空调自动化控制原理
- 格式:doc
- 大小:148.00 KB
- 文档页数:16
空调自动化霜原理
空调自动化霜是指空调系统能够自动识别和去除空调蒸发器上的霜结。
霜结是由于空调蒸发器表面温度过低,空气中的水分在接触蒸发器时凝结而成的。
当霜结过多时,会影响空调系统的正常工作,降低空调的制冷效果。
为了解决这个问题,空调自动化霜控制系统被引入到空调系统中。
空调自动化霜原理基于以下几个方面:
1. 温度传感器:空调系统中有安装在蒸发器表面的温度传感器,用于检测蒸发器的表面温度。
当温度低于一定阈值时,说明蒸发器可能有霜结的情况发生。
2. 翅片震动:当温度传感器检测到蒸发器表面温度过低时,系统会通过控制蒸发器的翅片震动来打破霜结。
翅片震动会产生机械振动,使霜结松动并脱落。
3. 除霜周期:除霜周期是指系统在一定时间间隔里进行霜结的去除操作。
除霜周期的频率和时间长短可以根据环境条件和空调系统的需求进行调整。
4. 除霜方式:空调系统通常有两种主要的去除霜结的方式,一种是通过停止蒸发器的制冷操作,在这段时间内蒸发器会自然解冻;另一种是通过热气流的吹扫,将热空气引入到蒸发器表面,加速霜结的解冻。
通过以上原理和控制方式,空调自动化霜系统能够自动检测和
去除空调蒸发器上的霜结,保证空调系统的正常运行。
这种自动化的操作可以提高空调系统的工作效率,减少能耗,并延长空调的使用寿命。
空调自动原理空调自动原理是指空调系统能够通过一系列自动化的程序和传感器来实现对室内环境的自动调节,以达到舒适的温度和湿度。
空调自动原理的实现离不开现代科技的发展和智能化技术的应用,下面我们将详细介绍空调自动原理的工作原理和实现方式。
首先,空调自动原理的核心在于室内和室外的温度和湿度传感器。
室内的传感器可以实时监测室内的温度和湿度情况,而室外的传感器则可以监测室外的气温和湿度。
这些传感器将实时采集到的数据传输给空调系统的控制器,控制器通过对比设定的温度和湿度值,来判断当前的环境是否需要进行调节。
其次,空调自动原理还涉及到空调系统内部的自动化程序。
一般来说,空调系统会预先设定好一些温度和湿度的标准范围,当传感器监测到环境超出了这个范围时,控制器就会启动空调系统进行调节。
比如,在夏天,当室内温度超过了设定的值,空调系统就会自动启动制冷模式,通过调节制冷剂的流动来降低室内温度;而在冬天,当室内温度过低时,空调系统则会启动加热模式,通过加热器来提高室内温度。
此外,空调自动原理还包括了空调系统的智能化控制功能。
现代空调系统通常配备了智能控制面板或者连接手机App,用户可以通过这些控制方式来设定空调的工作模式、温度、风速等参数。
而空调系统也会根据用户的设定和实际环境情况进行智能调节,比如在用户离开房间后自动进入节能模式,或者在室内温度达到设定值后自动停止工作。
总的来说,空调自动原理通过传感器的实时监测、自动化程序的智能调节和用户设定的个性化控制,实现了对室内环境的自动调节。
这种智能化的空调系统不仅提高了使用的便利性,也能够更加高效地节约能源,为人们的生活带来了更多的舒适和便利。
通过对空调自动原理的介绍,我们可以更好地了解现代空调系统是如何通过科技手段来实现对室内环境的智能调节的。
随着科技的不断发展,相信空调自动原理会越来越智能化,为人们的生活带来更多的便利和舒适。
变频空调工作原理
变频空调是一种能够根据室内温度和外部环境温度自动调节制冷或制热效果的
空调系统。
它的工作原理主要包括压缩机、冷凝器、膨胀阀和蒸发器四个主要部件。
下面我们将详细介绍变频空调的工作原理。
首先,变频空调的压缩机是整个系统的核心部件。
当室内温度高于设定温度时,压缩机会启动,吸入低温低压的制冷剂气体,然后将其压缩成高温高压的气体。
这样的高温高压气体通过管道传输到冷凝器。
