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内。
∵⊙O的半径为5cm,点A到圆心O的距离为4cm,∴d<r,∴点A与⊙O的位置关系是:点A在圆内。
故选C。
二、填空题1.(某某某某3分)如图,P是⊙O的直径AB延长线上的一点,PC与⊙O相切于点C,若∠P=-20°,则∠A=▲ °。
【答案】35。
【考点】切线的性质,三角形内角和定理,圆周角定理。
【分析】∵PC与⊙O相切于点C,∴OC⊥CP(切线的性质)。
2011年湖南省普通高中学业水平考试数学参考答案及评分标准一、选择题(每小题4分,满分40分)二、填空题(每小题4分,满分20分)11.5; 12. 2; 13.3 ; 14. ︒45; 15. 2.三、解答题(满分40分)16.解法一:(1)21sin =α ,)2,0(πα∈, αα2sin 1cos -=∴ …………………………………2分232112=⎪⎭⎫⎝⎛-=. …………………………………3分(2) 23cos sin 22sin ==ααα , …………………………………4分 21sin cos 2cos 22=-=ααα, …………………………………5分∴2132cos 2sin +=+αα. ……………………………………6分 解法二:(1)依题意得6πα=, ………………………………………………2分236c o s c o s==πα. ………………………………………………3分 (2)3cos 3sin2cos 2sin ππαα+=+ ………………………………………5分 213+=. ………………………………………6分 17.解:(1)()人12020020001200=⨯, ………………………………2分 ()人802002000800=⨯,故从高一学生中抽取120人,高二学生中抽取80人.……………………………………4分 (2)解法一:由图可知,成绩在60分(含60分)以上的频率为:75.010005.010025.01003.010015.0=⨯+⨯+⨯+⨯, ………………………6分1500200075.0=⨯ (人).所以,成绩在60分(含60分)以上的学生人数大约是1500人. ………………………8分 解法二:成绩在60分以下的频率为 :25.010015.01001.0=⨯+⨯, ……………………………………5分则成绩在60分(含60分)以上的频率为:75.025.01=-, ……………………………6分()人1500200075.0=⨯,所以,成绩在60分(含60分)以上的学生人数大约是1500人. ……………………8分18.解:(1)依题意得⎩⎨⎧=++=516b a b ……………………………2分解得 ⎩⎨⎧=-=62b a ,………………………………3分则62)(2+-=x x x f ; ……………………………………4分 (2)()51)(2+-=x x f ,则)(x f 在[]1,2-上递减,在[]2,1上递增,…………6分又6)2(,14)2(,5)1(==-=f f f ,故函数)(x f y =在区间]2,2[-上的最小值为5,最大值为14. ……………………8分 19.解:(1)2a =4, 3a =8. ………………………………2分依题意知数列}{n a 是以首项和公比都为2的等比数列, ……………………3分则nn n a 2221=⋅=-. …………………………………………………4分(2)∵nn a 2=,∴n b n n ==2log 2, ………………………………………………6分∴ 数列}{n b 的前n 项和)1(2121+=+++=n n n S n .……………………………8分 20.解:配方得()k y x -=-++52)1(22, …………………………………………2分(1)圆心C 的坐标为)2,1(-.………………………………………………………………4分 (2) ,05>-k 5<∴k ,即k 的取值范围为()5,∞-. …………………………………………7分 (3)假设存在实数k 满足题设条件, 由⎩⎨⎧=+-++=+-04204222k y x y x y x 得:081652=++-k y y ,由0)8(54162>+-=∆k 得524<k . ……………………………………8分设),(,),(2211y x N y x M ,则⎪⎩⎪⎨⎧+==+585162121k y y y y , ∴16)(852*******++-=+y y y y y y x x581651288-=+-+=k k , …………………………………9分0,2121=+∴⊥y y x x ON OM ,由058=-k ,得 52458<=k . 故存在实数58=k 满足题设条件. …………………………………………10分 说明:解答题如有其它解法,酌情给分.× ×。
2011年长沙市初中毕业学业水平考试试卷数学注意事项:1、答题前,请考生先将自己的姓名、准考证号填写清楚,并认真核对条形码上的姓名、准考证号、考室和座位号;2、必须在答题卡上答题,在草稿纸、试题卷上答题无效;3、答题时,请考生注意各大题题号后面的答题提示;4、请勿折叠答题卡,保持字体工整、笔迹清晰、卡面清洁;5、答题卡上不得使用涂改液、涂改胶和贴纸;6、本学科试卷共26个小题,考试时量l20分钟,满分I20分。
一、选择题(在下列各题的四个选项中,只有一项是符合题意的。
请在答题卡中填涂符合题意的选项。
本题共l0个小题,每小题3分,共30分) 1.2-等于A.2ﻩB.2- ﻩC .12ﻩD .12- 2.下列长度的三条线段,能组成三角形的是A .1、l、2B .3、4、5ﻩ C.1、4、6 D .2、3、73.下列计算正确的是A .133-=-B.236a a a ⋅= C .22(1)1x x +=+ﻩD.32222=4.如图,在平面直角坐标系中,点P(-1,2)向右平移3个单位长度后的坐标是A.(2,2)ﻩﻩB.(42-, )C.(15-, )ﻩD.(11--,)5.一个多边形的内角和是900°,则这个多边形的边数为ﻩ A.6 B.7 C .8 ﻩD .96.若12x y =⎧⎨=⎩是关于工x y 、的二元一次方程31ax y -=的解,则a 的值为A.5- B .1- C.2 D.77.如图,关于抛物线2(1)2y x =--,下列说法错误的是A.顶点坐标为(1,2-)B .对称轴是直线x =lC.开口方向向上D.当x>1时,Y 随X 的增大而减小8.如图是每个面上都有一个汉字的正方体的一种展开图,那么在原正方体的表面上,与汉字“美"相对的面上的汉字是A.我 B.爱 C .长 D.沙9.谢老师对班上某次数学模拟考试成绩进行统计,绘制了如图所示的统计图,根据图中给出的信息,这次考试成绩达到A 等级的人数占总人数的A.6% B.10% C.20% D .25%10.如图,等腰梯形ABCD 中,AD ∥BC ,∠B=45°,AD =2,BC=4,则梯形的面积为A .3B .4C .6 D.8二、填空题(本题共8个小题,每小题3分,共24分)11.分解因式:22a b -=____________。
湖南省14市州2011年中考数学专题8:平面几何基础一、选择题1.(湖南长沙3分)下列长度的三条线段,能组成三角形的是A.1、l、2 B.3、4、5 C.1、4、6 D.2、3、7【答案】B。
【考点】三角形三边关系。
【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析:A、1+1=2,不能组成三角形;B、3+4>5,能够组成三角形;C、1+4<6,不能组成三角形;D、2+3<7,不能组成三角形。
故选B。
2.(湖南长沙3分).一个多边形的内角和是900°,则这个多边形的边数为 A.6 B.7 C.8 D.9【答案】B。
【考点】多边形内角和定理,解一元一次方程。
【分析】由多边形的内角和等于900°,根据多边形的内角和定理列出方程,解出即可:设这个多边形的边数为n,则有(n-2)180°=900°,解得:n=7,∴这个多边形的边数为7。
故选B。
3.(湖南永州3分)下列说法正确的是A.等腰梯形的对角线互相平分.B.一组对边平行,另一组对边相等的四边形是平行四边形.C.线段的垂直平分线上的点到线段两个端点的距离相等.D.两边对应成比例且有一个角对应相等的两个三角形相似.【答案】C。
【考点】等腰梯形的性质,平行四边形的判定,线段的垂直平分线的性质,相似三角形的判定。
【分析】根据等腰梯形的性质,平行四边形的判定,线段的垂直平分线的性质和相似三角形的判定分别分析得出答案:A、∵根据等腰梯形的对角线相等不互相平分,故此选项错误;B、∵一组对边平行且相等的四边形是平行四边形,故此选项错误;C、∵线段的垂直平分线上的点到线段两个端点的距离相等,故此选项正确;D、两边对应成比例且夹角角对应相等的两个三角形相似,故此选项错误。
故选C。
4.(湖南怀化3分)如图所示,∠A,∠1,∠2的大小关系是A、∠A>∠1>∠2B、∠2>∠1>∠AC、∠A>∠2>∠1D、∠2>∠A>∠1【答案】B。
2011年湖南省长沙市中考数学试卷参考答案与试题解析一、选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本题共10个小题,每小题3分,共30分)1.(3分)(2015•东莞)|﹣2|=()A.2 B.﹣2 C.D.【考点】M113 绝对值.【分析】根据绝对值的性质可知:|﹣2|=2【难度】容易题【解答】A.【点评】本题主要考查了绝对值的性质,较为简单,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)(2011•长沙)下列长度的三条线段,能组成三角形的是()A.1、1、2 B.3、4、5 C.1、4、6 D.2、3、7【考点】M322 三角形三边的关系.【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.A、1+1=2,不能组成三角形;B、3+4>5,能够组成三角形;C、1+4<6,不能组成三角形;D、2+3<7,不能组成三角形.【难度】容易题【解答】B.【点评】本题重点考查了三角形的三边关系,比较简单,判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数,掌握这个判定方法是解答本题的关键.3.(3分)(2011•长沙)下列计算正确的是()A.3﹣1=﹣3 B.a2•a3=a6 C.(x+1)2=x2+1 D.【考点】M11J 二次根式混合运算;M11S 同底数幂的乘法;M11O 指数幂;M11L 完全平方公式和平方差公式.【分析】按照运算的法则逐个计算即可得出答案.A、3﹣1=,故本选项错误;B、a2•a3=a2+3=a5,故本选项错误;C、(x+1)2=x2+2x+1,故本选项错误;D、,故本选项正确;【难度】容易题【点评】本题主要考查了二次根式的混合运算,同底数幂的乘法、完全平方公式以及负整数指数幂等知识点,比较简单,熟练掌握运算法则是解题关键.4.(3分)(2011•长沙)如图,在平面直角坐标系中,点P(﹣1,2)向右平移3个单位长度后的坐标是()A.(2,2)B.(﹣4,¬2) C.(﹣1,¬5) D.(﹣1,﹣1)【考点】M13B 坐标与图形变化【分析】根据平移的性质,∵点P(﹣1,2)向右平移3个单位长度,∴横坐标为﹣1+3=2,纵坐标不变,平移后的坐标为(2,2).【难度】容易题【解答】A.【点评】本题重点考查了坐标与图形变化,比较简单,熟练掌握图形变化的性质是解答本题的关键.5.(3分)(2012•安顺)一个多边形的内角和是900°,则这个多边形的边数是()A.6 B.7 C.8 D.9【考点】M331 多边形的内(外)角和.【分析】设这个多边形的边数为n,则有(n﹣2)180°=900°,解得:n=7,∴这个多边形的边数为7.【难度】容易题【解答】B.【点评】本题主要考查多边形的内角和定理,比较简单,解题关键是根据等量关系列出方程解出答案.6.(3分)(2011•长沙)若是关于x、y的二元一次方程ax﹣3y=1的解,则a的值为()A.﹣5 B.﹣1 C.2 D.7【考点】M12E 二元一次方程及二元一次方程组的解.【分析】把代入ax﹣3y=1中,∴a﹣3×2=1,a=1+6=7【难度】容易题【点评】本题主要考查了二元一次方程的解,较为简单,解题关键是要正确了解二元一次方程的解的概念.7.(3分)(2011•长沙)如图,关于抛物线y=(x﹣1)2﹣2,下列说法错误的是()A.顶点坐标为(1,﹣2)B.对称轴是直线x=lC.开口方向向上D.当x>1时,y随x的增大而减小【考点】M162 二次函数的的图象、性质.【分析】∵抛物线y=(x﹣1)2﹣2,A、因为顶点坐标是(1,﹣2),故说法正确;B、因为对称轴是直线x=1,故说法正确;C、因为a=1>0,开口向上,故说法正确;D、当x>1时,y随x的增大而增大,故说法错误.【难度】容易题【解答】D.【点评】本题重点考查了二次函数的性质,较为简单,解题关键是要能熟练掌握二次函数的性质.8.(3分)(2012•长沙)如图是每个面上都有一个汉字的正方体的一种展开图,那么在原正方体的表面上,与汉字“美“相对的面上的汉字是()A.