九年级下学期数学培优练习(1)
- 格式:docx
- 大小:166.78 KB
- 文档页数:3
一、选择题(每题5分,共25分)1. 下列选项中,不是二次方程的是()A. x^2 - 5x + 6 = 0B. 2x^2 + 3x - 1 = 0C. x^3 - 2x^2 + 3x - 6 = 0D. 4x^2 - 4x + 1 = 02. 已知一元二次方程 ax^2 + bx + c = 0(a ≠ 0)的两根为 x1 和 x2,那么下列选项中,正确的是()A. x1 + x2 = -b/aB. x1 x2 = c/aC. x1^2 + x2^2 = b^2 - 4ac/aD. x1^2 - x2^2 = (x1 + x2)^2 - 4x1x23. 下列函数中,为反比例函数的是()A. y = x^2 + 1B. y = 2x + 3C. y = 1/xD. y = 2/x^24. 已知等差数列 {an} 的首项为 a1,公差为 d,那么下列选项中,正确的是()A. a1 + a2 + a3 = 3a1 + 3dB. a1 + a2 + a3 = 3a1 + 2dC. a1 + a2 + a3 = 3a1 + dD. a1 + a2 + a3 = 3a15. 下列选项中,不是等比数列的是()A. 2, 4, 8, 16, ...B. 1, 2, 4, 8, ...C. 1, 3, 9, 27, ...D. 1, 3, 6, 9, ...二、填空题(每题5分,共25分)6. 已知一元二次方程 x^2 - 4x + 3 = 0,则其两根之和为 __________,两根之积为 __________。
7. 若反比例函数 y = k/x(k ≠ 0)的图象经过点(2,3),则 k = __________。
8. 等差数列 {an} 的首项为 2,公差为 3,那么第 10 项 an = __________。
9. 等比数列 {an} 的首项为 3,公比为 2,那么第 6 项 an = __________。
一、选择题(每题5分,共50分)1. 若a,b是方程x²-3x+2=0的两个根,则a+b的值为()A. 2B. 3C. 4D. 52. 下列各数中,有理数是()A. √3B. √2+√3C. πD. 3.143. 已知一元二次方程x²-5x+6=0的两个根为x₁,x₂,则(x₁+x₂)²-4x₁x₂的值为()A. 1B. 4C. 9D. 164. 在△ABC中,∠A=60°,∠B=45°,则∠C的度数为()A. 60°B. 75°C. 75°D. 120°5. 已知一次函数y=kx+b的图象经过点A(1,2),B(-2,3),则该函数的解析式为()A. y=2x+1B. y=3x+1C. y=2x-1D. y=3x-16. 已知函数y=2x+1在x=2时的函数值为5,则该函数的图象()A. 经过点(1,5)B. 经过点(2,5)C. 经过点(3,5)D. 经过点(4,5)7. 若a,b是方程x²-4x+4=0的两个根,则a²+b²的值为()A. 4B. 8C. 12D. 168. 在△ABC中,若a²+b²=5²,c²=4²,则△ABC是()A. 直角三角形B. 等腰三角形C. 等边三角形D. 梯形9. 已知函数y=x²+2x+1的图象的顶点坐标为(-1,0),则该函数的对称轴为()A. x=-1B. y=-1C. x=1D. y=110. 已知一次函数y=kx+b的图象与x轴、y轴分别相交于点A、B,若OA=3,OB=2,则该函数的解析式为()A. y=2x+3B. y=3x+2C. y=2x-3D. y=3x-2二、填空题(每题5分,共50分)11. 若a,b是方程x²-4x+4=0的两个根,则a²+2ab+b²的值为______。
一、选择题(每题5分,共50分)1. 已知一元二次方程x^2 - 5x + 6 = 0,则方程的解为:A. x = 2,x = 3B. x = 1,x = 6C. x = 2,x = 4D. x = 3,x = 52. 下列函数中,是奇函数的是:A. y = x^2B. y = x^3C. y = |x|D. y = x^43. 在等腰三角形ABC中,AB = AC,若∠BAC = 40°,则∠B = ∠C = °。
4. 下列命题中,正确的是:A. 平行四边形的对角线互相平分B. 等腰三角形的底角相等C. 直角三角形的两条直角边相等D. 矩形的对边平行且相等5. 若a、b、c是等差数列,且a + b + c = 12,则a^2 + b^2 + c^2的值为:6. 已知二次函数y = ax^2 + bx + c的图象开口向上,且顶点坐标为(1, -2),则a、b、c的值分别为:7. 在直角坐标系中,点A(2, 3)关于x轴的对称点为B,则点B的坐标为:8. 已知等腰三角形ABC中,AB = AC,且BC = 6,AD是BC边上的高,则AD的长度为:9. 下列不等式中,正确的是:A. 3x > 2x + 1B. 2x < 3x - 1C. 3x ≥ 2x + 1D. 2x ≤ 3x - 110. 若a、b、c是等比数列,且a + b + c = 27,b^2 = ac,则a、b、c的值分别为:二、填空题(每题5分,共50分)11. 已知一元二次方程x^2 - 4x + 3 = 0的解为x1和x2,则x1 + x2 = ,x1x2 = 。
12. 函数y = 2x - 3的图象与x轴、y轴的交点坐标分别为(),()。
13. 在等腰三角形ABC中,AB = AC,若∠BAC = 45°,则∠B = ∠C = °。
14. 下列命题中,正确的是:平行四边形的对角线互相平分,等腰三角形的底角相等,矩形的对边平行且相等。
北师大版九年级数学下册 第1、2章 综合培优练习——提高卷(时间:90分钟 满分:120分)一、选择题(每小题3分,共30分)1.如图,在△ABC 中,∠C =90°,AB =5,BC =3,则cosA 的值是(D)A.34B.43C.35D.452.当二次函数y =x 2+4x +9取最小值时,x 的值为(A)A.-2B.1C.2D.93.(河南中考)在二次函数y =-x 2+2x +1的图象中,若y 随x 的增大而增大,则x 的取值范围是(A) A.x <1 B.x >1 C.x <-1 D.x >-1 4.在△ABC 中,把三边的长度都扩大为原来的5倍,则锐角A 的正弦函数值(C) A.缩小为原来的15B.扩大为原来的5倍C.不变D.不能确定5.在直角坐标系xOy 中,点P(4,y)在第四象限内,且OP 与x 轴正半轴的夹角的正切值是2,则y 的值是(D) A.2 B.8 C.-2 D.-86.抛物线图象如图所示,根据图象,抛物线的表达式可能是(C)A.y =x 2-2x +3 B.y =-x 2-2x +3C.y =-x 2+2x +3D.y =-x 2+2x -37.