总线形式接口电路原理图设计
- 格式:ppt
- 大小:1.22 MB
- 文档页数:17
信Q与电1BChina Computer&Communication网絡与通信孜术2021年第5期基于HI-3593的ARINC429总线接口设计张杰侯大勇刘光明(苏州长风航空电子有限公司,江苏苏州215151)摘要:ARINC429总线具有结构简单、性能稳定、传输可靠、抗干扰能力强等特征.在需要高可靠性、高集成度设计的应用领域,可以采用SPI接口的ARINC429协议芯片HI-3593实现数据协议处理,与ARM处理器完成ARINC429总线数据收发功能.基于此,笔者围绕该系统架构分析了各部分的功能,并对硬件接口进行了详细设计.关键词:ARINC429协议芯片;ARM处理器;SPI接口中图分类号:V243文献标识码:A文章编号:1003-9767(2021)05-216-03Design of ARINC429Bus Interface Based on HI-3593ZHANG Jie,HOU Dayong,LIU Guangming(Suzhou Changfeng Avionics Co.,Ltd.,Suzhou Jiangsu215151,China)Abstract:The ARINC429bus has the characteristics of simple structure,stable performance,reliable transmission,and strong anti-interference ability.In application areas that require high reliability and high integration design,the ARINC429protocol chip HI-3593with SPI interface can be used to realize data protocol processing,and the ARINC429bus data transceiver function can be completed with the ARM processor.Based on this,the author analyzes the functions of each part around the system architecture,and designs the hardware interface in detail.Keywords:ARINC429protocol chip;ARM processor;SPI interface0引言ARINC429总线在当代的战斗机、运输机和民航客机中有着广泛的应用。
3.1 抗雷击和抗静电冲击RS-485接口芯片在使用、焊接或设备的运输途中都有可能受到静电的冲击而损坏。
在传输线架设于户外的使用场合,接口芯片乃至整个系统还有可能遭致雷电的袭击。
选用抗静电或抗雷击的芯片可有效避免此类损失,常见的芯片有MAX485E、MAX487E、MAX1487E等。
特别值得一提的是SN75LBC184,它不但能抗雷电的冲击而且能承受高达8kV的静电放电冲击,是目前市场上不可多得的一款产品。
3.2 限斜率驱动由于信号在传输过程中会产生电磁干扰和终端反射,使有效信号和无效信号在传输线上相互迭加,严重时会使通信无法正常进行。
为解决这一问题,某些芯片的驱动器设计成限斜率方式,使输出信号边沿不要过陡,以不致于在传输线上产生过多的高频分量,从而有效地扼制干扰的产生。
如MAX487、SN75LBC184等都具有此功能。
3.3 故障保护故障保护技术是近两年产生的,一些新的RS-485芯片都采用了此项技术,如SN75276、MAX3080~MAX3089。
什么是故障保护,为什么要有故障保护,如果没有故障保护会产生什么后果?众所周知,RS-485接口采用的是一种差分传输方式,各节点之间的通信都是通过一对(半双工)或两对(全双工)双绞线作为传输介质。
根据RS-485的标准规定,接收器的接收灵敏度为±200mV,即接收端的差分电压大于、等于+200 mV时,接收器输出为高电平;小于、等于-200mV时,接收器输出为低电平;介于±200mV之间时,接收器输出为不确定状态。
在总线空闲即传输线上所有节点都为接收状态以及在传输线开路或短路故障时,若不采取特殊措施,则接收器可能输出高电平也可能输出低电平。