我B.爱C.长D.沙【考点】M415 几何体的展开图.【分析】这是一个正方体的平面展开图,共有六个面,其中面“美”与面“长”相对,面“爱”与面“丽”相对,“我”与面“沙”相对.【难度】容易题【解答】C.【点评】本题主要考查了几何体的展开图,较为简单,难点在于需要考生有一定空间想象能力.9.(3分)(2011•长沙)谢老师对班上某次数学模拟考试成绩进行统计,绘制了如图所示的统计图,根据图中给出的信息,这次考试成绩达到A等级的人数占总人数的()A.6% B.10% C.20% D.25%【考点】M216 统计图(扇形、条形、折线).【分析】根据图中所给的信息,用A等级的人数除以总人数的即可解答.10÷(10+15+12+10+3)=20%.【难度】容易题【解答】C.【点评】本题重点考查条形统计图的应用,较为简单,条形统计图能清楚地表示出每个项目的数据.解题关键是要学会从统计图中获取必要的解题信息.10.(3分)(2011•长沙)如图,等腰梯形ABCD中,AD∥BC,∠B=45°,AD=2,BC=4,则梯形的面积为()A.3 B.4 C.6 D.8【考点】M337 等腰梯形的性质与判定.【分析】过A作AE⊥BC交BC于E点.∵四边形ABCD是等腰梯形.∴BE=(4﹣2)÷2=1.∵∠B=45°,∴AE=BE=1.∴梯形的面积为:×(2+4)×1=3.【难度】中等题【解答】A.【点评】本题主要考查了等腰梯形的性质,考查的知识点为:等腰梯形的两腰相等,同一底上的两个角相等,掌握等腰梯形的这一性质是解题关键.二、填空题(本题共8个小题,每小题3分,共24分)11.(3分)(2013•海南)因式分解:a2﹣b2=.【考点】M11K 因式分解.【分析】依据平方差公式,所依a2﹣b2=(a+b)(a﹣b).【难度】容易题【解答】(a+b)(a﹣b).【点评】本题主要考查了因式分解的概念,也涉及到了平方差公式的运用,较为简单.12.(3分)(2011•盘锦)反比例函数y=的图象经过点(﹣2,3),则k的值为.【考点】M153 求反比例函数的关系式.【分析】把(﹣2,3)代入函数y=中,得3=,解得k=﹣6.【难度】容易题【解答】﹣6.【点评】本题主要考查了求反比例函数的关系式这一知识点,较为简单,解题关键是懂得将点的坐标代入从而求得解析式.13.(3分)(2011•长沙)如图,CD是△ABC的外角∠ACE的平分线,AB∥CD,∠ACE=100°,则∠A=.【考点】M318 角平分线的性质与判定M31C 平行线的判定及性质.【分析】∵AB∥CD,∴∠A=∠ACD(两直线平行,内错角相等);又∵CD是△ABC的外角∠ACE的平分线,∠ACE=100°,∴∠ACD=∠ACE=50°;∴∠A=50°;【难度】容易题【解答】50°.【点评】本题重点考查了平行线的性质,同时考查了角平分线的性质,较为简单,平行线的性质有:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补.14.(3分)(2011•长沙)化简:=.【考点】M11N 分式运算.【分析】根据同分母的加减运算法则计算即可求得答案.所以===1.【难度】容易题【解答】1.【点评】本题主要考查了分式运算,较为简单,掌握其运算法则是解答本题的关键.15.(3分)(2011•长沙)在某批次的100件产品中,有3件是不合格产品,从中任意抽取一件检验,则抽到不合格产品的概率是.【考点】M222 概率的计算.【分析】从中任意抽取一件检验,则抽到不合格产品的概率是=0.03=3%.故答案为3%.【难度】容易题【解答】3%.【点评】本题主要考查的是概率的计算,较为简单,熟练掌握概率公式是解答本题的关键.16.(3分)(2011•长沙)已知菱形的两条对角线长分别是6cm和8cm,则周长是cm.【考点】M334 菱形的性质与判定M32B 勾股定理.【分析】∵菱形的对角线互相垂直平分,两条对角线的一半与一边构成直角三角形,根据勾股定理可得菱形的边长为=5cm,则周长是4×5=20cm.【难度】容易题【解答】20.【点评】本题重点考查了菱形的性质以及勾股定理的运用,比较简单,熟练掌握菱形的对角线互相垂直平分这一性质是解题关键.17.(3分)(2011•长沙)已知a﹣3b=3,则8﹣a+3b的值是.【考点】M11H 代数式.【分析】∵a﹣3b=3.∴8﹣a+3b=8﹣(a﹣3b)=8﹣3=5.【难度】容易题【解答】5.【点评】本题主要考查了代数式的求值问题,较为简单,解题关键是将已知条件变形用整体代入法求出答案.18.(3分)(2011•长沙)如图,P是⊙O的直径AB延长线上的一点,PC与⊙O 相切于点C,若∠P=20°,则∠A=°.【考点】M348 切线的性质与判定;M344 圆心角与圆周角M327 等腰三角形性质与判定.【分析】∵PC与⊙O相切于点C,∴OC⊥CP,∵∠P=20°,∴∠COB=70°,∵OA=OC,∴∠A=35°.【难度】容易题【解答】35°【点评】本题主要考查了切线的性质与判定、圆心角与圆周角以及等腰三角形的性质,较为简单,解题的关键在于掌握切线的性质.三、解答题(本题共2个小题,每小题6分,共12分)19.(6分)(2011•长沙)已知a=,b=20110,c=﹣(﹣2),求a﹣b+c的值.【考点】M11A 实数的混合运算;M111 相反数;M117 平方根、算术平方根、立方根;M11O 指数幂.【分析】此题较为简单,根据所求,先把a、b、c的值代入,再根据算术平方根、零指数幂、相反数的知识,将每一项的值求出来,然后根据实数的运算法则求得计算结果.【难度】容易题【解答】解:a﹣b+c=﹣20110﹣(﹣2)=3﹣1+2=4.(6分)【点评】本题是一道计算题,考查了考生的计算功底,做计算类题型时一定要细心运算,防止粗心大意,解决本题的关键是熟练掌握相反数、指数幂以及算术平方根等考点的运算.20.(6分)(2011•长沙)解不等式2(x﹣2)≤6﹣3x,并写出它的正整数解.【考点】M12I 一元一次不等式(组)的解及解集M12J 解一元一次不等式(组)M12H 不等式的相关概念及基本性质.【分析】根据解一元一次不等式的基本步骤求出解集,再从不等式的解集中找出适合条件的正整数即可.【难度】容易题【解答】解:不等式2(x﹣2)≤6﹣3x,解得,x≤2,(4分)∴正整数解为1和2 .(6分)【点评】本题主要考查了一元一次不等式等相关知识点,属于基础题型,解答本题的关键是熟练掌握一元一次不等式的解法.四、解答题(本题共2个小题,每小题8分,共16分)21.(8分)(2011•长沙)“珍惜能源从我做起,节约用电人人有责”.为了解某小区居民节约用电情况,物业公司随机抽取了今年某一天本小区10户居民的日用(2)已知去年同一天这10户居民的平均日用电量为7.8度,请你估计,这天与去年同日相比,该小区200户居民这一天共节约了多少度电?【考点】M211 总体、个体、样本、容量;M215 频数、频率、极差;M212 平均数、方差和标准差.【分析】(1)此问简单,直接根据极差和平均数的概念求解即可.(2)此问比较简单,根据去年同一天这10户居民的平均日用电量为7.8度,求出这10户居民这一天平均每户节约的度数,再用样本估计总体的方法求出该小区200户居民这一天共节约了多少度电.【难度】容易题【解答】解:(1)这组数据中,日用电量最多的是5.6,最少的是3.4,∴极差=5.6﹣3.4=2.2,平均数=(4.4+4.0+5.0+5.6+3.4+4.8+3.4+5.2+4.0+4.2)÷10=4.4;(4分)(2)这10户居民这一天平均每户节约:7.8﹣4.4=3.4(度)∴总数为:3.4×200=680(度).(8分)【点评】本题重点考查了平均数和极差的概念以及用样本估计总体等知识点,并且要学会从图表中获取必要的解题信息,解题关键是掌握这些概念.22.(8分)(2011•长沙)如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°.(1)求∠B的大小;(2)已知圆心0到BD的距离为3,求AD的长.【考点】M344 圆心角与圆周角;M321 三角形内(外)角和;M323 三角形的中位线M31C 平行线的判定及性质.【分析】(1)此问简单,首先由同弧所对的圆周角相等求得∠CAB=∠CDB=40°,然后根据补角的性质求得∠BPD=115°,在△BPD中依据三角形内角和定理求∠B 即可;(2)此问难度适中,因为0到BD的距离为3,所以过点O作OE⊥BD于点E,则OE=3.根据平行线的性质知OE∥AD;又由O是AB的中点,由此可以判定OE是△ABD的中位线;最后由三角形的中位线定理计算AD的长度.【难度】中等题【解答】解:(1)∵∠CAB=∠CDB(同弧所对的圆周角相等),∠CAB=40°,∴∠CDB=40°;又∵∠APD=65°,∴∠BPD=115°;∴在△BPD中,∴∠B=180°﹣∠CDB﹣∠BPD=25°;(4分)(2)过点O作OE⊥BD于点E,则OE=3.∵AB是直径,∴AD⊥BD(直径所对的圆周角是直角);∴OE∥AD;(6分)又∵O是AB的中点,∴OE是△ABD的中位线,∴AD=2OE=6.(8分)【点评】本题重点考查了圆周角定理、三角形的中位线定理、三角形的内角和定理以及平行线的判定及性质,难度适中,三角形与圆的综合题属于中考常考知识点,需要考生牢牢掌握相关性质来解题.五、解答题(本题共2个小题,每小题9分,共18分)23.(9分)(2011•长沙)某工程队承包了某标段全长1755米的过江隧道施工任务,甲、乙两个班组分别从东、西两端同时掘进.已知甲组比乙组平均每天多掘进0.6米,经过5天施工,两组共掘进了45米.(1)求甲、乙两个班组平均每天各掘进多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进0.2米,乙组平均每天能比原来多掘进0.3米.按此施工进度,能够比原来少用多少天完成任务?【考点】M12F 解二元一次方程组M12G 二元一次方程组的应用.【分析】(1)此问简单,首先读懂题意,设甲、乙班组平均每天掘进x米,y米,由甲组比乙组平均每天多掘进0.6米,经过5天施工,两组共掘进了45米两个关系,列方程组求解.(2)此问较为简单,首先由第一问结论求出按原进度所需天数,再根据甲组平均每天能比原来多掘进0.2米,乙组平均每天能比原来多掘进0.3米求出按现在进度的天数,相减即可求出少用天数.【难度】中等题【解答】解:(1)设甲、乙班组平均每天掘进x米,y米,得,解得.(3分)答:甲班组平均每天掘进4.8米,乙班组平均每天掘进4.2米.(4分)(2)设按原来的施工进度和改进施工技术后的进度分别还需a天,b天完成任务,则a=(1755﹣45)÷(4.8+4.2)=190(天)b=(1755﹣45)÷(4.8+0.2+4.2+0.3)=180(天)∴a﹣b=10(天)(8分)答:少用10天完成任务.(9分)【点评】本题是一道应用题,主要考查了二元一次方程组的应用,解答此类题型的关键是要学会在题目中找到合适的等量关系并列出方程解答,须注意的是应用题一定要作答.24.(9分)(2011•长沙)如图是一座人行天桥的引桥部分的示意图,上桥通道由两段互相平行并且与地面成37°角的楼梯AD、BE和一段水平平台DE构成.已知天桥高度BC=4.8米,引桥水平跨度AC=8米.(1)求水平平台DE的长度;(2)若与地面垂直的平台立枉MN的高度为3米,求两段楼梯AD与BE的长度之比.(参考数据:取sin37°=0.60,cos37°=0.80,tan37°=0.75.)【考点】M32E 解直角三角形M332 平行四边形的性质与判定M32C 锐角三角函数.【分析】(1)此问比较简单,首先由已知构造直角三角形如图,延长BE交AC 于F,过点E作EG⊥AC,垂足为G,解直角三角形BCF求得CF,又由已知BE∥AD,四边形AFED为平行四边形,所以DE=AF=AC﹣CF.(2)此问难度适中,在直角三角形BCF中,可求出BF,EG=MN=3米,解直角三角形EGF可求出EF,则BE=BF﹣EF,而AD=EF,从而求得两段楼梯AD 与BE的长度之比.【难度】中等题【解答】解:(1)延长BE交AC于F,过点E作EG⊥AC,垂足为G,在Rt△BCF中,CF===6.4(米),∴AF=AC﹣CF=8﹣6.4=1.6(米),∵BE∥AD,∴四边形AFED为平行四边形,(2分)∴DE=AF=1.6米.答:水平平台DE的长度为1.6米.(4分)(2)在Rt△EFG中,EG=MN=3米,∴EF===5米,即AD=5米,又∵BF===8米,∴BE=BF﹣EF=8﹣5=3米.(8分)所以两段楼梯AD与BE的长度之比5:3.(9分)【点评】本题重点考查了解直角三角形的应用,同时涉及到了平行四边形的性质与判定以及锐角三角函数,难度适中,解题关键是由已知首先构建直角三角形,运用三角函数求解.六、解答题(本题共2个小题,每小题10分,共20分)25.(10分)(2011•长沙)使得函数值为零的自变量的值称为函数的零点.例如,对于函数y=x﹣1,令y=0,可得x=1,我们就说1是函数y=x﹣1的零点.己知函数y=x2﹣2mx﹣2(m+3)(m为常数).