(泰安中考)如图,轮船从B 处以每小时60海里的速度沿南偏东20°方向匀速航行,在B 处观测灯塔A 位于南偏东50°方向上,轮船航行40分钟到达C 处,在C 处观测灯塔A 位于北偏东10°方向上,则C 处与灯塔A 的距离是(D)A.20海里B.40海里C.2033海里D.4033海里8.函数y =-x 2+2(m -1)x +m +1的图象如图,它与x 轴交于A ,B 两点,线段OA 与OB 的比为1∶3,则m 的值为(D)A.13或2B.13C.1D.29.在平面直角坐标系中,设点P 到原点O 的距离为p ,OP 与x 轴正方向的夹角为α,则用[p ,α]表示点P 的极坐标,显然,点P 的极坐标与它的坐标存在一一对应关系.例如:点P 的坐标为(1,1),则其极坐标为[2,45°];若M 的坐标为(-1,-1),则其极坐标为[2,225°].若点Q 的极坐标为[4,60°],则点Q 的坐标为(A) A.(2,23) B.(2,-23) C.(23,2) D.(2,2)10.(梅州中考)对于二次函数y =-x 2+2x ,有下列四个结论:①它的对称轴是直线x =1;②设y 1=-x 21+2x 1,y 2=-x 22+2x 2,则当x 2>x 1时,有y 2>y 1;③它的图象与x 轴的两个交点是(0,0)和(2,0);④当0<x<2时,y>0.其中正确的结论的个数为(C)A.1B.2C.3D.4二、填空题(每小题4分,共32分)11.如图,将∠AOB 放在边长为1的小正方形组成的网格中,则tan ∠AOB =12.12.如图,已知抛物线y =-x 2+bx +c 的对称轴为直线x =1,且与x 轴的一个交点为(3,0),那么它对应的函数表达式是y =-x 2+2x +3.13.(河南中考)已知抛物线y =ax 2+bx +c(a≠0)与x 轴交于A ,B 两点.若点A 的坐标为(-2,0),抛物线的对称轴为直线x =2,则线段AB 的长为8.14.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D ,tan ∠ACD =34,AB =5,那么CD 的长是125.15.如图,从热气球C 上测得建筑物A ,B 底部的俯角分别为30°和60°,如果这时气球的高度CD 为150米,且点A ,D ,B 在同一直线上,那么建筑物A ,B 间的距离为.16.一个函数的图象关于y 轴成轴对称图形时,我们称该函数为“偶函数”.如果二次函数y =x 2+bx -4是“偶函数”,该函数的图象与x 轴交于点A 和点B ,顶点为P ,那么△ABP 的面积是8. 17.如图,将一块斜边长为12 cm ,∠B =60°的直角三角板ABC ,绕点C 沿逆时针方向旋转90°至△A′B′C′的位置,再沿CB 向右平移,使点B′刚好落在斜边AB18.某幢建筑物,从10米高的窗口A 用水管向外喷水,喷出的水流呈抛物线状(抛物线所在平面与墙面垂直,如图).如果抛物线的最高点M 离墙1米,离地面403米,那么水流落地点B 离墙的距离OB 是3米.三、解答题(共58分)19.(6分)计算:cos 245°tan 30°·sin60°+tan 60°.解:原式=(22)233×32+ 3 =1+ 3.20.(8分)已知二次函数y =-x 2+2x +m.(1)如果二次函数的图象与x 轴有两个交点,求m 的取值范围;(2)如图,二次函数的图象过点A(3,0),与y 轴交于点B ,直线AB 与这个二次函数图象的对称轴交于点P ,求点P 的坐标.解:(1)∵二次函数的图象与x 轴有两个交点,∴Δ=22+4m >0.∴m>-1. (2)∵二次函数的图象过点A(3,0),∴0=-9+6+m.∴m=3.∴二次函数的表达式为y =-x 2+2x +3. 令x =0,则y =3,∴B(0,3).设直线AB 的表达式为y =kx +b ,∴⎩⎪⎨⎪⎧0=3k +b ,3=b.解得⎩⎪⎨⎪⎧k =-1,b =3.∴直线AB 的表达式为y =-x +3.∵抛物线y =-x 2+2x +3的对称轴为直线x =1, ∴把x =1代入y =-x +3,得y =2. ∴P(1,2).21.(8分)(济宁中考)某地的一座人行天桥如图所示,天桥高为6米,坡面BC 的坡度为1∶1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1∶ 3.(1)求新坡面的坡角α;(2)原天桥底部正前方8米处(PB 的长)的文化墙PM 是否需要拆除?请说明理由.解:(1)∵新坡面的坡度为1∶3, ∴tan α=tan ∠CAB =13=33. ∴α=30°.(2)文化墙PM 不需要拆除.过点C 作CD⊥AB 于点D ,则CD =6.∵坡面BC 的坡度为1∶1,新坡面的坡度为1∶3,∴BD =CD =6,AD =6 3. ∴AB =AD -BD =63-6<8.∴文化墙PM 不需要拆除.22.(10分)(梅州中考)九年级数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如下表:已知该运动服的进价为每件60元,设售价为x 元.(1)请用含x 的式子表示:①销售该运动服每件的利润是(x -60)元;②月销量是(-2x +400)件;(直接写出结果) (2)设销售该运动服的月利润为y 元,那么售价为多少时,当月的利润最大,最大利润是多少?解:由题意,得y =(x -60)(-2x +400)=-2x 2+520x -24 000=-2(x -130)2+9 800, ∴当x =130时,y 最大=9 800.∴售价为130元时,当月的利润最大,最大利润是9 800元.23.(12分)(泰州中考)图1、图2分别是某种型号跑步机的实物图与示意图.已知踏板CD 长为1.6 m ,CD 与地面DE 的夹角∠CDE 为12°,支架AC 长为0.8 m ,∠ACD 为80°,求跑步机手柄的一端A 的高度h.(精确到0.1,参考数据:sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)解:过点C 作CM 平行于AB ,过点A 作AF⊥CM 于点F ,过点C 作CG⊥ED 于点G. ∵CM ∥AB ,∴CM ∥ED.∵∠CDE=12°,∴∠DCM =12°. ∵∠ACD =80°,∴∠ACF =68°.∵在Rt △CDG 中,CD =1.6 m ,∠CDE =12°, ∴sin ∠CDE =CG CD ,即sin12°=CG1.6.∴CG =sin12°×1.6≈0.21×1.6=0.336(m).∵在Rt △ACF 中,AC =0.8,∠ACF =68°, ∴sin ∠ACF =AF AC ,即sin68°=AF0.8.∴AF =sin68°×0.8≈0.93×0.8=0.744(m).∴h =0.336+0.744=1.080≈1.1(m).答:跑步机手柄的一端A 的高度h 约为1.1 m.24.