一旦某个节点的接收器产生低电平就会使串行接收器(UART)找不到起始位,从而引起通信异常,解决此类问题的方法有两种:(1)使用带故障保护的芯片,它会在总线开路、短路和空闲情况下,使接收器的输出为高电平。
USB接口电路分析USB(Universal serial bus)的中文含义是通用串行总线。
USB接口的特点是速度快、兼容性好、不占中断、可以串接、支持热插拔等。
目前USB接口有两种标准,分别为USB1.1和USB2.0.其中USB1.1标准接口的数据传输速度为12Mbps,USB2.0标准接口的数据传输速度为480Mbps。
主板通常集成4-8个USB接口,并且在主板上还有USB扩展接口,通常USB接口使用一个4针插头作为标准插头,通过USB 插头,采用菊花链的形式可以把所有的外设连接起来,并且不会损失带宽。
USB接口电路主要由USB接口插座、电感、滤波电容、电阻排、保险电阻、南桥芯片等组成。
USB 接口电路的VCC0和VCC1供电针脚通过保险电阻和电感连接到电源插座的第4针脚,有的主板在供电电路中还设置有一个供电跳线,通过跳线可以选择待机供电或VCC5供电。
如果选择待机供电,则在关机的状态下,USB接口也有工作电压。
USB接口电路中的保险电阻用来防止USB 设备发生短路时烧坏ATX电源,目前的主板一般使用贴片电阻或高分子PTC热敏电阻作为保险电阻。
高分子PTC热敏电阻可以在出现短路情况时,自动升高内部电阻,起到保护的作用,同时在故障排除后,又会自动恢复到低电阻状态继续工作。
USB接口电路数据线路中的贴片电感和电阻排的作用是:在数据传输时起到缓冲的作用(抗干扰)。
这个电阻排通常采用阻值为22欧或33欧的电阻。
而数据线路中连接的电容排和电阻排起滤波的作用,可改善数据传输质量,电容排的容量一般为47PF,有的为100PF。
USB接口的工作原理是:当电脑主机的USB接口接入USB设备时,通过USB接口的5V供电为UDB设备供电,设备得到供电后,内部电路开始工作,并向+DATA针输出高电平信号(—DATA为低电平)。
同时主板南桥芯片中的USB模块会不停的检测USB接口的+—DATE的电压。
当南桥芯片中的USB模块检测到信号后,就认为USB设备准备好,并向USB设备发送准备好信号。
CAN总线通信典型电路原理图(四款CAN总线通信电路原理图分享)CAN总线通信典型电路原理图(一)CAN总线通信硬件原理图(采用TJA1050T CAN总线驱动器)F040中内置CAN总线协议控制器,只要外接总线驱动芯片和适当的抗干扰电路就可以很方便地建立一个CAN总线智能测控节点。
本设计中采用PHILIP公司的TJA1050T CAN总线驱动器。
CAN总线通信硬件原理图如图3所示。
图中F040 的CAN信号接收引脚RX和发送引脚TX并不直接连接到TJA1050T的RXD和TXD端,而是经由高速光耦6N137进行连接,这样做的目的是为了实现CAN总线各节点的电气隔离。
为了实现真正意义上完全的电气隔离,光耦部分的VA和VB必须通过DC-DC模块或者是带有多个隔离输出的开关电源模块进行隔离。
为防止过流冲击,TJA1050T的CANH和CANL引脚各通过一个5的电阻连接到总线上。
并在CANH和CANL脚与地之间并联2个30P的电容,用于滤除总线上高频干扰。
而防雷击管D1和D2可以起到发生瞬变干扰时的保护作用。
TJA1050T的8脚连接到F040的一个端口用于模式选择,TJA1050T有两种工作模式用于选择,高速模式和静音模式。
TJA1050T正常工作在高速模式,而在静音模式下,TJA1050T的发送器被...CAN总线通信硬件原理图(采用TJA1050T CAN总线驱CAN总线通信硬件原理图(采用TJA1050T CAN总线驱动器) F040中内置CAN总线协议控制器,只要外接总线驱动芯片和适当的抗干扰电路就可以很方便地建立一个CAN总线智能测控节点。
本设计中采用PHILIP公司的TJA1050T CAN总线驱动器。
CAN总线通信硬件原理图如图3所示。
图中F040 的CAN信号接收引脚RX和发送引脚TX并不直接连接到TJA1050T的RXD和TXD端,而是经由高速光耦6N137进行连接,这样做的目的是为了实现CAN总线各节点的电气隔离。
总线设计简介总线概念总线是一种内部结构,它是cpu、内存、输入、输出设备传递信息的公用通道,主机的各个部件通过总线相连接,外部设备通过相应的接口电路再与总线相连接,从而形成了计算机硬件系统在计算机系统中,各个部件之间传送信息的公共通路叫总线,微型计算机是以总线结构来连接各个功能部件的。