其次,冷凝器是用来散热的部件。
高温高压的制冷剂气体在冷凝器中散发热量,使其冷却成高压液态制冷剂。
这时,制冷剂的温度和压力都得到了提高。
接着,高压液态制冷剂通过膨胀阀进入蒸发器。
在蒸发器中,制冷剂迅速蒸发
吸收室内热量,使室内空气温度下降。
蒸发器的制冷效果主要取决于制冷剂的蒸发热和室内空气的传热。
最后,经过蒸发器的制冷剂再次被压缩机吸入,循环往复,直到室内温度达到
设定温度。
这样,变频空调就能够自动调节制冷或制热效果,实现室内温度的恒定控制。
总的来说,变频空调的工作原理是通过不断循环制冷剂的压缩、冷凝、膨胀和
蒸发过程,来实现室内温度的调节。
这种工作原理使得变频空调在节能、舒适性和稳定性方面都有了很大的提高,成为了现代家庭和商业场所常用的空调设备。
通过以上的介绍,我们对变频空调的工作原理有了更深入的了解。
希望这些内
容能够帮助大家更好地使用和维护变频空调,让它为我们的生活带来更多的便利和舒适。
电子空调工作原理
电子空调工作原理是基于热泵技术。
它利用制冷剂的蒸发和凝结过程来吸热和放热,从而实现空调效果。
具体而言,电子空调通过以下步骤来工作:
1. 压缩机:电子空调中的压缩机起到压缩制冷剂的作用。
压缩机将低温低压的蒸汽制冷剂抽入内部,并将其压缩为高温高压的气体。
2. 冷凝器:在冷凝器中,高温高压的制冷剂与空气接触,通过传热将热量释放到外部环境中。
这导致制冷剂冷却并变成高压液体。
3. 膨胀阀:膨胀阀控制制冷剂的流量和压力。
此阀将压力转变为液体制冷剂流过时的低压状态,从而引起制冷剂的部分蒸发。
4. 蒸发器:在蒸发器中,低压液体制冷剂进一步蒸发为低温低压的蒸汽。
这个过程需要吸热,并从室内吸收热量。
因此,空调将环境中的热量带走,从而使室内温度降低。
5. 循环回路:上述过程循环反复进行,以不断调节室内温度。
制冷剂在压缩机的作用下再次被压缩,然后重新送入冷凝器进行冷却,再经由膨胀阀进入蒸发器吸热。
通过上述工作原理,电子空调可以将热量从室内转移到室外,从而实现室内温度的调节。
此外,空调还可以通过风扇将冷空气有效地吹送到室内,以提高降温效果。
空调的工作原理是空调的工作原理是如何实现室内空气的冷却和调节的。
本文将从制冷循环、蒸发冷却和温度控制三个方面详细介绍空调的工作原理。
一、制冷循环空调的制冷循环是实现室内空气冷却的核心过程。
它主要由压缩机、冷凝器、膨胀阀和蒸发器四个主要部件组成。
1. 压缩机:压缩机是制冷循环中的动力设备,可将低温、低压的制冷剂气体吸入,经过压缩后排出高温、高压的制冷剂气体。
2. 冷凝器:冷凝器是制冷循环的换热设备,将从压缩机排出的高温、高压制冷剂气体通过冷凝器散热,放出热量,使制冷剂变成高温、高压的液体。
3. 膨胀阀:膨胀阀是制冷循环中的节流设备,它通过控制制冷剂的流量和压力,使制冷剂在通过膨胀阀后进入蒸发器时发生膨胀。
4. 蒸发器:蒸发器是制冷循环的另一换热设备,在蒸发器中,制冷剂从高温、高压液体变成低温、低压蒸汽,吸收室内空气的热量,从而降低室内空气的温度。
通过以上四个部件的相互作用,空调制冷循环可以持续运行,不断将室内空气中的热量转移到室外,实现室内空气冷却的效果。
二、蒸发冷却蒸发冷却是空调实现室内空气调节的关键过程。
当制冷剂在蒸发器中蒸发时,吸收室内空气的热量,使室内空气的温度下降。
在蒸发器中,制冷剂由高温、高压液体转变成低温、低压蒸汽,此过程中吸收了大量热量。
当室内空气经过蒸发器时,被制冷剂吸收的热量将被带走,从而使室内空气的温度下降,达到室内降温的目的。
蒸发冷却过程的优点是能够快速降低室内空气的温度,且能够调节室内空气的湿度,提高空气的舒适性。
三、温度控制空调内置有温度传感器和控制系统,用于感知室内空气的温度,并根据设定的温度值来控制空调的工作状态。