(1)当m=0时,求该函数的零点;(2)证明:无论m取何值,该函数总有两个零点;(3)设函数的两个零点分别为x1和x2,且,此时函数图象与x轴的交点分别为A、B(点A在点B左侧),点M在直线y=x﹣10上,当MA+MB最小时,求直线AM的函数解析式.【考点】M136 函数图像的交点问题.M126 解一元二次方程M128 一元二次方程根的判别式M143 求一次函数的关系式M137 不同位置的点的坐标的特征M12G 二元一次方程组的应用M162 二次函数的的图象、性质【分析】(1)此问简单,直接根据题中给出的函数的零点的定义,将m=0代入y=x2﹣2mx﹣2(m+3),然后令y=0即可解得函数的零点;(2)此问较为简单,题目要证函数总有两个零点,我们很自然可以联想到用方程的判别式来证,令y=0,函数变为一元二次方程,只需证明△>0即可;(3)此问有一定难度,首先根据题中条件求出函数解析式,再求出A、B两点坐标,作点B关于直线y=x﹣10的对称点B′,连接AB′,求出点B′的坐标即可求得当MA+MB最小时,直线AM的函数解析式.【难度】较难题【解答】解:(1)当m=0时,该函数的零点为和;(3分)(2)令y=0,得△=(﹣2m)2﹣4[﹣2(m+3)]=4(m+1)2+20>0∴无论m取何值,方程x2﹣2mx﹣2(m+3)=0总有两个不相等的实数根.即无论m取何值,该函数总有两个零点.(6分)(3)依题意有x1+x2=2m,x1x2=﹣2(m+3)由,解得m=1.∴函数的解析式为y=x2﹣2x﹣8.令y=0,解得x1=﹣2,x2=4∴A(﹣2,0),B(4,0)作点B关于直线y=x﹣10的对称点B′,连接AB′,则AB’与直线y=x﹣10的交点就是满足条件的M点.易求得直线y=x﹣10与x轴、y轴的交点分别为C(10,0),D(0,﹣10).连接CB′,则∠BCD=45°∴BC=CB’=6,∠B′CD=∠BCD=45°∴∠BCB′=90°即B′(10,﹣6)设直线AB′的解析式为y=kx+b,则,解得:k=﹣,b=﹣1;(8分)∴直线AB′的解析式为,即AM的解析式为.(10分)【点评】本题综合考查了二次函数与一次函数,其中也涉及到了不同位置的点的坐标的特征、一元二次方程根的判别式、解一元二次方程以及函数图像的交点问题等知识点的运用,有一定难度,需要考生综合运用所学知识来解题,同时也要注意数形结合思想的运用.26.(10分)(2011•长沙)如图,在平面直角坐标系中,已知点A(0,2),点P 是x轴上一动点,以线段AP为一边,在其一侧作等边三角形APQ.当点P运动到原点O处时,记Q的位置为B.(1)求点B的坐标;(2)求证:当点P在x轴上运动(P不与O重合)时,∠ABQ为定值;(3)是否存在点P,使得以A、O、Q、B为顶点的四边形是梯形?若存在,请求出P点的坐标;若不存在,请说明理由.【考点】M328 等边三角形性质与判定;M13B 坐标与图形变化;M32A 全等三角形性质与判定;M32B 勾股定理;M336 梯形及其中位线M135 动点问题的函数图像M137 不同位置的点的坐标的特征.【分析】(1)此问简单,首先过点B作BC⊥y轴于点C,根据等边三角形的性质即可求出点B的坐标,(2)此问难度适中,根据∠PAQ=∠OAB=60°,可知∠PAO=∠QAB,得出△APO≌△AQB总成立,得出当点P在x轴上运动(P不与Q重合)时,∠ABQ 为定值90°,(3)此问有一定难度,根据点P在x的正半轴还是负半轴两种情况讨论,再根据全等三角形的性质即可得出结果.【难度】容易题【解答】(1)解:过点B作BC⊥y轴于点C,∵A(0,2),△AOB为等边三角形,∴AB=OB=2,∠BAO=60°,∴BC=,OC=AC=1,即B();(3分)(2)证明:当点P在x轴上运动(P不与O重合)时,不失一般性,∵∠PAQ=∠OAB=60°,∴∠PAO=∠QAB,在△APO和△AQB中,∴△APO≌△AQB(SAS),(5分)∴∠ABQ=∠AOP=90°总成立,∴当点P在x轴上运动(P不与O重合)时,∠ABQ为定值90°;(6分)(3)解:由(2)可知,点Q总在过点B且与AB垂直的直线上,可见AO与BQ不平行.①当点P在x轴负半轴上时,点Q在点B的下方,此时,若AB∥OQ,四边形AOQB即是梯形,当AB∥OQ时,∠BQO=90°,∠BOQ=∠ABO=60°.又OB=OA=2,可求得BQ=,由(2)可知,△APO≌△AQB,∴OP=BQ=,∴此时P的坐标为().(8分)②当点P在x轴正半轴上时,点Q在B的上方,此时,若AQ∥OB,四边形AOBQ即是梯形,当AQ∥OB时,∠ABQ=90°,∠QAB=∠ABO=60°.又AB=2,可求得BQ=,由(2)可知,△APO≌△AQB,∴OP=BQ=,∴此时P的坐标为().综上,P的坐标为()或().(10分)【点评】本题综合性较强,主要考查了等边三角形性质与判定、坐标与图形变化;全等三角形性质与判定、勾股定理、梯形及其中位线、动点问题的函数图像以及不同位置的点的坐标的特征等众多知识点,难度较大,解题关键是学会运用数形结合的思想.。
2011年中考考试试卷数 学本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷第1页至第2页,第Ⅱ卷第3页至第10页.试卷满分120分,考试时间100分钟.考试结束后,将试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷(选择题 共30分)注意事项:1.答第Ⅰ卷前,考生务必先将自己的姓名、准考证号,用蓝、黑色墨水的钢笔(签字笔)或圆珠笔填在“答题卡”上;用2B 铅笔将考试科目对应的信息点涂黑;在指定位置粘贴考试用条形码.2.答案答在试卷上无效,每小题选出答案后,用2B 铅笔把“答题卡”上对应题目的答案标号的信息点涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号的信息点.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.2sin 30°的值等于( )A .1 BCD .22.在艺术字中,有些字母是中心对称图形,下面的5个字母中,是中心对称图形的有( )A .2个B .3个C .4个D .5个3.若x y ,为实数,且20x +=,则2009x y ⎛⎫ ⎪⎝⎭的值为( )A .1B .1-C .2D .2- 4.边长为a 的正六边形的内切圆的半径为( ) A .2a B .a CD .12a5.右上图是一根钢管的直观图,则它的三视图为( )A .B .C .D . 6.为参加2009年“天津市初中毕业生升学体育考试”,小刚同学进行了刻苦的练习,在投掷实心球时,测得5次投掷的成绩(单位:m )为:8,8.5,9,8.5,9.2.这组数据的众H I N A数、中位数依次是( )A .8.5,8.5B .8.5,9C .8.5,8.75D .8.64,97.在ABC △和DEF △中,22AB DE AC DF A D ==∠=∠,,,如果ABC △的周长是16,面积是12,那么DEF △的周长、面积依次为( ) A .8,3 B .8,6 C .4,3 D .4,6 8.在平面直角坐标系中,已知线段AB 的两个端点分别是()()41A B --,,1,1,将线段AB 平移后得到线段A B '',若点A '的坐标为()22-,,则点B '的坐标为( )A .()43,B .()34,C .()12--,D .()21--, 9.如图,ABC △内接于O ⊙,若28OAB ∠=°,则C ∠的大小为( )A . 28°B .56°C .60°D .62°10.在平面直角坐标系中,先将抛物线22y x x =+-关于x 轴作轴对称变换,再将所得的抛物线关于y 轴作轴对称变换,那么经两次变换后所得的新抛物线的解析式为( ) A .22y x x =--+ B .22y x x =-+- C .22y x x =-++ D .22y x x =++第(9)题2009年天津市初中毕业生学业考试试卷数 学第Ⅱ卷(非选择题 共90分)注意事项:1.答第Ⅱ卷前,考生务必将密封线内的项目和试卷第3页左上角的“座位号”填写清楚. 2. 第Ⅱ卷共8页,用蓝、黑色墨水的钢笔(签字笔)或圆珠笔直接答在试卷上.二、填空题:本大题共8小题,每小题3分,共24分,请将答案直接填在题中横线上. 11= .12.若分式22221x x x x --++的值为0,则x 的值等于 .13.我们把依次连接任意一个四边形各边中点所得的四边形叫做中点四边形.若一个四边形ABCD 的中点四边形是一个矩形,则四边形ABCD 可以是 . 14.已知一次函数的图象过点()35,与()49--,,则该函数的图象与y 轴交点的坐标为__________ _.15.某书每本定价8元,若购书不超过10本,按原价付款;若一次购书10本以上,超过10本部分打八折.设一次购书数量为本,付款金额为y 元,请填写下表:16.为了解某新品种黄瓜的生长情况,抽查了部分黄瓜株上长出的黄瓜根数,得到下面的条形图,观察该图,可知共抽查了________株黄瓜,并可估计出这个新品种黄瓜平均每株结________根黄瓜.17.如图,是由12个边长相等的正三角形镶嵌而成的平面图形,则图中的平行四边形共有_______个.18.如图,有一个边长为5的正方形纸片ABCD ,要将其剪拼成边长分别为a b ,的两个小正方形,使得2225a b +=.①a b ,的值可以是________(写出一组即可);②请你设计一种具有一般性的裁剪方法,在图中画出裁剪线,并拼接成两个小正方形,同时说明该裁剪方法具有一般性: __________________________________________ _________________________________________ _________________________________________第(17)题黄瓜根数/株第(16)题三、解答题:本大题共8小题,共66分.解答应写出文字说明、演算步骤或证明过程. 19.(本小题6分) 解不等式组5125431x x x x ->+⎧⎨-<+⎩,.20.(本小题8分)已知图中的曲线是反比例函数5m y x-=(m 为常数)图象的一支. (Ⅰ) 这个反比例函数图象的另一支在第几象限?常数m 的取值范围是什么? (Ⅱ)若该函数的图象与正比例函数2y x =的图象在第一象内限的交点为A ,过A 点作x 轴的垂线,垂足为B ,当OAB △的面积为4时,求点A 的坐标及反比例函数的解析式.21.(本小题8分)有3个完全相同的小球,把它们分别标号为1,2,3,放在一个口袋中,随机地摸出一个小球不放回,再随机地摸出一个小球.(Ⅰ)采用树形图法(或列表法)列出两次摸球出现的所有可能结果; (Ⅱ)求摸出的两个球号码之和等于5的概率.如图,已知AB 为O ⊙的直径,PA PC ,是O ⊙的切线,A C ,为切点,30BAC ∠=° (Ⅰ)求P ∠的大小;(Ⅱ)若2AB =,求PA 的长(结果保留根号).23.(本小题8分)在一次课外实践活动中,同学们要测量某公园人工湖两侧A B ,两个凉亭之间的距离.现测得30AC =m ,70BC =m ,120CAB ∠=°,请计算A B ,两个凉亭之间的距离.P CAO注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路填空,并完成本题解答的全过程.如果你选用其他的解题方案,此时,不必填空,只需按照解答题的一般要求,进行解答即可.如图①,要设计一幅宽20cm ,长30cm 的矩形图案,其中有两横两竖的彩条,横、竖彩条的宽度比为2∶3,如果要使所有彩条所占面积为原矩形图案面积的三分之一,应如何设计每个彩条的宽度?分析:由横、竖彩条的宽度比为2∶3,可设每个横彩条的宽为2x ,则每个竖彩条的宽为3x .为更好地寻找题目中的等量关系,将横、竖彩条分别集中,原问题转化为如图②的情况,得到矩形ABCD .结合以上分析完成填空:如图②,用含x 的代数式表示: AB =____________________________cm ; AD =____________________________cm ; 矩形ABCD 的面积为_____________cm 2; 列出方程并完成本题解答.图②图①已知一个直角三角形纸片OAB ,其中9024AOB OA OB ∠===°,,.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB 交于点C ,与边AB 交于点D . (Ⅰ)若折叠后使点B 与点A 重合,求点C 的坐标;(Ⅱ)若折叠后点B 落在边OA 上的点为B ',设OB x '=,OC y =,试写出y 关于x 的函数解析式,并确定y 的取值范围; (Ⅲ)若折叠后点B 落在边OA 上的点为B ',且使B D OB '∥,求此时点C 的坐标.已知函数212y x y x bx c αβ==++,,,为方程120y y -=的两个根,点()1M T ,在函数2y 的图象上. (Ⅰ)若1132αβ==,,求函数2y 的解析式; (Ⅱ)在(Ⅰ)的条件下,若函数1y 与2y 的图象的两个交点为A B ,,当ABM △的面积为112时,求t 的值; (Ⅲ)若01αβ<<<,当01t <<时,试确定T αβ,,三者之间的大小关系,并说明理由.