(14分)在平面直角坐标系中,抛物线y =-12x 2+bx +c 与x 轴交于点A ,B ,与y 轴交于点C ,直线y =x +4经过A ,C 两点.(1)求抛物线的表达式;(2)在AC 上方的抛物线上有一动点P.①如图1,当点P 运动到某位置时,以AP ,AO 为邻边的平行四边形第四个顶点恰好也在抛物线上,求出此时点P 的坐标;②如图2,过点O ,P 的直线y =kx 交AC 于点E ,若PE∶OE=3∶8,求k 的值.图1 图2 解:(1)∵直线y =x +4经过A ,C 两点,∴A(-4,0),C(0,4).又∵抛物线过A ,C 两点,∴⎩⎪⎨⎪⎧-12×(-4)2-4b +c =0,c =4.解得⎩⎪⎨⎪⎧b =-1,c =4.∴抛物线的表达式为y =-12x 2-x +4.(2)①∵y=-12x 2-x +4,∴抛物线的对称轴是直线x =-1.∵以AP ,AO 为邻边的平行四边形的第四个顶点Q 恰好也在抛物线上, ∴PQ ∥AO ,PQ =AO =4.∵P ,Q 都在抛物线上,∴P ,Q 关于直线x =-1对称. ∴P 点的横坐标是-3.∴当x =-3时,y =-12×(-3)2-(-3)+4=52.∴P 点的坐标是(-3,52).②过P 点作PF∥OC 交AC 于点F ,∵PF ∥OC ,∴△PEF∽△OEC.∴PE OE =PF OC .又∵PE OE =38,OC =4,∴PF =32.设点F(x ,x +4),∴(-12x 2-x +4)-(x +4)=32.解得x 1=-1,x 2=-3.当x =-1时,y =92;当x =-3时,y =52.∴P 点坐标是(-1,92)或(-3,52).又∵点P 在直线y =kx 上, ∴k =-92或k =-56.。
一、选择题1.(0分)[ID:11109]用放大镜观察一个五边形时,不变的量是()A.各边的长度 B.各内角的度数 C.五边形的周长 D.五边形的面积2.(0分)[ID:11107]如图,平面直角坐标系中,点A是x轴上任意一点,BC平行于x轴,分别交y=3x(x>0)、y=kx(x<0)的图象于B、C两点,若△ABC的面积为2,则k值为()A.﹣1B.1C.12-D.123.(0分)[ID:11099]已知点C在线段AB上,且点C是线段AB的黄金分割点(AC>BC),则下列结论正确的是()A.AB2=AC•BC B.BC2=AC•BC C.AC=512-BC D.BC=512-AC4.(0分)[ID:11085]如图,过反比例函数的图像上一点A作AB⊥轴于点B,连接AO,若S△AOB=2,则的值为()A.2 B.3 C.4 D.55.(0分)[ID:11083]如果两个相似三角形对应边之比是1:3,那么它们的对应中线之比是()A.1:3B.1:4C.1:6D.1:96.(0分)[ID:11072]下列命题是真命题的是()A.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为2:3B.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9C.如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为2:3D.如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为4:97.(0分)[ID :11068]在ABC 中,点D ,E 分别在边AB ,AC 上,:1:2AD BD =,那么下列条件中能够判断//DE BC 的是( ) A .12DE BC = B .31DE BC = C .12AE AC = D .31AE AC = 8.(0分)[ID :11064]如图,△ABC 中AB 两个顶点在x 轴的上方,点C 的坐标是(﹣1,0),以点C 为位似中心,在x 轴的下方作△ABC 的位似图形△A′B′C′,且△A′B′C′与△ABC 的位似比为2:1.设点B 的对应点B′的横坐标是a ,则点B 的横坐标是( )A .12a -B .1(1)2a -+ C .1(1)2a -- D .1(3)2a -+ 9.(0分)[ID :11060]在平面直角坐标系中,将点(2,l )向右平移3个单位长度,则所得的点的坐标是( ) A .(0,5)B .(5,1)C .(2,4)D .(4,2)10.(0分)[ID :11058]如图,在矩形ABCD 中,DE AC ⊥于E ,设ADE α∠=,且3cos 5α=,5AB =,则AD 的长为( )A .3B .163 C .203D .16511.(0分)[ID :11057]图(1)所示矩形ABCD 中,BC x =,CD y =,y 与x 满足的反比例函数关系如图(2)所示,等腰直角三角形AEF 的斜边EF 过点C ,M 为EF 的中点,则下列结论正确的是( )A .当3x =时,EC EM <B .当9y =时,EC EM < C .当x 增大时,EC CF ⋅的值增大D.当x增大时,BE DF⋅的值不变12.(0分)[ID:11053]若△ABC∽△A′B′C′且34ABA B='',△ABC的周长为15cm,则△A′B′C′的周长为()cm.A.18B.20 C.154D.80313.(0分)[ID:11048]如图所示,在平面直角坐标系中,已知点A(2,4),过点A作AB⊥x轴于点B.将△AOB以坐标原点O为位似中心缩小为原图形的12,得到△COD,则CD的长度是()A.2 B.1 C.4 D.2514.(0分)[ID:11033]给出下列函数:①y=﹣3x+2;②y=3x;③y=2x2;④y=3x,上述函数中符合条作“当x>1时,函数值y随自变量x增大而增大“的是()A.①③B.③④C.②④D.②③15.(0分)[ID:11063]已知点P是线段AB的黄金分割点(AP>PB),AB=4,那么AP 的长是()A.252-B.25-C.251-D.52-二、填空题16.(0分)[ID:11205]若点A(m,2)在反比例函数y=4x的图象上,则当函数值y≥-2时,自变量x的取值范围是____.17.(0分)[ID:11203]如图,矩形ABOC的面积为3,反比例函数y=kx的图象过点A,则k=_____.18.(0分)[ID:11174]一个4米高的电线杆的影长是6米,它临近的一个建筑物的影长是36米.则这个建筑的高度是_____m.19.(0分)[ID:11166]如图是由棱长相等的小立方体摆成的几何体的主视图与俯视图,根据视图可以判断组成这个几何体至少要________个小立方体.20.(0分)[ID :11139]如图,在平行四边形ABCD 中,AB =12,AD =8,∠ABC 的平分线交CD 于点F ,交AD 的延长线于点E ,CG ⊥BE ,垂足为G ,若EF =2,则线段CG 的长为_____.21.