当室内温度高于设定的温度值时,空调控制系统会启动制冷循环,通过制冷循环的过程将热量从室内转移到室外,使室内温度降低到设定的温度范围。
当室内温度达到设定的温度范围时,空调控制系统会停止制冷循环,以保持室内温度的稳定。
通过温度控制,空调可以根据室内温度的变化自动启动或停止制冷循环,从而实现室内温度的精确调节和控制。
空调自动化控制原理说明自动化系统是智能建筑的一个重要组成部分。
楼宇自动化系统的功能就是对大厦内的各种机电设施,包括中央空调、给排水、变配电、照明、电梯、消防、安全防范等进行全面的计算机监控管理。
其中,中央空调的能耗占整个建筑能耗的50%以上,是楼宇自动化系统节能的重点[1]。
由于中央空调系统十分庞大,反应速度较慢、滞后现象较为严重,现阶段中央空调监控系统几乎都采用传统的控制技术,对于工况及环境变化的适应性差,控制惯性较大,节能效果不理想。
传统控制技术存在的问题主要是难以解决各种不确定性因素对空调系统温湿度影响及控制品质不够理想。
而智能控制特别适用于对那些具有复杂性、不完全性、模糊性、不确定性、不存在已知算法和变动性大的系统的控制。
“绿色建筑”主要强调的是:环保、节能、资源和材料的有效利用,特别是对空气的温度、湿度、通风以及洁净度的要求,因此,空调系统的应用越来越广泛。
空调控制系统涉及面广,而要实现的任务比较复杂,需要有冷、热源的支持。
空调机组内有大功率的风机,但它的能耗很大。
在满足用户对空气环境要求的前提下,只有采用先进的控制策略对空调系统进行控制,才能达到节约能源和降低运行费用的目的。
以下将从控制策略角度对与监控系统相关的问题作简要讨论。
2 空调系统的基本结构及工作原理空调系统结构组成一般包括以下几部分[2] [3]:(1) 新风部分空调系统在运行过程中必须采集部分室外的新鲜空气(即新风),这部分新风必须满足室内工作人员所需要的最小新鲜空气量,因此空调系统的新风取入量决定于空调系统的服务用途和卫生要求。
新风的导入口一般设在周围不受污染影响的地方。
这些新风的导入口和空调系统的新风管道以及新风的滤尘装置(新风空气过滤器)、新风预热器(又称为空调系统的一次加热器)共同组成了空调系统的新风系统。
(2) 空气的净化部分空调系统根据其用途不同,对空气的净化处理方式也不同。
因此,在空调净化系统中有设置一级初效空气过滤器的简单净化系统,也有设置一级初效空气过滤器和一级中效空气过滤器的一般净化系统,另外还有设置一级初效空气过滤器,一级中效空气过滤器和一级高效空气过滤器的三级过滤装置的高净化系统。
(3) 空气的热、湿处理部分对空气进行加热、加湿和降温、去湿,将有关的处理过程组合在一起,称为空调系统的热、湿处理部分。
在对空气进行热、湿处理过程中,采用表面式空气换热器(在表面式换热器内通过热水或水蒸气的称为表面式空气加热器,简称为空气的汽水加热器)。
设置在系统的新风入口,一次回风之前的空气加热器称为空气的一次加热器;设置在降温去湿之后的空气加热器,称为空气的二次加热器;设置在空调房间送风口之前的空气加热器,称为空气的三次加热器。
三次空气加热器主要起调节空调房间内温度的作用,常用的热媒为热水或电加热。
在表面式换热器内通过低温冷水或制冷剂的称为水冷式表面冷却器或直接蒸发式表面冷却器,也有采用喷淋冷水或热水的喷水室,此外也有采用直接喷水蒸汽的处理方法来实现空气的热、湿处理过程。
(4) 空气的输送和分配、控制部分空调系统中的风机和送、回风管道称为空气的输送部分。
风管中的调节风阀、蝶阀、防火阀、启动阀及风口等称为空气的分配、控制部分。
根据空调系统中空气阻力的不同,设置风机的数量也不同,如果空调系统中设置一台风机,该风机既起送风作用,又起回风作用的称为单风机系统;如果空调系统中设置两台风机,一台为送风机,另一台为回风机,则称为双风机系统。