参考答案及评分标准评分说明:1.各题均按参考答案及评分标准评分.2.若考生的非选择题答案与参考答案不完全相同但言之有理,可酌情评分,但不得超过该题所分配的分数.一、选择题:本大题共10小题,每小题3分,共30分.1.A 2.B 3.B 4.C 5.D 6.A 7.A 8.B 9.D 10.C 二、填空题:本大题共8小题,每小题3分,共24分.1112.213.正方形(对角线互相垂直的四边形均可) 14.()01-,15.56,80,156.816.60;1317.21 18.①3,4(提示:答案不惟一);②裁剪线及拼接方法如图所示:图中的点E 可以是以BC 为直径的半圆上的任意一点(点B C ,除外).BE CE ,的长分别为两个小正方形的边长. 三、解答题:本大题共8小题,共66分 19.本小题满分6分 解:5125431x x x x ->+⎧⎨-<+⎩ ,①②由①得2x >, ························································································································ 2分由②得,52x >-···················································································································· 4分 ∴原不等式组的解集为2x >································································································ 6分 20.本小题满分8分.解:(Ⅰ)这个反比例函数图象的另一支在第三象限. ························································· 1分 因为这个反比例函数的图象分布在第一、第三象限, 所以50m ->,解得5m >. ································································································ 3分(Ⅱ)如图,由第一象限内的点A 在正比例函数2y x =的图象上,设点A 的坐标为()()00020x x x >,,则点B 的坐标为()00x ,,0014242OAB S x x =∴= △,·,解得02x =(负值舍去).∴点A 的坐标为()24,. ·········································································································· 6分 DCA E 2 31 2 3又 点A 在反比例函数5m y x-=的图象上, 542m -∴=,即58m -=. ∴反比例函数的解析式为8y x=. ··························································································· 8分 21.本小题满分8分.解(Ⅰ)法一:根据题意,可以画出如下的树形图:从树形图可以看出,摸出两球出现的所有可能结果共有6种; 法二:根据题意,可以列出下表:从上表中可以看出,摸出两球出现的所有可能结果共有6种. ············································· 4分 (Ⅱ)设两个球号码之和等于5为事件A .摸出的两个球号码之和等于5的结果有2种,它们是:()()2332,,,.()2163P A ∴==. ··················································································································· 8分 22.本小题满分8分.解(Ⅰ)PA 是O ⊙的切线,AB 为O ⊙的直径, PA AB ∴⊥.90BAP ∴∠=°.30BAC ∠= °,9060CAP BAC ∴∠=-∠=°°.················································································· 2分 又PA 、PC 切O ⊙于点A C ,. PA PC ∴=.PAC ∴△为等边三角形. 60P ∴∠=°. ··························································································································· 5分(Ⅱ)如图,连接BC , 则90ACB ∠=°.在Rt ACB △中,230AB BAC =∠=,°,AC AB ∴=·cos 2BAC ∠=cos 30°=PAC △为等边三角形, PA AC ∴=.1 2 32 13 3 1 2 第一个球 第二个球 P C B A O第二个球 第一个球 (1,3) (2,3) (1,2) (3,2)(3,1) (2,1) 3 2 1 1 2 3PA ∴=··························································································································· 8分 23.本小题满分8分解:如图,过C 点作CD 垂直于AB 交BA 的延长线于点D . ············································· 1分 在Rt CDA △中,3018018012060AC CAD CAB =∠=-∠=︒-︒=︒,°. ···················· 2分CD AC ∴=·sin 30CAD ∠=·sin 60=°AD AC =·cos 30CAD ∠=·cos 60°=15. 又在Rt CDB △中,22270BC BD BC CD == ,-,65BD ∴==. ··························································································· 7分651550AB BD AD ∴=-=-=,答:A B ,两个凉亭之间的距离为50m. ················································································ 8分24.本小题满分8分.解(Ⅰ)220630424260600x x x x ---+,,; ·································································· 3分(Ⅱ)根据题意,得2124260*********x x ⎛⎫-+=-⨯⨯ ⎪⎝⎭. ············································· 5分 整理,得2665500x x -+=.解方程,得125106x x ==,(不合题意,舍去). 则552332x x ==,. 答:每个横、竖彩条的宽度分别为53cm ,52cm. ································································· 8分25.本小题满分10分.解(Ⅰ)如图①,折叠后点B 与点A 重合, 则ACD BCD △≌△.设点C 的坐标为()()00m m >,. 则4BC OB OC m =-=-. 于是4AC BC m ==-.在Rt AOC △中,由勾股定理,得222AC OC OA =+,即()22242m m -=+,解得32m =. ∴点C 的坐标为302⎛⎫⎪⎝⎭,. ········································································································· 4分图①图②图③(Ⅱ)如图②,折叠后点B 落在OA 边上的点为B ', 则B CD BCD '△≌△. 由题设OB x OC y '==,, 则4B C BC OB OC y '==-=-,在Rt B OC '△中,由勾股定理,得222B C OC OB ''=+.()2224y y x ∴-=+,即2128y x =-+ ···················································································································· 6分 由点B '在边OA 上,有02x ≤≤,∴ 解析式2128y x =-+()02x ≤≤为所求.∴ 当02x ≤≤时,y 随x 的增大而减小,y ∴的取值范围为322y ≤≤. ······················································································· 7分(Ⅲ)如图③,折叠后点B 落在OA 边上的点为B '',且B D OB ''∥. 则OCB CB D ''''∠=∠.又CBD CB D OCB CBD ''''∠=∠∴∠=∠ ,,有CB BA ''∥. Rt Rt COB BOA ''∴△∽△. 有OB OCOA OB''=,得2OC OB ''=. ···················································································· 9分 在Rt B OC ''△中,设()00OB x x ''=>,则02OC x =. 由(Ⅱ)的结论,得2001228x x =-+,解得000808x x x =-±>∴=-+,∴点C 的坐标为()016. ····················································································· 10分 26.本小题满分10分.解(Ⅰ)212120y x y x bx c y y ==++-= ,,,()210x b x c ∴+-+=. ··································································································· 1分 将1132αβ==,分别代入()210x b x c +-+=,得 ()()22111110103322b c b c ⎛⎫⎛⎫+-⨯+=+-⨯+= ⎪ ⎪⎝⎭⎝⎭,,解得1166b c ==,. ∴函数2y 的解析式为2y 25166x x =-+. ····································································· 3分(Ⅱ)由已知,得AB =,设ABM △的高为h ,311212ABM S AB h h ∴===△·1144=.根据题意,t T -=,由21166T t t =++,得251166144t t -+-=. 当251166144t t -+=-时,解得12512t t ==;当251166144t t -+=时,解得34t t ==.t ∴的值为555121212,,. ······················································································ 6分 (Ⅲ)由已知,得222b c b c T t bt c αααβββ=++=++=++,,.()()T t t b ααα∴-=-++, ()()T t t b βββ-=-++,()()22b c b c αβααββ-=++-++,化简得()()10b αβαβ-++-=.01αβ<<< ,得0αβ-≠, 10b αβ∴++-=.有1010b b αββα+=->+=->,. 又01t <<,0t b α∴++>,0t b β++>,∴当0t a <≤时,T αβ≤≤;当t αβ<≤时,T αβ<≤;当1t β<<时,T αβ<<. ································································································· 10分。