(0分)[ID :11228]学校校园内有块如图所示的三角形空地,计划将这块空地建成一个花园,以美化环境,预计花园每平方米造价为30元,学校建这个花园至少需要投资________元.22.(0分)[ID :11206]如图所示,将一副三角板摆放在一起,组成四边形ABCD ,∠ABC =∠ACD =90°,∠ADC =60°,∠ACB =45°,连接BD ,则tan ∠CBD 的值为_____.23.(0分)[ID :11197]若a b =34,则a bb+=__________. 24.(0分)[ID :11191]已知线段a =2厘米,c =8厘米,则线段a 和c 的比例中项b 是______厘米.25.(0分)[ID :11181]若关于x 的分式方程33122x m x x +-=--有增根,则m 的值为_____. 三、解答题26.(0分)[ID :11306]如图,在平面直角坐标系中,每个小方格都是边长为1个单位的小正方形,点A 、B 、C 都是格点(每个小方格的顶点叫格点),其中()A 1,8,()B 3,8,()C 4,7.()1ABC 外接圆的圆心坐标是______;()2ABC 外接圆的半径是______;()3已知ABC 与DEF(点D 、E 、F 都是格点)成位似图形,则位似中心M 的坐标是______;()4请在网格图中的空白处画一个格点111A B C ,使111A B C ∽ABC ,且相似比为2:1.27.(0分)[ID :11302]如图,在OABC 中,22OA =,45AOC ∠=︒,点C 在y 轴上,点D 是BC 的中点,反比例函数()0ky x x=>的图象经过点A 、D(1)求k 的值;(2)求点D 的坐标.28.(0分)[ID :11295]如图,直线123l //l //l ,直线AC 依次交1l 、2l 、3l 于A 、B 、C 三点,直线DF 依次交1l 、2l 、3l 于D 、E 、F 三点,若AB 4AC 7=,DE 2=,求EF 的长.29.(0分)[ID :11279]如图,已知反比例函数11k y x=(k 1>0)与一次函数2221(0)y k x k =+≠相交于A 、B 两点,AC ⊥x 轴于点C . 若△OAC 的面积为1,且tan ∠AOC =2 .(1)求出反比例函数与一次函数的解析式;(2)请直接写出B点的坐标,并指出当x为何值时,反比例函数y1的值大于一次函数y2的值.30.(0分)[ID:11243]已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.B2.A3.D4.C5.A6.B7.D8.D9.B10.C11.D12.B13.A14.B15.A二、填空题16.x≤-2或x>0【解析】【分析】先把点A(m2)代入解析式得A(22)再根据反比例函数的对称性求出A点关于原点的对称点A(-2-2)再根据函数图像即可求出函数值y≥-2时自变量的取值【详解】把点A(17.-3【解析】【分析】根据比例系数k的几何含义:在反比例函数y=的图象中任取一点过这一个点向x轴和y轴分别作垂线与坐标轴围成的矩形的面积是定值|k|即可解题【详解】解:∵矩形ABOC的面积为3∴|k|18.24米【解析】【分析】先设建筑物的高为h米再根据同一时刻物高与影长成正比列出关系式求出h的值即可【详解】设建筑物的高为h米由题意可得:则4:6=h:36解得:h=24(米)故答案为24米【点睛】本题19.8【解析】由俯视图可以看出组成这个几何体的底面小正方体有5个由主视图可知第二层最少有2个第三层最少有1个所以组成这个几何体的小正方体的个数最少为5+2+1=8个点睛:本题主要考查学生由三视图判断几何20.2【解析】【分析】首先证明CF=BC=12利用相似三角形的性质求出BF再利用勾股定理即可解决问题【详解】解:∵四边形ABCD是平行四边形∴AB=CD=12AE∥BCAB∥CD∴∠CFB=∠FBA∵B21.【解析】【分析】如图所示作BD⊥CA于D则在直角△ABD中可以求出BD然后求出△ABC面积;根据单价可以求出总造价【详解】如图所示AB=10AC=30∠BAC=120°作BD⊥CA于D则在直角△AB22.【解析】【分析】如图所示连接BD过点D作DE垂直于BC的延长线于点E构造直角三角形将∠CBD置于直角三角形中设CE为x根据特殊直角三角形分别求得线段CDACBC从而按正切函数的定义可解【详解】解:如23.【解析】【分析】由比例的性质即可解答此题【详解】∵∴a=b∴=故答案为【点睛】此题考查了比例的基本性质熟练掌握这个性质是解答此题的关键24.4【解析】∵线段b是ac的比例中项∴解得b=±4又∵线段是正数∴b=4点睛:本题考查了比例中项的概念利用比例的基本性质求两条线段的比例中项的时候负数应舍去25.3【解析】【分析】把分式方程化为整式方程进而把可能的增根代入可得m的值【详解】去分母得3x-(x-2)=m+3当增根为x=2时6=m+3∴m=3故答案为3【点睛】考查分式方程的增根问题;增根问题可按三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.B解析:B【解析】解:∵用一个放大镜去观察一个三角形,∴放大后的三角形与原三角形相似,∵相似三角形的对应边成比例,∴各边长都变大,故此选项错误;∵相似三角形的对应角相等,∴对应角大小不变,故选项B正确;.∵相似三角形的面积比等于相似比的平方,∴C选项错误;∵相似三角形的周长得比等于相似比,∴D选项错误.故选B.点睛:此题考查了相似三角形的性质.注意相似三角形的对应边成比例,相似三角形的对应角相等,相似三角形的面积比等于相似比的平方,相似三角形的周长得比等于相似比.2.A解析:A【解析】【分析】连接OC、OB,如图,由于BC∥x轴,根据三角形面积公式得到S△ACB=S△OCB,再利用反比例函数系数k的几何意义得到12×|3|+12•|k|=2,然后解关于k的绝对值方程可得到满足条件的k的值.【详解】连接OC、OB,如图,∵BC∥x轴,∴S△ACB=S△OCB,而S△OCB=12×|3|+12•|k|,∴12×|3|+12•|k|=2,而k<0,∴k=﹣1,故选A.【点睛】本题考查了反比例函数系数k的几何意义:在反比例函数y=kx图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是12|k|,且保持不变.3.D解析:D 【解析】【分析】根据黄金分割的定义得出12BC ACAC AB==,从而判断各选项.【详解】∵点C是线段AB的黄金分割点且AC>BC,∴12BC ACAC AB==,即AC2=BC•AB,故A、B错误;AB,故C错误;AC,故D正确;故选D.【点睛】本题考查了黄金分割,掌握黄金分割的定义和性质是解题的关键.4.C解析:C【解析】试题分析:观察图象可得,k>0,已知S△AOB=2,根据反比例函数k的几何意义可得k=4,故答案选C.考点:反比例函数k的几何意义.5.A解析:A【解析】∵两个相似三角形对应边之比是1:3,∴它们的对应中线之比为1:3.