(5) 空调系统的冷、热源空调系统中所使用的冷源一般分为天然冷源和人工冷源。
天然冷源一般指地下深井水,人工冷源一般是指利用人工制冷方式来获得的,它包括蒸汽压缩式制冷、吸收式制冷以及蒸汽喷射式制冷等多种形式。
现代化的大型建筑中通常都采用集中式空调系统, 这种形式的结构示意图如图1所示。
图1 空调系统结构示意图其工作原理是当环境温度过高时,空调系统通过循环方式把室内的热量带走,以使室内温度维持于一定值。
当循环空气通过风机盘管时,高温空气经过冷却盘管的铝金属先进行热交换,盘管的铝片吸收了空气中的热量,使空气温度降低,然后再将冷冻后的循环空气送入室内。
冷却盘管的冷冻水由冷却机提供,冷却机由压缩机、冷凝器和蒸发器组成。
压缩机把制冷剂压缩,经压缩的制冷剂进入冷凝器,被冷却水冷却后,变成液体,析出的热量由冷却水带走,并在冷却塔里排入大气。
液体制冷剂由冷凝器进入蒸发器进行蒸发吸热,使冷冻水降温,然后冷冻水进入水冷风机盘管吸收空气中的热量,如此周而复始,循环不断,把室内热量带走。
当环境温度过低时,需要以热水进入风机盘管,和上述原理一样,空气加热后送入室内。
空气经过冷却后,有水分析出,空气相对湿度减少,变的干燥,所以需增加湿度,这就要加装加湿器,进行喷水或喷蒸汽,对空气进行加湿处理,用这样的湿空气去补充室内水汽量的不足。
3 中央空调自动控制系统3.1 中央空调自动控制的内容与被控参数中央空调系统由空气加热、冷却、加湿、去湿、空气净化、风量调节设备以及空调用冷、热源等设备组成。
这些设备的容量是设计容量,但在日常运行中的实际负荷在大部分时间里是部分负荷,不会达到设计容量。
所以,为了舒适和节能,必须对上述设备进行实时控制,使其实际输出量与实际负荷相适应。
目前,对其容量控制已实现不同程度的自动化,其内容也日渐丰富。
被控参数主要有空气的温度、湿度、压力(压差)以及空气清新度、气流方向等,在冷、热源方面主要是冷、热水温度,蒸汽压力。
有时还需要测量、控制供回水干管的压力差,测量供回水温度以及回水流量等。
在对这些参数进行控制的同时,还要对主要参数进行指示、记录、打印,并监测各机电设备的运行状态及事故状态、报警。
中央空调设备主要具有以下自控系统:风机盘管控制系统、新风机组控制系统、空调机组控制系统、冷冻站控制系统、热交换站控制系统以及有关给排水控制系统等。
3.2 中央空调自动控制的功能(1) 创造舒适宜人的生活与工作环境·对室内空气的温度、相对湿度、清新度等加以自动控制,保持空气的最佳品质;·具有防噪音措施(采用低噪音机器设备);·可以在建筑物自动化系统中开放背景轻音乐等。
通过中央空调自动控制系统,能够使人们生活、工作在这种环境中,心情舒畅,从而能大大提高工作效率。
而对工艺性空调而言,可提供生产工艺所需的空气的温度、湿度、洁净度的条件,从而保证产品的质量。
(2) 节约能源在建筑物的电器设备中,中央空调的能耗是最大的,因此需要对这类电器设备进行节能控制。
中央空调采用自动控制系统后,能够大大节约能源。
(3) 创造了安全可靠的生产条件自动监测与安全系统,使中央空调系统能够正常工作,在发现故障时能及时报警并进行事故处理。
3.3 中央空调自动控制系统的基本组成图2[4]为一室温的自动控制系统。
它是由恒温室、热水加热器、传感器、调节器、执行器机构和(调节阀)调节机构组成。
其中恒温室和热水加热器组成调节对象(简称对象),所谓调节对象是指被调参数按照给定的规律变化的房间、设备、器械、容器等。
图2所示的室温自动调节系统也可以用图3所示的方块图来表示。
室温就是室内要求的温度参数,在自动调节系统中称为被调参数(或被调量),用θa表示。
在室温调节系统中,被调参数就是对象的输出信号。