2011年高中阶段教育学校招生考试数学全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.全卷满分120分,考试时间共120分钟.答题前,请考生务必在答题卡上正确填涂自己的姓名、考号和考试科目,并将试卷密封线内的项目填写清楚;考试结束,将试卷和答题卡一并交回.第Ⅰ卷(选择题共30分)注意事项:每小题选出的答案不能答在试卷上,须用2B铅笔在答题卡上把对应题目....的答案标号涂黑.如需改动,用橡皮擦擦净后,再选涂其它答案.一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个选项符合题意.1. -4的相反数是( )A. 4B. -4C. 14D.14-2. 某运动品牌经销商到一所学校对某年级学生的鞋码大小进行抽样调查,经销商最感兴趣的是所得数据的( )A. 中位数B. 众数C. 平均数D. 方差3. 下列计算中,正确的是( )A. 234265+= B. 333236⨯= C. 2733÷= D. 2(3)3-=-4. 如图1,已知射线OP的端点O在直线MN上,∠2比∠1的2倍少30°,设∠2的度数为x,∠1的度数为y,则x、y满足的关系为( )A.180,230x yx y+=⎧⎨=+⎩B.180,230x yx y+=⎧⎨=-⎩C.90,230x yy x+=⎧⎨=-⎩D.180,230x yy x+=⎧⎨=-⎩图1资阳市数学试卷第1页(共13页)资阳市数学试卷第2页(共13页)5. 图2所示的几何体的左视图是( )6. 将一张正方形纸片如图3所示折叠两次,并在上面剪下一个菱形小洞,纸片展开后是( )7. 如图4,在数轴上表示实数14的点可能是( ) A. 点M B. 点N C. 点PD. 点Q8. 如图5,若正方形EFGH 由正方形ABCD 绕某点旋转得到,则可以作为旋转中心的是( )A. M 或O 或NB. E 或O 或CC. E 或O 或ND. M 或O 或C9. 在某校校园文化建设活动中,小彬同学为班级设计了一个班徽,这个班徽图案由一对大小相同的较大半圆挖去一对大小相同的较小半圆而得.如图6,若它们的直径在同一直线上,较大半圆O 1的弦AB ∥O 1O 2,且与较小半圆O 2相切, AB =4,则班徽图案的面积为( )A. 25πB. 16πC. 8πD. 4π10. 给出下列命题:①若m =n +1,则22120m mn n -+-=;② 对于函数(0)y kx b k =+≠,若y 随x 的增大而增大,则其图象不能同时经过第二、四象限;③ 若a 、b (a ≠b )为2、3、4、5这四个数中的任意两个,则满足2a b ->4的有序数组(a ,b )共有5组.其中所有正确....命题的序号是( )A . ①②B . ①③C . ②③D. ①②③图4图2图3图5图6资阳市数学试卷第3页(共13页)2011年高中阶段教育学校招生考试数 学第Ⅱ卷(非选择题 共90分)题号 二 三总 分总分人171819202122232425得分注意事项:本卷共6页,用黑色或蓝色钢笔或圆珠笔直接答在试卷上.请注意准确理解题意、明确题目要求,规范地表达、工整地书写解题过程或结果.二、填空题:(本大题共6个小题,每小题3分,共18分)把答案直接填在题中横线上.11. 一元二次方程x 2+x =0的两根为________________. 12. 若正n 边形的一个外角等于40°,则n =____________ .13. 在资阳市团委发起的“暖冬行动”中,某班50名同学响应号召,纷纷捐出零花钱.若不同捐款金额的捐款人数百分比统计结果如图7所示,则该班同学平均每人捐款________元.14. 如图8,在△ABC 中,若AD ⊥BC 于D ,BE ⊥AC 于E ,且AD 与BE 相交于点F ,BF =AC ,则∠ABC =_________°.15. 将抛物线221y x =-沿x 轴向右平移3个单位后,与原抛物线交点的坐标为________.16. 甲、乙、丙三位同学组成乒乓球兴趣小组参加课外活动,约定活动规则如下:两人先打,输了的被另一人换下,赢了的继续打,下一次活动接着上一次进行.假设某段时间内甲打的场次为a ,乙打的场次为b ,丙打的场次为c .若a =b ,显然有c 最大值=a +b ;若a ≠b ,通过探究部分情况,得到c 的最大值如上表所示. 进一步探究可得,当a =27,b =20时,c 的最大值是____________.a1 2 23 3 34 4 4 45 5 5 5 56 6 6 6 6 6 …b 0 0 1 0 1 2 0 1 2 3 0 1 2 3 4 0 1 2 3 4 5 …c 的 最大 值1 不存在 3 不存在2 5 不存在 不存在 4 7 不存在 不存在3 6 9 不存在 不存在 不存在 5 8 11 …图8 图7资阳市数学试卷第4页(共13页)三、解答题:(本大题共9个小题,共72分)解答应写出必要的文字说明、证明过程或演算步骤.17. (本小题满分6分)化简:219(1)44x x x --÷++.18. (本小题满分7分)如图9,已知四边形ABCD 为平行四边形,AE ⊥BD 于E ,CF ⊥BD 于F . (1) 求证:BE = DF ;(5分)(2) 若 M 、N 分别为边AD 、BC 上的点,且DM =BN ,试判断四边形MENF 的形状(不必说明理由).(2分)19. (本小题满分7分)某校某年级秋游,若租用48座客车若干辆,则正好坐满;若租用64座客车,则能少租1辆,且有一辆车没有坐满,但超过一半.(1) 需租用48座客车多少辆? (5分)解 设需租用48座客车x 辆.则需租用64座客车_________辆.当租用64座客车时,未坐满的那辆车还有___________________个空位(用含x 的代数式表示).由题意,可得不等式组:解这个不等式组,得:图9因此,需租用48座客车辆.(2) 若租用48座客车每辆250元,租用64座客车每辆300元,应租用哪种客车较合算?(2分)资阳市数学试卷第5页(共13页)资阳市数学试卷第6页(共13页)20. (本小题满分8分)小国同学的父亲参加旅游团到某地旅游,准备买某种礼物送给小国.据了解,沿旅游线路依次有A 、B 、C 三个地点可以买到此种礼物,其质量相当,价格各不相同,但不知哪家更便宜.由于时间关系,随团旅游车不会掉头行驶.(1) 若到A 处就购买,写出买到最低价格礼物的概率;(2分)(2) 小国同学的父亲认为,如果到A 处不买,到B 处发现比A 处便宜就马上购买,否则到C 处购买,这样更有希望买到最低价格的礼物.这个想法是否正确?试通过树状图分析说明.(6分)21. (本小题满分8分)如图10,A 、B 、C 、D 、E 、F 是⊙O 的六等分点.(1) 连结AB 、AD 、AF ,求证:AB +AF = AD ;(5分)(2) 若P 是圆周上异于已知六等分点的动点,连结PB 、PD 、PF ,写出这三条线段长度的数量关系(不必说明理由).(3分)图10资阳市数学试卷第7页(共13页)22. (本小题满分8分)如图11,已知反比例函数y =mx(x >0)的图象与一次函数y =-x +b 的图象分别交于A (1,3)、B 两点.(1) 求m 、b 的值;(2分)(2) 若点M 是反比例函数图象上的一动点,直线MC ⊥x 轴于C ,交直线AB 于点N ,MD ⊥y 轴于D ,NE ⊥y 轴于E ,设四边形MDOC 、NEOC 的面积分别为S 1、S 2,S =S 2 –S 1,求S 的最大值.(6分)23. (本小题满分9分)如图12-1,在梯形ABCD 中,已知AD ∥BC ,∠B =90°,AB =7,AD =9,BC =12,在线段BC 上任取一点E ,连结DE ,作EF DE ,交直线AB 于点F .(1) 若点F 与B 重合,求CE 的长;(3分)(2) 若点F 在线段AB 上,且AF =CE ,求CE 的长; (4分)(3) 设CE =x ,BF =y ,写出y 关于x 的函数关系式 (直接写出结果即可).(2分)图11资阳市数学试卷第8页(共13页)24. (本小题满分9分)在一次机器人测试中,要求机器人从A 出发到达B 处.如图13-1,已知点A在O 的正西方600cm 处,B 在O 的正北方300cm 处,且机器人在射线AO 及其右侧(AO 下方)区域的速度为20cm/秒,在射线AO 的左侧(AO 上方)区域的速度为10cm/秒.(1) 分别求机器人沿A →O →B 路线和沿A →B 路线到达B 处所用的时间(精确到秒);(3分)(2) 若∠OCB =45°,求机器人沿A →C →B 路线到达B 处所用的时间(精确到秒);(3分)(3) 如图13-2,作∠OAD =30°,再作BE ⊥AD 于E ,交OA 于P .试说明:从A 出发到达B 处,机器人沿A →P →B 路线行进所用时间最短.(3分) (参考数据:2≈1.414,3≈1.732,5≈2.236,6≈2.449)资阳市数学试卷第9页(共13页)25. (本小题满分10分)已知抛物线C :y =ax 2+bx +c (a <0)过原点,与x 轴的另一个交点为B (4,0),A为抛物线C 的顶点.(1) 如图14-1,若∠AOB =60°,求抛物线C 的解析式;(3分) (2) 如图14-2,若直线OA 的解析式为y =x ,将抛物线C 绕原点O 旋转180°得到抛物线C ′,求抛物线C 、C ′的解析式;(3分)(3) 在(2)的条件下,设A ′为抛物线C ′的顶点,求抛物线C 或C ′上使得PB PA '=的点P 的坐标.(4分)图14-1图14-22011年高中阶段教育学校招生考试数学试题参考答案及评分意见说明:1. 解答题中各步骤所标记分数为考生解答到这一步应得的累计分数.2. 参考答案一般只给出该题的一种解法,如果考生的解法和参考答案所给解法不同,请参照本答案及评分意见给分.3. 考生的解答可以根据具体问题合理省略非关键步骤.4. 评卷时要坚持每题评阅到底,当考生的解答在某一步出现错误、影响了后继部分时,如果该步以后的解答未改变问题的内容和难度,可视影响程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分;若是几个相对独立的得分点,其中一处错误不影响其他得分点的得分.5. 给分和扣分都以1分为基本单位.6. 正式阅卷前应进行试评,在试评中须认真研究参考答案和评分意见,不能随意拔高或降低给分标准,统一标准后须对全部试评的试卷予以复查,以免阅卷前后期评分标准宽严不同.一、选择题(每小题3分,共10个小题,满分30分):1-5. ABCBD;6-10. CCADD.二、填空题(每小题3分,共6个小题,满分18分):11.x1=0,x2=-1;12. 9;13. 14;14. 45;15. (32,72);16. 35.三、解答题(共9个小题,满分72分):17.219(1)44xx x--÷++=(4)14xx+-+÷294xx-+·························································································2分=(4)14xx+-+÷(3)(3)4x xx+-+················································································4分=34xx++×4(3)(3)xx x++-······················································································5分=13x-. ······································································································6分18. (1) ∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,·····················································································1分∴∠ABD=∠CDB. ························································································2分∵AE⊥BD于E,CF⊥BD于F,∴∠AEB=∠CFD =90°.·······································3分∴△ABE≌△CDF(A.A.S.), ·············································································4分∴BE=DF.