故选A.点睛: 本题考查相似三角形的性质,相似三角形的对应边、对应周长,对应高、中线、角平分线的比,都等于相似比,掌握相似三角形的性质及灵活运用它是解题的关键.6.B解析:B【解析】【分析】根据相似三角形的性质分别对每一项进行分析即可.解:A、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是假命题;B、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是真命题;C、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;D、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;故选B.【点睛】此题考查了命题与定理,用到的知识点是相似三角形的性质,关键是熟练掌握有关性质和定理.7.D解析:D【解析】【分析】可先假设DE∥BC,由平行得出其对应线段成比例,进而可得出结论.【详解】如图,可假设DE∥BC,则可得12AD AEDB EC,13AD AEAB AC==,但若只有13DE ADBC AB==,并不能得出线段DE∥BC.故选D.【点睛】本题主要考查了由平行线分线段成比例来判定两条直线是平行线的问题,能够熟练掌握并运用.8.D解析:D【解析】【分析】设点B的横坐标为x,然后表示出BC、B′C的横坐标的距离,再根据位似变换的概念列式计算.【详解】设点B的横坐标为x,则B、C间的横坐标的长度为﹣1﹣x,B′、C间的横坐标的长度为∵△ABC 放大到原来的2倍得到△A′B′C ,∴2(﹣1﹣x )=a+1,解得x =﹣12(a+3), 故选:D .【点睛】 本题考查了位似变换,坐标与图形的性质,根据位似变换的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键.9.B解析:B【解析】【分析】在平面直角坐标系中,将点(2,l )向右平移时,横坐标增加,纵坐标不变.【详解】将点(2,l )向右平移3个单位长度,则所得的点的坐标是(5,1).故选:B.【点睛】本题运用了点平移的坐标变化规律,关键是把握好规律.10.C解析:C【解析】【分析】根据矩形的性质可知:求AD 的长就是求BC 的长,易得∠BAC =∠ADE ,于是可利用三角函数的知识先求出AC ,然后在直角△ABC 中根据勾股定理即可求出BC ,进而可得答案.【详解】解:∵四边形ABCD 是矩形,∴∠B =∠BAC =90°,BC=AD ,∴∠BAC +∠DAE =90°, ∵DE AC ⊥,∴∠ADE +∠DAE =90°,∴∠BAC =ADE α∠=,在直角△ABC 中,∵3cos 5α=,5AB =,∴25cos 3AB AC α==,∴AD=BC 203==. 故选:C.【点睛】本题考查了矩形的性质、勾股定理和解直角三角形的知识,属于常考题型,熟练掌握矩形的性质和解直角三角形的知识是解题关键.11.D解析:D【分析】由于等腰直角三角形AEF的斜边EF过C点,则△BEC和△DCF都是直角三角形;观察反比例函数图像得出反比例函数解析式为y=9x;当x=3时,y=3,即BC=CD=3,根据等腰直角三角形的性质得,CF=3,则C点与M点重合;当y=9时,根据反比例函数的解析式得x=1,即BC=1,CD=9,所以,而;利用等腰直角三角形的性质BE•DF=BC•CD=xy,然后再根据反比例函数的性质得BE•DF=9,其值为定值;由于x=2xy,其值为定值.【详解】解:因为等腰直角三角形AEF的斜边EF过C点,M为EF的中点,所以△BEC和△DCF都是直角三角形;观察反比例函数图像得x=3,y=3,则反比例解析式为y=9x.A、当x=3时,y=3,即BC=CD=3,所以,,C点与M点重合,则EC=EM,所以A选项错误;B、当y=9时,x=1,即BC=1,CD=9,所以,,,所以B选项错误;C、因为x y=2×xy=18,所以,EC•CF为定值,所以C选项错误;D、因为BE•DF=BC•CD=xy=9,即BE•DF的值不变,所以D选项正确.故选:D.【点睛】本题考查了动点问题的函数图像:先根据几何性质得到与动点有关的两变量之间的函数关系,然后利用函数解析式和函数性质画出其函数图像,注意自变量的取值范围.12.B解析:B【解析】∵△ABC∽△A′B′C′,∴34 ABC ABA B C A B''=''='的周长的周长,∵△ABC的周长为15cm,∴△A′B′C′的周长为20cm.故选B.13.A解析:A【解析】【分析】直接利用位似图形的性质结合A点坐标可直接得出点C的坐标,即可得出答案.【详解】∵点A(2,4),过点A作AB⊥x轴于点B,将△AOB以坐标原点O为位似中心缩小为原图形的12,得到△COD,∴C(1,2),则CD的长度是2,故选A.【点睛】本题主要考查了位似变换以及坐标与图形的性质,正确把握位似图形的性质是解题关键.14.B解析:B【解析】分析:分别利用一次函数、正比例函数、反比例函数、二次函数的增减性分析得出答案. 详解:①y =﹣3x +2,当x >1时,函数值y 随自变量x 增大而减小,故此选项错误;②y =3x,当x >1时,函数值y 随自变量x 增大而减小,故此选项错误; ③y =2x 2,当x >1时,函数值y 随自变量x 增大而减小,故此选项正确;④y =3x ,当x >1时,函数值y 随自变量x 增大而减小,故此选项正确.故选B . 点睛:本题主要考查了一次函数、正比例函数、反比例函数、二次函数的性质,正确把握相关性质是解题的关键.15.A解析:A【解析】根据黄金比的定义得:12AP AB = ,得42AP == .故选A.二、填空题16.x≤-2或x >0【解析】【分析】先把点A (m2)代入解析式得A(22)再根据反比例函数的对称性求出A 点关于原点的对称点A (-2-2)再根据函数图像即可求出函数值y≥-2时自变量的取值【详解】把点A (解析:x≤-2或x >0【解析】【分析】先把点A (m,2)代入解析式得A(2,2),再根据反比例函数的对称性求出A 点关于原点的对称点A ’(-2,-2),再根据函数图像即可求出函数值y≥-2时自变量的取值.【详解】把点A (m,2)代入y =4x , 得A (2,2),∵点A (2,2)关于原点的对称点A’为(-2,-2),故当函数值y≥-2时,自变量x 的取值范围为x≤-2或x >0.【点睛】此题主要考查反比例函数的图像,解题的关键是利用反比例函数的中心对称性. 17.-3【解析】【分析】根据比例系数k 的几何含义:在反比例函数y=的图象中任取一点过这一个点向x 轴和y 轴分别作垂线与坐标轴围成的矩形的面积是定值|k|即可解题【详解】解:∵矩形ABOC的面积为3∴|k| 解析:-3【解析】【分析】根据比例系数k的几何含义:在反比例函数y=kx的图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|即可解题.