被调参数规定的数值称为给定值(或设定值),用θg表示。
室外温度的变化,室内热源的变化,加热器送风温度的变化,以及热水温度的变化等,都会使室内温度发生变化,从而室内温度的实际值与给定值之间产生偏差。
这些引起室内温度偏差的外界因素,在调节系统中称为干扰(或称为扰动),用f表示。
在该系统中,导致室温变化的另一个因素是加热器内热水流量的变化,这一变化往往是热水温度或热水流量的变化引起的,热水流量的变化是由于控制系统的执行机构—调节阀的开度变化所引起的,是自动调节系统用于补偿干扰的作用使被调量保持在给定值上的调节参数,或称调节量q。
调节量q和干扰f对对象的作用方向是相反的。
图2 室温自动调节系统示意图图3 室温自动调节系统的方块图4 中央空调系统控制中存在的问题4.1 被控对象的特点空调系统中的控制对象多属热工对象,从控制角度分析,具有以下特点[3]:(1) 多干扰性例如,通过窗户进来的太阳辐射热是时间的函数,受气象条件的影响;室外空气温度通过围护结构对室温产生影响;通过门、窗、建筑缝隙侵入的室外空气对室温产生影响;为了换气(或保持室内一定正压)所采用的新风,其温度变化对室温有直接影响。
此外,电加热器(空气加热器)电源电压的波动以及热水加热器热水压力、温度、蒸汽压力的波动等,都将影响室温。
如此多的干扰,使空调负荷在较大范围内变化,而它们进入系统的位置、形式、幅值大小和频繁程度等,均随建筑的构造(建筑热工性能)、用途的不同而异,更与空调技术本身有关。
在设计空调系统时应考虑到尽量减少干扰或采取抗干扰措施。
因此,可以说空调工程是建立在建筑热工、空调技术和自控技术基础上的一种综合工程技术。
(2) 多工况性空调技术中对空气的处理过程具有很强的季节性。
一年中,至少要分为冬季、过渡季和夏季。
近年来,由于集散型系统在空调系统中的应用,为多工况的空调应用创造了良好的条件。
由于空调运行制度的多样化,使运行管理和自动控制设备趋于复杂。
因此,要求操作人员必须严格按照包括节能技术措施在内的设计要求进行操作和维护,不得随意改变运行程序和拆改系统中的设备。
(3) 温、湿度相关性描述空气状态的两个主要参数为温度和湿度,它们并不是完全独立的两个变量。
当相对湿度发生变化时会引起加湿(或减湿)动作,其结果将引起室温波动;而室温变化时,使室内空气中水蒸气的饱和压力变化,在绝对含湿量不变的情况下,就直接改变了相对湿度(温度增高相对湿度减少,温度降低相对湿度增加)。
这种相对关联着的参数称为相关参数。
显然,在对温、湿度都有要求的空调系统中,组成自控系统时应充分注意这一特性。
4.2 控制中存在的主要问题目前中央空调系统主要采用的控制方式是PID控制,即采用测温元件(温感器)+PID温度调节器+电动二通调节阀的PID调节方式。
夏季调节表冷器冷水管上的电动调节阀,冬季调节加热器热水管上的电动调节阀,由调节阀的开度大小实现冷(热)水量的调节,达到温度控制的目的。
为方便管理,简化控制过程,把温度传感器设于空调机组的总回风管道中,由于回风温度与室温有所差别,其回风控制的温度设定值,在夏季应比要求的室温高(0.5~1.0)℃,在冬季应比要求的室温低(0.5~1.0)℃。
PID调节的实质就是根据输入的偏差值,按比例、积分、微分的函数关系进行运算,将其运算结果用于控制输出。
现场监控站监测空调机组的工作状态对象有:过滤器阻塞(压力差),过滤器阻塞时报警,以了解过滤器是否需要更换;调节冷热水阀门的开度,以达到调节室内温度的目的;送风机与回风机启/停;调节新风、回风与排风阀的开度,改变新风、回风比例,在保证卫生度要求下降低能耗,以节约运行费用;检测回风机和送风机两侧的压差,以便得知风机的工作状态;检测新风、回风与送风的温度、湿度,由于回风能近似反映被调对象的平均状态,故以回风温湿度为控制参数。