···································································································5分资阳市数学试卷第10页(共13页)资阳市数学试卷第11页(共13页)(2) 四边形MENF 是平行四边形. ···································································· 7分19. (1) (x -1) ··································································································· 1分(16x -64)(此空没有化简同样给分). ······························································ 2分 16640,166432.x x ->⎧⎨-<⎩······························································································· 4分 (注:若只列出一个正确的不等式,得1分)解得 4<x <6.∵ x 为整数,∴x =5. ··································································· 5分 因此需租用48座客车5辆.(2) 租用48座客车所需费用为5×250=1250(元),租用64座客车所需费用为(5-1)×300=1200(元), ················································· 6分 ∵ 1200<1250,∴ 租用64座客车较合算. ························································· 7分 因此租用64座客车较合算.20. (1) P A 处买到最低价格礼物=13. ··················································································· 2分 (2) 作出树状图如下:·························································· 6分由树状图可知:P 购到最低价格礼物=36=12, ································································· 7分 ∵12>13,∴他的想法是正确的. ······································································ 8分 (注:若判断了想法正确,但没有说理,得1分)21. (1) 连结OB 、OF . ······················································································· 1分∵A 、B 、C 、D 、E 、F 是⊙O 的六等分点,∴ AD 是⊙O 的直径,····················································································· 2分 且∠AOB =∠AOF =60°, ··················································································· 3分 ∴ △AOB 、△AOF 是等边三角形. ···································································· 4分 ∴AB =AF =AO ,∴AB +AF = AD . ······································································· 5分(2) 当P 在BF 上时,PB +PF = PD ;当P 在BD 上时,PB +PD = PF ;当P 在DF 上时,PD +PF =PB . ························································································································ 8分(注:若只写出一个关系式且未注明点P 的位置,不得分;若写出两个关系式且未注明点P 的位置,得1分;若写出三个关系式且未注明点P 的位置,得2分.)22. (1) 把A (1,3)的坐标分别代入y =m x、y =-x +b ,可求得m =3,b =4. ······················· 2分 (2) 由(1)知,反比例函数的解析式为y =3x,一次函数的解析式为y =-x +4. ∵ 直线MC ⊥x 轴于C ,交直线AB 于点N ,资阳市数学试卷第12页(共13页) ∴ 可设点M 的坐标为(x ,3x),点N 的坐标为(x ,-x +4),其中,x >0. ···················· 3分 又∵ MD ⊥y 轴于D ,NE ⊥y 轴于E ,∴ 四边形MDOC 、NEOC 都是矩形, ··············· 4分∴ S 1=x ·3x=3,S 2=x ·(-x +4)=-x 2+4x , ································································ 5分 ∴ S =S 2 –S 1=(-x 2+4x )-3=-(x -2)2+1.其中,x >0. ············································· 6分 ∴ 当x =2时,S 取得最大值,其最大值为1. ······················································ 8分23. (1) ∵F 与B 重合,且EF ⊥DE ,∴DE ⊥BC , ····················································· 1分∵AD ∥BC ,∠B =90°,∴∠A =∠B =90°,∴四边形ABED 为矩形, ················································································· 2分 ∴BE =AD =9,∴CE =12-9=3. ···························································································· 3分(2) 作DH ⊥BC 于H ,则DH = AB =7,CH =3.设AF =CE =x ,∵F 在线段AB 上,∴点E 在线段BH 上,∴HE =x -3,BF =7 –x , ·········································································· 4分∵∠BEF +90°+∠HED =180°,∠HDE +90°+∠HED =180°,∴∠BEF =∠HDE ,又∵∠B =∠DHE =90°,∴△BEF ∽△HDE , ······················································································· 6分 ∴73127x x x --=-,整理得x 2-22x +85=0,(x -5)(x -17)=0,∴x =5或17,经检验,它们都是原方程的解,但x =17不合题意,舍去.∴x =CE =5. ······················································ 7分(3) y =2211536(03),77711536(312).777x x x x x x ⎧-+≤<⎪⎪⎨⎪-+-≤≤⎪⎩ ··································································· 9分 (注:未写x 取值范围不扣分,写出一个关系式得1分)24. (1) 沿A →O →B 路线行进所用时间为:600÷20+300÷10=60(秒), ····························· 1分在Rt △OBA 中,由勾股定理,得AB =22600300+=3005(cm). ··························· 2分 ∴沿A →B 路线行进所用时间为:3005÷10≈300×2.236÷10≈67(秒).························ 3分(2) 在Rt △OBC 中,OB =300,∠OCB =45°,∴OC = OB =300cm,BC =300sin 45º=3002(cm) ····· 4分 ∴AC =600-300=300(cm).∴沿A →C →B 路线行进所用时间为:AC ÷20+BC ÷10=300÷20+3002÷10≈15+42.42≈57(秒). ·················································································································· 6分(3) 在AO 上任取异于点P 的一点P ′,作P ′E ′⊥AD 于E ′,连结P ′B ,在Rt △APE 和Rt △AP ′E ′中,sin30°=EP AP =E P AP ''',∴EP =2AP ,E ′P ′=2AP '.················· 7分 ∴沿A →P →B 路线行进所用时间为:AP ÷20+PB ÷10= EP ÷10+PB ÷10=(EP +PB )÷10=110BE (秒), 沿A →P ′→B 路线行进所用时间为:AP ′÷20+P ′B ÷10= E ′P ′÷10+P ′B ÷10=(E ′P ′+P ′B )÷10= 110(E ′P ′+P ′B )(秒). ······················· 8分 连结BE ′,则E ′P ′+P ′B > BE ′>BE ,∴110BE <110(E ′P ′+P ′B ).。
2011年高中阶段学校招生统一考试数 学全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.全卷满分120分,考试时间共120分钟.答题前,请考生务必在答题卡上正确填涂自己的姓名、考号和考试科目,并将试卷密封线内的项目填写清楚;考试结束,将试卷和答题卡一并交回.第Ⅰ卷(选择题 共30分)注意事项:每小题选出的答案不能答在试卷上,须用铅笔在答题卡上把对应题目....的答案标号涂黑.如需改动,用橡皮擦擦净后,再选涂其它答案.一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个选项符合题意.1.4的平方根是 A .4B .2C .-2D .2或-22.如图1,在数轴上表示到原点的距离为3个单位的点有 A .D 点B .A 点C .A 点和D 点D .B 点和C 点3.下列运算正确的是 A .(ab )5=ab 5B .a 8÷a 2=a 6C .(a 2)3=a 5D .(a -b )2=a 2-b 24.如图2,CA ⊥BE 于A ,AD ⊥BF 于D ,下列说法正确的是 A .α的余角只有∠B B .α的邻补角是∠DACC .∠ACF 是α的余角D .α与∠ACF 互补5.下列说法正确的是A .频数是表示所有对象出现的次数B .频率是表示每个对象出现的次数C .所有频率之和等于1D .频数和频率都不能够反映每个对象出现的频繁程度6.2008年5月5日,奥运火炬手携带着象征“和平、友谊、进步”的奥运圣火火种,离开海拔5200米的“珠峰大本营”,向山顶攀登.他们在海拔每上升100米,气温就下降0.6°C 的低温和缺氧的情况下,于5月8日9时17分,成功登上海拔8844.43米的地球最高点.而此时“珠峰大本营”的温度为-4°C ,峰顶的温度为(结果保留整数)A .-26°CB .-22°CC .-18°CD .22°C图2图17.已知a、b、c分别是三角形的三边,则方程(a + b)x2 + 2cx + (a + b)=0的根的情况是A.没有实数根B.可能有且只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根8.已知矩形ABCD的边AB=15,BC=20,以点B为圆心作圆,使A、C、D三点至少有一点在⊙B内,且至少有一点在⊙B外,则⊙B的半径r的取值范围是A.r>15 B.15<r<20 C.15<r<25 D.20<r<25 9.在平面直角坐标系中,如果抛物线y=2x2不动,而把x轴、y轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的解析式是A.y=2(x-2)2 + 2 B.y=2(x + 2)2-2C.y=2(x-2)2-2 D.y=2(x + 2)2 + 210.如图3,已知Rt△ABC≌Rt△DEC,∠E=30°,D为AB的中点,AC=1,若△DEC绕点D顺时针旋转,使ED、CD分别与Rt△ABC的直角边BC相交于M、N,则当△DMN为等边三角形时,AM的值为A .3B .233C .33D.12011年高中阶段学校招生统一考试数学第Ⅱ卷(非选择题共90分)题号二三总分总分人17 18 19 20 21 22 2324得分注意事项:本卷共6页,用黑色或蓝色钢笔或圆珠笔直接答在试卷上.