∴∠DOE=∠OED,∴OD=DE. ∵OD=OE,∴△ODE是等边三角形, ∴∠DOE=60°,∴∠CGE=30°. ∵☉O的半径为5,∴GE=10. ∵GE是☉O的直径,∴∠GCE=90°, ∴在Rt△GCE中,GC=GE•cos∠CGE=10×cos 30°=
(2)DE=2EF. 证法一:如图1. 由(1)知∠COE=∠DOE=60°,
( B) A.50° B.55° C.60° D.65°
考点5 三角形与圆
名称 三角形的外接圆 图形
三角形的内切圆
相关 经过三角形各顶点的 与三角形各边都相切的
概念 圆;外心是三角形三边 圆;内心是三角形三条角
中垂线的交点
平分线的交点
名称 三角形的外接圆
圆心 三角形的外心 名称
(续表)
三角形的内切圆 三角形的内心
考点1 点与圆的位置关系
设r为圆的半径,d为点P到圆心的距离,则:P在圆 外⇔d>r在圆上⇔d=r在圆内⇔d<r.
[典例1]如图,在△ACB中,∠ACB=90°, CD⊥AB于点D,若AB=5,BC=3. (1)以A为圆心,作半径为2的圆,则点 C与☉A的位置关系是 C在圆外 ; (2)以C为圆心,作半径为2.4的圆,则点D 与☉C的位置关系是 D在圆上 .
∴CE=DE. ∵OC=OE,∴△OCE为等边三角形, ∴∠OCE=60°.∵∠OCB=90°,∴∠ECF=30°. 在Rt△CEF中,
即DE=2EF.
证法二:如图1.过点O作OH⊥DF,垂足为H.∴∠OHF=90°. ∵∠OCB=∠DFC=90°, ∴四边形OCFH是矩形,∴CF=OH. ∵△ODE是等边三角形,∴DE=OE. ∵OH⊥DF,∴DH=EH. ∵∠COE=∠DOE, ∴CE=DE,∴CE=OE. ∵CF=OH,∴Rt△CFE≌Rt△OHE, ∴EF=EH,∴EH=DH=EF,∴DE=2EF.