【详解】解:∵矩形ABOC的面积为3,∴|k|=3.∴k=±3.又∵点A在第二象限,∴k<0,∴k=−3.故答案为:−3.【点睛】本题考查了反比例函数系数k的几何意义,反比例函数图象上点的坐标特征,属于简单题,熟悉反比例函数的图像和性质是解题关键.18.24米【解析】【分析】先设建筑物的高为h米再根据同一时刻物高与影长成正比列出关系式求出h的值即可【详解】设建筑物的高为h米由题意可得:则4:6=h:36解得:h=24(米)故答案为24米【点睛】本题解析:24米.【解析】【分析】先设建筑物的高为h米,再根据同一时刻物高与影长成正比列出关系式求出h的值即可.【详解】设建筑物的高为h米,由题意可得:则4:6=h:36,解得:h=24(米).故答案为24米.【点睛】本题考查的是相似三角形的应用,熟知同一时刻物高与影长成正比是解答此题的关键.19.8【解析】由俯视图可以看出组成这个几何体的底面小正方体有5个由主视图可知第二层最少有2个第三层最少有1个所以组成这个几何体的小正方体的个数最少为5+2+1=8个点睛:本题主要考查学生由三视图判断几何解析:8【解析】由俯视图可以看出组成这个几何体的底面小正方体有5个,由主视图可知第二层最少有2个,第三层最少有1个,所以组成这个几何体的小正方体的个数最少为5+2+1=8个.点睛:本题主要考查学生由三视图判断几何体,同时也体现了对空间想象能力方面的考查.做题要掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”.20.2【解析】【分析】首先证明CF=BC=12利用相似三角形的性质求出BF再利用勾股定理即可解决问题【详解】解:∵四边形ABCD是平行四边形∴AB=CD=12AE∥BCAB∥CD∴∠CFB=∠FBA∵B解析:【解析】【分析】首先证明CF=BC=12,利用相似三角形的性质求出BF,再利用勾股定理即可解决问题.【详解】解:∵四边形ABCD是平行四边形,∴AB=CD=12,AE∥BC,AB∥CD,∴∠CFB=∠FBA,∵BE平分∠ABC,∴∠ABF=∠CBF,∴∠CFB=∠CBF,∴CB=CF=8,∴DF=12﹣8=4,∵DE∥CB,∴△DEF∽△CBF,∴EFBF=DFCF,∴2BF=48,∴BF=4,∵CF=CB,CG⊥BF,∴BG=FG=2,在Rt△BCG中,CG=故答案为【点睛】本题考查平行四边形的性质,相似三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.21.【解析】【分析】如图所示作BD⊥CA于D则在直角△ABD中可以求出BD 然后求出△ABC面积;根据单价可以求出总造价【详解】如图所示AB=10AC=30∠BAC=120°作BD⊥CA于D则在直角△AB解析:6750【解析】【分析】如图所示,作BD⊥CA于D,则在直角△ABD中可以求出BD,然后求出△ABC面积;根据单价可以求出总造价.【详解】如图所示,AB=103,AC=30,∠BAC=120°,作BD⊥CA于D,则在直角△ABD中,∠BAD=60°,∴BD=ABsin60°=15,∴△ABC面积=12×AC×BD=225.又因为每平方米造价为30元,∴总造价为30×225=6750(元).【点睛】此题主要考查了运用三角函数定义解直角三角形,关键是通过作辅助线把实际问题转化为数学问题,抽象到解直角三角形中解题.22.【解析】【分析】如图所示连接BD过点D作DE垂直于BC的延长线于点E 构造直角三角形将∠CBD置于直角三角形中设CE为x根据特殊直角三角形分别求得线段CDACBC从而按正切函数的定义可解【详解】解:如解析:31 2【解析】【分析】如图所示,连接BD,过点D作DE垂直于BC的延长线于点E,构造直角三角形,将∠CBD置于直角三角形中,设CE为x,根据特殊直角三角形分别求得线段CD、AC、BC,从而按正切函数的定义可解.【详解】解:如图所示,连接BD,过点D作DE垂直于BC的延长线于点E,∵在Rt△ABC中,∠ACB=45°,在Rt△ACD中,∠ACD=90°∴∠DCE=45°,∵DE⊥CE∴∠CEB=90°,∠CDE=45°∴设DE=CE=x,则CDx,在Rt△ACD中,∵∠CAD=30°,∴tan∠CD AC,则AC,在Rt△ABC中,∠BAC=∠BCA=45°∴BC,∴在Rt△BED中,tan∠CBD=DE BE.【点睛】本题考查了用定义求三角函数,同时考查了特殊角的三角函数值,如何作辅助线,是解题的关键.23.【解析】【分析】由比例的性质即可解答此题【详解】∵∴a=b∴=故答案为【点睛】此题考查了比例的基本性质熟练掌握这个性质是解答此题的关键解析:7 4【解析】【分析】由比例的性质即可解答此题.【详解】∵34ab=,∴a=34 b,∴a bb+=3744b b bb b+=,故答案为7 4【点睛】此题考查了比例的基本性质,熟练掌握这个性质是解答此题的关键.24.4【解析】∵线段b 是ac 的比例中项∴解得b =±4又∵线段是正数∴b =4点睛:本题考查了比例中项的概念利用比例的基本性质求两条线段的比例中项的时候负数应舍去解析:4【解析】∵线段b 是a 、c 的比例中项,∴216b ac ==,解得b =±4,又∵线段是正数,∴b =4. 点睛:本题考查了比例中项的概念,利用比例的基本性质求两条线段的比例中项的时候,负数应舍去.25.3【解析】【分析】把分式方程化为整式方程进而把可能的增根代入可得m 的值【详解】去分母得3x-(x-2)=m+3当增根为x=2时6=m+3∴m=3故答案为3【点睛】考查分式方程的增根问题;增根问题可按解析:3【解析】【分析】把分式方程化为整式方程,进而把可能的增根代入,可得m 的值.【详解】去分母得3x-(x-2)=m+3,当增根为x=2时,6=m+3∴m=3.故答案为3.【点睛】考查分式方程的增根问题;增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.三、解答题26.(1)(2,6);(2(3)(3,6) ;(4)见解析.【解析】【分析】(1)根据作图,结合网格特点解答;(2)根据线段垂直平分线的性质和三角形的外接圆的概念解答;(3)根据位似变换和位似中心的概念解答;(4)根据相似三角形的对应边的比相等,都等于相似比解答.【详解】解:(1)如图1,由作图可知△ABC外接圆的圆心坐标是(2,6),故答案为(2,6);(2)作AB、BC的垂直平分线交于G,连接AG,根据网格特点可知,点G的坐标为(2,6),则AG=22=5,12则△ABC外接圆的半径是5,故答案为5;(3)如图2,连接BE、FC,根据网格特点,BE与FC交于点M,点M的坐标为(3,6),根据位似中心的概念可知,位似中心M的坐标是(3,6),故答案为(3,6);(4)由网格特点可知,AB=2,2,10,∵△A1B1C1∽△ABC2:1,∴A1B12,B1C1=2,A1C15所求的△A1B1C1如图3.