请注意准确理解题意、明确题目要求,规范地表达、工整地书写解题过程或结果.二、填空题:(本大题共6个小题,每小题3分,共18分)把答案直接填在题中横线上.11.如图4,□ABCD中,对角线AC、BD交于点O,请你写出其中的一对全等三角形_________________.12.计算:cot60°-2-2 + 20080+233=__________.图4图313.若A (1x ,1y )、B (2x ,2y )在函数12y x=的图象上,则当1x 、2x 满足_______________时,1y >2y .14.如图5,校园内有一块梯形草坪ABCD ,草坪边缘本有道路通过甲、乙、丙路口,可是有少数同学为了走捷径,在草坪内走了一条直“路”EF ,假设走1步路的跨度为0.5米,结果他们仅仅为了少走________步路,就踩伤了绿化我们校园的小草(“路”宽忽略不计).15.资阳市某学校初中2008级有四个绿化小组,在植树节这天种下柏树的颗数如下:10,10,x ,8,若这组数据的众数和平均数相等,那么它们的中位数是________颗.16.如图6,在地面上有一个钟,钟面的12个粗线段刻度是整点时时针(短针)所指的位置.根据图中时针与分针(长针)所指的位置,该钟面所显示的时刻是______时_______分.三、解答题:(本大题共9个小题,共72分)解答应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分7分)先化简,再求值:(212x x --2144x x -+)÷222x x-,其中x =1.18.(本小题满分7分)如图7,在△ABC 中,∠A 、∠B 的平分线交于点D ,DE ∥AC 交BC 于点E ,DF ∥BC 交AC 于点F .(1)点D 是△ABC 的________心; (2)求证:四边形DECF 为菱形.图5图7图619.(本小题满分8分)惊闻5月12日四川汶川发生强烈地震后,某地民政局迅速地组织了30吨食物和13吨衣物的救灾物资,准备于当晚用甲、乙两种型号的货车将它们快速地运往灾区.已知甲型货车每辆可装食物5吨和衣物1吨,乙型货车每辆可装食物3吨和衣物2吨,但由于时间仓促,只招募到9名长途驾驶员志愿者.(1) 3名驾驶员开甲种货车,6名驾驶员开乙种货车,这样能否将救灾物资一次性地运往灾区?(2)要使救灾物资一次性地运往灾区,共有哪几种运货方案?20.(本小题满分9分)大双、小双的妈妈申购到一张北京奥运会的门票,兄弟俩决定分别用标有数字且除数字以外没有其它任何区别的小球,各自设计一种游戏确定谁去.大双:A 袋中放着分别标有数字1、2、3的三个小球,B 袋中放着分别标有数字4、5的两个小球,且都已各自搅匀,小双蒙上眼睛从两个口袋中各取出1个小球,若两个小球上的数字之积为偶数,则大双得到门票;若积为奇数,则小双得到门票.小双:口袋中放着分别标有数字1、2、3的三个小球,且已搅匀,大双、小双各蒙上眼睛有放回...地摸1次,大双摸到偶数就记2分,摸到奇数记0分;小双摸到奇数就记1分,摸到偶数记0分,积分多的就得到门票(若积分相同,则重复第二次).(1)大双设计的游戏方案对双方是否公平?请你运用列表或树状图说明理由; (2)小双设计的游戏方案对双方是否公平?不必说理.21.(本小题满分9分)若一次函数y =2x -1和反比例函数y =2kx的图象都经过点(1,1). (1)求反比例函数的解析式;(2)已知点A 在第三象限,且同时在两个函数的图象上,求点A 的坐标; (3)利用(2)的结果,若点B 的坐标为(2,0),且以点A 、O 、B 、P 为顶点的四边形是平行四边形,请你直接写出点P 的坐标.22.(本小题满分10分)如图8,小唐同学正在操场上放风筝,风筝从A 处起飞,几分钟后便飞达C 处,此时,在AQ 延长线上B 处的小宋同学,发现自己的位置与风筝和旗杆PQ 的顶点P 在同一直线上.(1)已知旗杆高为10米,若在B 处测得旗杆顶点P 的仰角为30°,A 处测得点P 的仰角为45°,试求A 、B 之间的距离;(2)此时,在A 处背向旗杆又测得风筝的仰角为75°,若绳子在空中视为一条线段,求绳子AC 约为多少米?(结果可保留根号)23.(本小题满分10分)阅读下列材料,按要求解答问题: 如图9-1,在ΔABC 中,∠A =2∠B ,且∠A =60°.小明通过以下计算:由题意,∠B =30°,∠C =90°,c =2b ,a =3b ,得a 2-b 2=(3b )2-b 2=2b 2=b ·c .即a 2-b 2= bc . 于是,小明猜测:对于任意的ΔABC ,当∠A =2∠B 时,关系式a 2-b 2=bc 都成立. (1)如图9-2,请你用以上小明的方法,对等腰直角三角形进行验证,判断小明的猜测是否正确,并写出验证过程;(2)如图9-3,你认为小明的猜想是否正确,若认为正确,请你证明;否则,请说明理由;(3)若一个三角形的三边长恰为三个连续偶数,且∠A =2∠B ,请直接写出这个三角形三边的长,不必说明理由.图8图9-1图9-2图9-324.(本小题满分12分)如图10,已知点A 的坐标是(-1,0),点B 的坐标是(9,0),以AB为直径作⊙O ′,交y 轴的负半轴于点C ,过A 、B 、C 三点作抛物线.(1)求抛物线所对应的函数关系式; (2)点E 是AC 延长线上一点,∠BCE 的平分线CD 交⊙O ′于点D ,连结BD ,求直线BD 所对应的函数关系式;(3)在(2)的条件下,抛物线上是否存在点P ,使得∠PDB =∠CBD ?如果存在,请求出点P 的坐标;如果不存在,请说明理由.图102011年高中阶段学校招生统一考试数学试题参考答案及评分意见说明:1. 解答题中各步骤所标记分数为考生解答到这一步应得分数的累计分数;2. 参考答案中的解法只是该题解法中的一种或几种,如果考生的解法和参考答案所给解法不同,请参照本答案中的标准给分;3. 评卷时要坚持每题评阅到底,当考生的解答在某一步出现错误、影响了后继部分时,如果该步以后的解答未改变问题的内容和难度,可视影响程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分;若是几个相对独立的得分点,其中一处错误不影响其他得分点的得分;4. 给分和扣分都以1分为基本单位;5. 正式阅卷前应进行试评,在试评中须认真研究参考答案和评分意见,不能随意拔高或降低给分标准,统一标准后须对全部试评的试卷予以复查,以免阅卷前后期评分标准宽严不同.一、选择题:(每小题3分,共10个小题,满分30分)1-5. DCBDC ;6-10. AACBB.二、填空题:(每小题3分,共6个小题,满分18分)11.答案不唯一,ΔAOB≌ΔCOD、ΔAOD≌ΔCOB、ΔADB≌ΔCBD、ΔABC≌ΔCDA之一均可;12.3434+(或34+3);13.x1<x2<0或0<x1<x2;14.4;15.10 ;16.9,12;三、解答题:(共9个小题,满分72分)17.原式=[1(2)x x-–21(2)x-]×(2)2x x-······························································ 3分=1(2)x x-×(2)2x x-–21(2)x-×(2)2x x-=12–2(2)xx-·········································································································· 4分=22(2)xx--–2(2)xx-=12x-····················································································································· 5分当x=1时,原式=121-·············································································································· 6分= 1 ··························································································································· 7分图7 说明:以上步骤可合理省略 . 18.(1) 内. ············································································································ 2分 (2) 证法一:连接CD , ························································································· 3分 ∵ DE ∥AC ,DF ∥BC , ∴ 四边形DECF 为平行四边形,·········································································· 4分 又∵ 点D 是△ABC 的内心, ∴ CD 平分∠ACB ,即∠FCD =∠ECD , ································································ 5分 又∠FDC =∠ECD ,∴ ∠FCD =∠FDC ∴ FC =FD , ··········································································································· 6分 ∴ □DECF 为菱形. ······························································································ 7分 证法二:过D 分别作DG ⊥AB 于G ,DH ⊥BC 于H ,DI ⊥AC 于I . ·································· 3分 ∵AD 、BD 分别平分∠CAB 、∠ABC , ∴DI =DG , DG =DH .∴DH =DI . ·············································································································· 4分 ∵DE ∥AC ,DF ∥BC ,∴四边形DECF 为平行四边形, ··········································································· 5分 ∴S □DECF =CE ·DH =CF ·DI , ∴CE =CF . ·············································································································· 6分 ∴□DECF 为菱形. ······························································································· 7分19.(1) ∵3×5+6×3=33>30,3×1+6×2=15>13,·················································· 1分 ∴3名驾驶员开甲种货车,6名驾驶员开乙种货车,这样能将救灾物资一次性地运到灾区.································································································································ 2分 (2) 设安排甲种货车x 辆,则安排乙种货车(9–x )辆, ········································ 3分由题意得:53(9)30,2(9)13.x x x x +-≥⎧⎨+-≥⎩·············································································· 5分解得:1.5≤x ≤5 ····································································································· 6分注意到x 为正整数,∴x =2,3,4,5 ···································································· 7分 ∴安排甲、乙两种货车方案共有下表4种:方 案 方案一 方案二 方案三 方案四 甲种货车 2 3 4 5 乙种货车7654································································································································ 8分 说明:若分别用“1、8”,“2、7”等方案去尝试,得出正确结果,有过程...