总线的分类总线按功能和规范可分为三大类型:(1) 内总线(Internal Bus, I-Bus)又称系统总线或板级总线,是微机系统中各插件(模块)之间的信息传输通路。
例如CPU模块和存储器模块或I/O接口模块之间的传输通路。
(2) 片总线(Chip Bus, C-Bus)又称元件级总线,是把各种不同的芯片连接在一起构成特定功能模块(如CPU模块)的信息传输通路。
(3) 外总线(External Bus, E-Bus)又称通信总线,是微机系统之间或微机系统与其他系统(仪器、仪表、控制装置等)之间信息传输的通路,如EIA RS-232C、IEEE-488等。
其中的系统总线,即通常意义上所说的总线,一般又含有三种不同功能的总线,即数据总线DB(Data Bus)、地址总线AB(Addre ss Bus)和控制总线CB(CONTROL Bus)。
有的系统中,数据总线和地址总线是复用的,即总线在某些时刻出现的信号表示数据而另一些时刻表示地址;而有的系统是分开的。
51系列单片机的地址总线和数据总线是复用的,而一般PC中的总线则是分开的。
“数据总线DB”用于传送数据信息。
数据总线是双向三态形式的总线,即他既可以把CPU的数据传送到存储器或I/O接口等其它部件,也可以将其它部件的数据传送到CPU。
数据总线的位数是微型计算机的一个重要指标,通常与微处理的字长相一致。
例如INTEL 8086微处理器字长16位,其数据总线宽度也是16位。
需要指出的是,数据的含义是广义的,它可以是真正的数据,也可以是指令代码或状态信息,有时甚至是一个控制信息,因此,在实际工作中,数据总线上传送的并不一定仅仅是真正意义上的数据。
CAN总线接口电路设计注意事项收藏CAN 总线是一种有效支持分布式控制和实时控制的串行通信网络,以其高性能和高可靠性在自动控制领域得到了广泛的应用。
为提高系统的驱动能力,增大通信距离,实际应用中多采用Philips公司的82C250作为CAN控制器与物理总线间的接口,即CAN收发器,以增强对总线的差动发送能力和对CAN控制器的差动接收能力。
为进一步增强抗干扰能力,往往在CAN 控制器与收发器之间设置光电隔离电路。
典型的CAN总线接口电路原理如图1所示。
图1 典型的CAN总线接口电路原理图1 接口电路设计中的关键问题1.1 光电隔离电路光电隔离电路虽然能增强系统的抗干扰能力,但也会增加CAN总线有效回路信号的传输延迟时间,导致通信速率或距离减少。
82C250等型号的CAN收发器本身具备瞬间抗干扰、降低射频干扰(RFI以及实现热防护的能力,其具有的电流限制电路还提供了对总线的进一步保护功能。
因此,如果现场传输距离近、电磁干扰小,可以不采用光电隔离,以使系统达到最大的通信速率或距离,并且可以简化接口电路。
如果现场环境需要光电隔离,应选用高速光电隔离器件,以减少CAN总线有效回路信号的传输延迟时间,如高速光电耦合器6N137,传输延迟时间短,典型值仅为48 ns,已接近TTL电路传输延迟时间的水平。
1.2 电源隔离光电隔离器件两侧所用电源Vdd与Vcc必须完全隔离,否则,光电隔离将失去应有的作用。
电源的隔离可通过小功率DC/DC电源隔离模块实现,如外形尺寸为DIP-14标准脚位的5 V 双路隔离输出的小功率DC/DC模块。
1.3 上拉电阻图1中的CAN收发器82C250的发送数据输入端TXD与光电耦合器6N137的输出端OUT相连,注意TXD必须同时接上拉电阻R3。
一方面,R3保证6N137中的光敏三极管导通时输出低电平,截止时输出高电平;另一方面,这也是CAN 总线的要求。
具体而言, 82C250的TXD端的状态决定着高、低电平CAN 电压输入/输出端CANH、CANL的状态(见表1。
FPGA与I2C总线器件接口电路设计利用FPGA模拟I2C总线协议对I2C总线接口器件AT24C256 进行读写操作。
利用按键输入读写命令和相应的地址、数据,对芯片进行读写操作,读写的数据用数码管显示。
一、I2C总线接口电路设计分析1. I2C 总线协议I2C 总线的两根通信线,一根是串行数据线SDA,另一根是串行时钟线SCL。
多个符合I2C总线标准的器件都可以通过同一条I2C总线进行通信,而不需要额外的地址译码器。
每个连接到总线上的器件都有一个唯一的地址作为识别的标志,都可以发送或接收数据。
I2C 总线通信速率受主机控制,标准模式下可达100kbit/s。
一般具有I2C总线的器件其SDA、SCL引脚都为集电极(或漏极)开路结构。
因此实际使用时,SDA 和SCL信号线必须加3~10K的上拉电阻。
总线空闲时均保持高平。
