或������2
25
+
2������02 =1.
一 二三
知识精要
典题例解
迁移应用
(2)∵椭圆的长轴长是 6,cos∠OFA=23,
∴点 A 不是长轴的端点(是短轴的端点). ∴|OF|=c,|AF|=a=3.
∴������
3
=
23.∴c=2, b2= 32- 22= 5.
∴椭圆的方程是������2
目标导航
预习导引
12
轴长 焦点
长轴长为 2a,短轴长为 2b
F1(-c,0),F2(c,0)
F1(0,-c),F2(0,c)
焦点的位置 焦点在 x 轴上
焦点在 y 轴上
焦距 对称性
2c 对称轴为 x 轴和 y 轴,对称中心为原点
离心率
e=c ,其中 c= a2-b2
a
目标导航
预习导引
12
求椭圆 16x2+25y2=400 的长轴长、短轴长、离心率以及焦点和 顶点的坐标.
一 二三
知识精要
典题例解
迁移应用
由 e= 23,得
������+2 ������+3
=
23,∴m=1.
∴椭圆的标准方程为
x2+
������2
1
=1,
4
∴a=1,b=12,c= 23. ∴椭圆的长轴和短轴的长分别为 2 和 1,两焦点坐标分别为
F1
-
3 2
,0
和 F2
3 2
,0
,四个顶点分别为
A1(-1,0),A2(1,0),B1
9
+
������2 5
=1