也给全分. 20.(1) 大双的设计游戏方案不公平. ································································· 1分 可能出现的所有结果列表如下:1 2 344812大双积 小双5510 15或列树状图如下:·························································· 4分∴P(大双得到门票)= P(积为偶数)=46=23, P(小双得到门票)= P(积为奇数)=13, ···································································· 6分∵23≠13,∴大双的设计方案不公平. ··································································· 7分 (2) 小双的设计方案不公平. ················································································ 9分 参考:可能出现的所有结果列树状图如下:21.(1) ∵反比例函数y =2kx的图象经过点(1,1), ∴1=2k ····················································································································· 1分 解得k =2, ·············································································································· 2分∴反比例函数的解析式为y =1x. ··········································································· 3分(2) 解方程组211.y x y x =-⎧⎪⎨=⎪⎩,得11x y =⎧⎨=⎩,;122.x y ⎧=-⎪⎨⎪=-⎩, ························································· 5分 ∵点A 在第三象限,且同时在两个函数图象上,∴A (12-,–2). ······································································································· 6分(3) P 1(32,–2),P 2(52-,–2),P 3(52,2).(每个点各1分) ································ 9分22. (1) 在Rt △BPQ 中,PQ =10米,∠B =30°, 则BQ =cot30°×PQ =103, ············································································ 2分 又在Rt △APQ 中,∠P AB =45°, 则AQ =tan45°×PQ =10,即:AB =(103+10)(米); ························································· 5分 (2) 过A 作AE ⊥BC 于E ,图8在Rt△ABE中,∠B=30°,AB =103+10,∴AE=sin30°×AB=12(103+10)=53+5, ··············································· 7分∵∠CAD=75°,∠B=30°,∴∠C=45°,····································································································· 8分在Rt△CAE中,sin45°=AE AC,∴AC =2(53+5)=(56+52)(米) ·······················································10分23. (1) 由题意,得∠A=90°,c=b,a =2b,∴a2–b2=(2b)2–b2=b2=bc. ······················································3分(2) 小明的猜想是正确的.·······················································4分理由如下:如图3,延长BA至点D,使AD=AC=b,连结CD,···································································································5分则ΔACD为等腰三角形.∴∠BAC=2∠ACD,又∠BAC=2∠B,∴∠B=∠ACD=∠D,∴ΔCBD为等腰三角形,即CD=CB=a, ·······················································6分又∠D=∠D,∴ΔACD∽ΔCBD,···············································7分∴AD CDCD BD=.即b aa b c=+.∴a2=b2+bc.∴a2–b2= bc············8分(3) a=12,b=8,c=10. ························································· 10分24.(1) ∵以AB为直径作⊙O′,交y轴的负半轴于点C,∴∠OCA+∠OCB=90°,又∵∠OCB+∠OBC=90°,∴∠OCA=∠OBC,又∵∠AOC= ∠COB=90°,∴ΔAOC∽ ΔCOB,·································································································· 1分∴OA OCOC OB=.又∵A(–1,0),B(9,0),∴19OCOC=,解得OC=3(负值舍去).∴C(0,–3), ································································································································ 3分设抛物线解析式为y=a(x+1)(x–9),∴–3=a(0+1)(0–9),解得a=13,∴二次函数的解析式为y=13(x+1)(x–9),即y=13x2–83x–3.································· 4分(2) ∵AB为O′的直径,且A(–1,0),B(9,0),∴OO′=4,O′(4,0),······························································································ 5分∵点E是AC延长线上一点,∠BCE的平分线CD交⊙O′于点D,∴∠BCD=12∠BCE=12×90°=45°,连结O′D交BC于点M,则∠BO′D=2∠BCD=2×45°=90°,OO′=4,O′D=12AB=5.图9-3。
一、选择题:(本大题10个小题,共32分)1.2-等于( )A .2B .2-C .12D .12-2. 下列长度的三条线段,能组成三角形的是( )A .1、1、2B .3、4、5C . 1、4、6D .2、3、7 3. 下列计算正确的是( )A .133-=-B .236a a a ⋅=C .22(1)1x x +=+D .32222-=4. 如图,在平面直角坐标系中,点P (-1,2)向右平移3个单位长度后的坐标是( ) A .(2,2) B .(42-, )C .(15-, )D .(11--,) 5. 一个多边形的内角和是900°,则这个多边形的边数为( )A .6B .7C .8D .9 6. 若12x y =⎧⎨=⎩是关于工x y 、的二元一次方程31ax y -=的解,则a的值为( )A .5-B .1-C .2D .77. 如图,关于抛物线2(1)2y x =--,下列说法错误的是( )A .顶点坐标为(1,2-)B .对称轴是直线x =1C .开口方向向上D .当x >1时,y 随x 的增大而减小8. 如图是每个面上都有一个汉字的正方体的一种展开图,那么在原正方体的表面上,与汉字“美”相对的面上的汉字是( ) A .我 B .爱 C .长 D .沙9. 谢老师对班上某次数学模拟考试成绩进行统计,绘制了如图所示的统计图,根据图中给出的信息,这次考试成绩达到A 等级的人数占总人数的( )A .6%B .10%C .20%D .25%2011年湖南长沙中考数学试题 (满分120分,考试时间120分钟)10. 如图,等腰梯形ABCD 中,AD ∥BC ,∠B =45°,AD =2,BC =4,则梯形的面积为( ) A .3 B .4 C .6 D .8二、填空题:(本大题8个小题,共24分)11. 分解因式:22a b -=____________. 12. 反比例函数k yx=的图象经过点A (2-,3),则k的值为____________. 13. 如图,CD 是△ABC的外角∠ACE 的平分线,AB ∥CD ,∠ACE =100°,则∠A =_________. 14. 化简:11x xx+-=___________.15. 在某批次的100件产品中,有3件是不合格产品,从中任意抽取一件检验,则抽到不合格产品的概率是___________.16. 菱形的两条对角线的长分别是6cm 和8cm ,则菱形的周长是__________cm .17. 已知33a b -=,则83a b -+的值是___________.18. 如图,P 是⊙O 的直径AB 延长线上的一点,PC与⊙O 相切于点C ,若∠P =20°,则∠A =______°.三、解答题:(本大题2个小题,共12分)19. 已知092011(2)a b c ===--,,,求a b c-+的值.20. 解不等式2(2)63x x -≤-,并写出它的正整数解.四、 解答题(本大题2个小题,共16分)21. “珍惜能源从我做起,节约用电人人有责”.为了解某小区居民节约用电情况,物业公司随机抽取了今年某一天本小区10户居民的日用电量,数据如下:用户序号 1 2 3 4 5 6 7 8 9 10日用电量(度)4.4 4.05.0 5.6 3.4 4.8 3.4 5.2 4.0 4.2(1)求这组数据的极差和平均数;(2)已知去年同一天这10户居民的平均日用电量为7.8度,请你估计,这天与去年同日相比,该小区200户居民这一天共节约了多少度电?22.如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°.(1)求∠B的大小:(2)已知圆心O到BD的距离为3,求AD的长.五、解答题(本大题2个小题,共18分)23.某工程队承包了某标段全长1755米的过江隧道施工任务,甲、乙两个班组分别从东、西两端同时掘进.已知甲组比乙组平均每天多掘进0.6米,经过5天施工,两组共掘进了45米.(1)求甲、乙两个班组平均每天各掘进多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进0.2米,乙组平均每天能比原来多掘进0.3米.按此施工进度,能够比原来少用多少天完成任务? 24.如图是一座人行天桥的引桥部分的示意图,上桥通道由两段互相平行并且与地面成37°角的楼梯AD、BE和一段水平平台DE构成.已知天桥高度BC≈4.8米,引桥水平跨度AC=8米.(1)求水平平台DE的长度;(2)若与地面垂直的平台立枉MN的高度为3米,求两段楼梯AD与BE的长度之比.(参考数据:取sin37°=0.60,cos37°=0.80,tan37°=0.75)六、解答题(本大题2个小题,共20分)25. 使得函数值为零的自变量的值称为函数的零点.例如,对于函数1y x =-,令y =0,可得x =1,我们就说1是函数1y x =-的零点。