I2C总线接法如图1所示。
图1 I2C总线连接示意图(1) I2C的主机和从机,发送器和接收器产生I2C总线时钟信号和起始、停止控制信号的器件,称为主机,被主机寻址的器件称为从机。
任何将数据传送到I2C总线的器件称为发送器,任何从I2C总线接收数据的器件称为接收器。
主机和从机都可作为发送数据器件和接收数据器件。
(2) I2C 总线上数据的有效性:时钟线SCL为高电平时,数据线SDA的任何电平变化将被看作总线的起始或停止信号;在数据传送过程中,当时钟线SCL为高电平时,数据线SDA必须保持稳定状态,不允许有跳变;数据线SDA的状态只能在SCL低电平期间才能改变。
即进行串行传送数据时,在SCL高电平期间传送位数据,低电平期间准备数据。
(3) 从机地址I2C总线不需要额外的片选信号或地址译码。
多个I2C总线接口器件可连接到一条I2C总线上,它们之间通过地址来区分。
主机是主控制器件,只有一个主机的不需要地址。
其它器件均为从机,均有器件地址,但必须保证同一条I2C总线上的器件地址不能重复。
一般从机地址由7位地址位和1位读写位组成,地址位为高7位,读写位为最低位。
摘要介绍了采用PHILIP公司生产的控制器局域网的高度集成的通信控制器SJA1000和82C250作为收发器的CAN总线接口电路的硬件设计方法,介绍了控制器和收发器及看门狗芯片的特点、内部结构、寄存器结构及地址分配,说明一种通用型CAN总线的设计和开发.探讨应用中需注意的一些问题。
关键词:CAN总线;控制器;收发器;电路设计目次摘要 (I)1 绪论 (1)1.1 CAN总线简介 (1)1.1.1 CAN协议 (1)1.1.2电气参数及信号表示 (2)1.2 CAN的主要技术特点 (2)1.3 CAN总线通信系统拓扑结构 (3)2 CAN总线接口电路设计 (3)2.1 总体方案设计 (3)2.2 各模块电路的设计 (4)2.2.1单片机最小系统 (4)2.2.2 CAN总线接口控制电路设计 (5)2.2.2.1SJA1000简介 (5)2.2.2.2基于SJA1000的控制电路设计 (10)2.2.3 CAN总线收发电路设计 (11)2.2.3.1CAN总线收发器82C250介绍 (11)2.2.3.2基于82C250收发电路设计 (14)2.2.4复位、监控电路设计 (15)2.2.4.1X5045P简介 (15)2.2.4.2基于X5045P的电路设计 (18)2.2.5电源设计 (18)2.3 接口电路总体电路原理图 (19)3 结束语 (21)参考文献 (22)附录1: 接口电路总体电路原理图 (23)1 绪论1.1 CAN总线简介CAN[Control(Controller) Area Network]是控制(器)局域网的简称。
CAN是一种有效支持分布式控制或实时控制的串行通信网络,最初由德国Bosch公司80年代用于汽车内部测试和控制仪器之间的数据通信。
目前CAN 总线规范已被国际标准化组织ISO制订为国际标准ISO11898,并得到了Motorola,Intel ,Philips等大半导体器件生产厂家的支持,迅速推出各种集成有CAN协议的产品。
CAN总线接口电路原理图和注意事项CAN 总线是一种有效支持分布式控制和实时控制的串行通信网络,以其高性能和高可靠性在自动控制领域得到了广泛的应用。
为提高系统的驱动能力,增大通信距离,实际应用中多采用Philips公司的82C250作为CAN控制器与物理总线间的接口,即CAN 收发器,以增强对总线的差动发送能力和对CAN控制器的差动接收能力。
为进一步增强抗干扰能力,往往在CAN 控制器与收发器之间设置光电隔离电路。
典型的CAN总线接口电路原理如图1所示。
图1 典型的CAN总线接口电路原理图1 接口电路设计中的关键问题1.1 光电隔离电路光电隔离电路虽然能增强系统的抗干扰能力,但也会增加CAN总线有效回路信号的传输延迟时间,导致通信速率或距离减少。
82C250等型号的CAN收发器本身具备瞬间抗干扰、降低射频干扰(RFI)以及实现热防护的能力,其具有的电流限制电路还提供了对总线的进一步保护功能。
因此,如果现场传输距离近、电磁干扰小,可以不采用光电隔离,以使系统达到最大的通信速率或距离,并且可以简化接口电路。
如果现场环境需要光电隔离,应选用高速光电隔离器件,以减少CAN总线有效回路信号的传输延迟时间,如高速光电耦合器6N137,传输延迟时间短,典型值仅为48 ns,已接近TTL电路传输延迟时间的水平。