【点睛】本题考查的是格点正方形、锐角三角函数的定义、位似变换与位似中心与相似三角形的性质,掌握如果两个图形不仅是相似图形,且对应点连线相交于一点,对应线段互相平行,这两个图形是位似图形是解题的关键.27.(1)4k =;(2)()1,4D .【解析】【分析】(1)根据已知条件求出A 点坐标即可;(2)四边形OABC 是平行四边形OABC ,则有AB x ⊥轴,可知B 的横纵标为2,D 点的横坐标为1,结合解析式即可求解;【详解】(1)22OA =45AOC ∠=︒,∴()2,2A ,∴4k =, ∴4y x=; (2)四边形OABC 是平行四边形OABC ,∴AB x ⊥轴,∴B 的横纵标为2,点D 是BC 的中点,∴D 点的横坐标为1,∴()1,4D ;【点睛】本题考查反比例函数的图象及性质,平行四边形的性质;利用平行四边形的性质确定点B 的横坐标是解题的关键.28.5【解析】【分析】 利用平行线分线段成比例定理得到AB DE AC DF=,然后把有关数据代入计算即可. 【详解】 123l //l //l ,直线AC 依次交1l 、2l 、3l 于A 、B 、C 三点,直线DF 依次交1l 、2l 、3l 于D 、E 、F 三点,AB DE AC DF∴=, AB 4AC 7=,DE 2=, 427DF∴=, 解得:DF 3.5=,EF DF DE 3.52 1.5∴=-=-=.【点睛】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例. 29.(1)12y x =;21y x =+;(2)B 点的坐标为(-2,-1);当0<x <1和x <-2时,y 1>y 2.【解析】【分析】(1)根据tan ∠AOC =AC OC=2,△OAC 的面积为1,确定点A 的坐标,把点A 的坐标分别代入两个解析式即可求解;(2)根据两个解析式求得交点B 的坐标,观察图象,得到当x 为何值时,反比例函数y 1的值大于一次函数y 2的值.【详解】解:(1)在Rt △OAC 中,设OC =m . ∵tan ∠AOC =AC OC =2,∴AC =2×OC =2m . ∵S △OAC =12×OC×AC =12×m×2m =1,∴m 2=1.∴m =1(负值舍去). ∴A 点的坐标为(1,2).把A 点的坐标代入11k y x=中,得k 1=2.∴反比例函数的表达式为12y x=. 把A 点的坐标代入221y k x =+中,得k 2+1=2,∴k 2=1.∴一次函数的表达式21y x =+.(2)B 点的坐标为(-2,-1).当0<x <1和x <-2时,y 1>y 2.【点睛】本题考查反比例及一次函数的的应用;待定系数法求解析式;图象的交点等,掌握反比例及一次函数的性质是本题的解题关键.30.(1)画图见解析,(2,-2);(2)画图见解析,(1,0);【解析】【分析】(1)将△ABC 向下平移4个单位长度得到的△A 1B 1C 1,如图所示,找出所求点坐标即可;(2)以点B 为位似中心,在网格内画出△A 2B 2C 2,使△A 2B 2C 2与△ABC 位似,且位似比为2:1,如图所示,找出所求点坐标即可.【详解】(1)如图所示,画出△ABC 向下平移4个单位长度得到的△A 1B 1C 1,点C 1的坐标是(2,-2);(2)如图所示,以B 为位似中心,画出△A 2B 2C 2,使△A 2B 2C 2与△ABC 位似,且位似比为2:1,点C 2的坐标是(1,0),故答案为(1)(2,-2);(2)(1,0)【点睛】此题考查了作图-位似变换与平移变换,熟练掌握位似变换与平移变换的性质是解本题的关键.。
5.5用二次函数解决问题(1)-苏科版九年级数学下册培优训练一、选择题1、某商店从厂家以每件21元的价格购进一批商品,该商店可以自行定价.若每件商品售价为x元,则可卖出(350-10x)件,则商店所获得的利润y(元)与每件商品售价x(元)之间的函数表达式为( ) A.y=-10x2-560x+7350 B.y=-10x2+560x-7350C.y=-10x2+350x D.y=-10x2+350x-73502、用长8 m的铝合金条制成使窗户的透光面积最大的矩形窗框(如图),那么这个窗户的最大透光面积是( )A.6425m2 B.43m2 C.83m2 D.4 m23、生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,其一年中获得的利润y和月份n之间函数关系式为y=-n2+14n-24,则该企业一年中利润最高的月份是( )A. 5月B. 6月C. 7月D. 8月4、一件工艺品进价为100元,标价135元售出,每天可售出100件.根据销售统计,该件工艺品每降价1元出售,则每天可多售出4件,要使每天获得的利润最大,每件需降价的钱数为( )A.5元B.10元C.0元D.6元5、将进价为70元/个的某种商品按销售单价100元/个售出时,每天能卖出20个.若这种商品的销售单价在一定范围内每降低1元,其日销量就增加1个,为了获取最大利润应降价()A.20元B.15元C.10元D.5元6、便民商店经营一种商品,在销售过程中,发现一周利润y(元)与每件销售价x(元)之间的关系满足,由于某种原因,价格只能15≤x≤22,那么一周可获得最大利润是()A. 20B. 1508C. 1558D. 15857、某民俗旅游村为接待游客住宿需要,开设了有100张床位的旅馆.当每张床位每天收费100元时,床位可全部租出.若每张床位每天收费提高20元,则相应地减少了10张床位租出.如果每张床位每天以20元为单位提高收费,为使租出的床位少且租金高,那么每张床位每天最合适的收费是()A. 140元B. 150元C. 160元D. 180元8、如图,线段的长为2,C为AB上一个动点,分别以AC、BC为斜边在的同侧作两个等腰直角三角形∆ACD和∆BCE,那么DE长的最小值是_______.二、填空题9、某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1 m宽的门.已知计划中的材料可建墙体(不包括门)总长为27 m,则能建成的饲养室面积最大为____10、如图,用长为10米的篱笆,一面靠墙(墙的长度超过10米),围成一个矩形花圃,设矩形垂直于墙的一边长为x米,花圃面积为S平方米,则S关于x的函数表达式是__________________________,当边长x为________ 米时,花圃有最大面积,最大面积为________ 平方米.11、某商店出售某种文具盒,若每个获利x元,一天可售出(6-x)个,则当x=________时,一天出售该种文具盒的总利润y最大.12、已知商场某商品的进价为每件40元,现在的销售单价是60元/件,一周内可卖出300件.