1.2 电源隔离1.3 上拉电阻图1中的CAN收发器82C250的发送数据输入端TXD与光电耦合器6N137的输出端OUT 相连,注意TXD必须同时接上拉电阻R3。
一方面,R3保证6N137中的光敏三极管导通时输出低电平,截止时输出高电平;另一方面,这也是CAN 总线的要求。
具体而言,82C250的TXD端的状态决定着高、低电平CAN 电压输入/输出端CANH、CANL的状态(见表1)。
CAN总线规定,总线在空闲期间应呈隐性,即CAN 网络中节点的缺省状态是隐性,这要求82C25O的TXD端的缺省状态为逻辑1(高电平)。
提高485总线的可靠性摘要:就485总线应用中易出现的问题,分析了产生的原因并给出解决问题的软硬件方案和措施。
关键词:RS-485总线、串行异步通信1 问题的提出在应用系统中,RS-485半双工异步通信总线是被各个研发机构广泛使用的数据通信总线,它往往应用在集中控制枢纽与分散控制单元之间。
系统简图如图1所示。
图1. RS-485系统示意图由于实际应用系统中,往往分散控制单元数量较多,分布较远,现场存在各种干扰,所以通信的可靠性不高,再加上软硬件设计的不完善,使得实际工程应用中如何保障RS-485总线的通信的可靠性成为各研发机构的一块心病。
在使用RS-485总线时,如果简单地按常规方式设计电路,在实际工程中可能有以下两个问题出现。
一是通信数据收发的可靠性问题;二是在多机通信方式下,一个节点的故障(如死机),往往会使得整个系统的通信框架崩溃,而且给故障的排查带来困难。
针对上述问题,我们对485总线的软硬件采取了具体的改进措施2 硬件电路的设计现以8031单片机自带的异步通信口,外接75176芯片转换成485总线为例。
其中为了实现总线与单片机系统的隔离,在8031的异步通信口与75176之间采用光耦隔离。
电路原理图如图2所示。
图2 改进后的485通信口原理图充分考虑现场的复杂环境,在电路设计中注意了以下三个问题。
2.1 SN75176 485芯片DE控制端的设计由于应用系统中,主机与分机相隔较远,通信线路的总长度往往超过400米,而分机系统上电或复位又常常不在同一个时刻完成。
如果在此时某个75176的DE端电位为“1”,那么它的485总线输出将会处于发送状态,也就是占用了通信总线,这样其它的分机就无法与主机进行通信。
这种情况尤其表现在某个分机出现异常情况下(死机),会使整个系统通信崩溃。
因此在电路设计时,应保证系统上电复位时75176的DE端电位为“0”。
由于8031在复位期间,I/O口输出高电平,故图2电路的接法有效地解决复位期间分机“咬”总线的问题。
电磁兼容设计平台(EDP)应用案例——以太网口USB2.0 接口 EMC 设计方案一、接口概述USB 通用串行总线(英文:Universal Serial Bus,简称 USB)是连接外部装置的一个串口汇流排标准,在计算机上使用广泛,但也可以用在机顶盒和游戏机上,补充标准On-The-Go ( OTG)使其能够用于在便携装置之间直接交换资料。
USB 接口的电磁兼容性能关系到设备稳定行与数据传输的准确性,赛盛技术应用电磁兼容设计平台(EDP)软件从接口原理图、结构设计,线缆设计三个方面来设计USB2.0 接口的 EMC 设计方案二、接口电路原理图的EMC设计本方案由电磁兼容设计平台(EDP)软件自动生成B2.0 接口防静电设计图1 USB 2.0接口防静电设计接口电路设计概述:本方案从 EMC 原理上,进行了相关的抑制干扰和抗敏感度的设计;从设计层次解决 EMC 问题。
电路 EMC 设计说明:(1)电路滤波设计要点:L1 为共模滤波电感,用于滤除差分信号上的共模干扰;L2 为滤波磁珠,用于滤除为电源上的干扰;C1、C2 为电源滤波电容,滤除电源上的干扰。
L1共模电感阻抗选择范围为60Ω/100MHz ~120 Ω /100MHz ,典型值选取90Ω/100MHz ;L2 磁珠阻抗范围为 100Ω /100MHz ~1000Ω /100MHz ,典型值选取 600Ω /100MHz ;磁珠在选取时通流量应符合电路电流的要求,磁珠推荐使用电源用磁珠;C1、C2 两个电容在取值时要相差 100 倍,典型值为 10uF、0.1uF;小电容用滤除电源上的高频干扰,大电容用于滤除电源线上的纹波干扰;C3 为接口地和数字地之间的跨接电容,典型取值为1000pF,耐压要求达到2KV 以上,C3 容值可根据测试情况进行调整;( 2)电路防护设计要点D1、 D2 和 D3 组成 USB 接口防护电路,能快速泄放静电干扰,防止在热拔插过程中产生的大量干扰能量对电路进行冲击,导致内部电路工作异常。