市场调查反映:售价每件每涨价1元,一周内要少卖出10件商品.设售价每件涨价x元,当x=时,商场能在一周内获得最大利润.13、如图,在△ABC中,∠B=90°,AB=12 mm,BC=24 mm,动点P从点A开始沿边AB向点B以2mm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向点C以4 mm/s的速度移动(不与点C 重合).如果P,Q分别从A,B同时出发,那么经过________s,四边形APQC的面积最小.14这两个数的积最大可以达到______15、某果园有90棵橘子树,平均每棵树结520个橘子.根据经验估计,每多种一棵橘子树,平均每棵树就会少结4个橘子.设果园里增种x棵橘子树,橘子总个数为y个,则果园里增种________棵橘子树时,橘子总个数最多.16、将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是________cm2三、解答题17、如图所示,已知平行四边形ABCD的周长为8 c m,∠B=30°,若边长AB=x cm:(1)写出▱ABCD的面积y(cm2)与x(cm)的函数关系式,并求自变量x的取值范围;(2)当x取什么值时,y的值最大?并求最大值.18、某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长为50 m.设饲养室的一边长为x(m),占地面积为y(m2).(1)如图①,则饲养室的一边长x为多少时,占地面积y最大?(2)如图②,现要求在所示位置留2 m宽的门,且仍使饲养室的占地面积最大,小敏说:“只要饲养室的一边长x比(1)中的长多2 m就行了.”请你通过计算,判断小敏的说法是否正确.19、为了改善小区环境,某小区决定要在一块一边靠墙(墙长25 m)的空地上修建一个矩形绿化带ABCD,绿化带一边靠墙,另三边用总长为40 m的栅栏围住(如图).设绿化带的BC边长为x m,绿化带的面积为y m2.(1)求y与x之间的函数关系式,并写出自变量x的取值范围.绿化带的面积最大?20、某食品零售店为食品厂代销一种面包,未售出的面包可退回厂家.经统计销售情况发现,当这种面包的单价定为7角时,每天卖出160个.在此基础上,这种面包的单价每提高1角时,该零售店每天就会少卖出20个.考虑了所有因素后该零售店每个面包的成本是5角.设这种面包的单价提高到x(角),零售店每天销售这种面包所获得的利润为y(角).(1)用含x的代数式分别表示出每个面包的利润与卖出的面包个数;(2)求y与x之间的函数关系式;(3)当面包单价定为多少时,该零售店每天销售这种面包获得的利润最大?最大利润为多少?21、小明大学毕业后回家乡创业,第一期培植盆景与花卉各50盆,售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元,经调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元,每减少1盆,盆景的平均每盆利润增加2元; ②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x 盆,第二期盆景与花卉售完后的利润分别为W 1,W 2(单位:元).(1)用含x 的代数式表示W 1,W 2;(2)当x 取何值时,第二期培植的盆景与花卉售完后获得的总利润W 最大,最大总利润是多少?22、已知:如图,直角梯形ABCD 中,AD BC ∥,90A ∠=,10BC CD ==, 30=∠C .(1)求梯形ABCD 的面积;(2)点E F ,分别是BC CD ,上的动点,点E 从点B 出发向点C 运动,点F 从点C 出发向点D 运动,若两点均以每秒1个单位的速度同时出发,连接EF .求EFC △面积的最大值,并说明此时E F ,的位置.23、东坡商贸公司购进某种水果的成本为20元/千克,经过市场调研发现,这种水果在未来48天的销售单价p(元/千克)与时间t(天)之间的函数关系式为p =⎩⎨⎧14t +30(1≤t ≤24,t 为整数),-12t +48(25≤t ≤48,t 为整数),且其日销售量y(千克)与时间t(天)的关系如下表:时间t(天) 1 3 6 10 20 40… 日销售量y(千克) 118 114 108 100 80 40 …(1)已知(2)问哪一天的销售利润最大?最大日销售利润为多少?(3)在实际销售的前24天中,公司决定每销售1千克水果就捐款n 元利润(n<9)给“精准扶贫”对象.现发现:在前24天中,每天扣除捐款后的日销售利润随时间t 的增大而增大,求n 的取值范围.5.5用二次函数解决问题 (1)-苏科版九年级数学下册 培优训练(答案)一、选择题1、某商店从厂家以每件21元的价格购进一批商品,该商店可以自行定价.若每件商品售价为x 元,则可卖出(350-10x )件,则商店所获得的利润y (元)与每件商品售价x (元)之间的函数表达式为( )A .y =-10x 2-560x +7350B .y =-10x 2+560x -7350C .y =-10x 2+350xD .y =-10x 2+350x -7350[解析]B 由题意,得y =(x -21)(350-10x )=-10x 2+560x -7350.2、用长8 m 的铝合金条制成使窗户的透光面积最大的矩形窗框(如图),那么这个窗户的最大透光面积是(C ) A.6425 m 2 B.43 m 2 C.83m 2 D .4 m 23、生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,其一年中获得的利润y 和月份n 之间函数关系式为y=-n 2+14n-24,则该企业一年中利润最高的月份是( )A. 5月B. 6月C. 7月D. 8月【解析】试题解析:y=-n 2+14n-24=-(n-7)2+25,∵-1<0,∴开口向下,y 有最大值,即n=7时,y 取最大值25,故7月能够获得最大利润, 故选C.4、一件工艺品进价为100元,标价135元售出,每天可售出100件.根据销售统计,该件工艺品每降价1元出售,则每天可多售出4件,要使每天获得的利润最大,每件需降价的钱数为(A )A .5元B .10元C .0元D .6元5、将进价为70元/个的某种商品按销售单价100元/个售出时,每天能卖出20个.若这种商品的销售单价在一定范围内每降低1元,其日销量就增加1个,为了获取最大利润应降价 ( )A .20元B .15元C .10元D .5元[解析] D 设这种商品每个降价x 元,每天的利润为y 元,则降价后,每个商品的利润为100-70-x=(30-x )元,平均每天的销售量为(20+x )个,所以y=(30-x )(20+x )=-x 2+10x+600.当x=-=5时,y 取得最大值.6、便民商店经营一种商品,在销售过程中,发现一周利润y (元)与每件销售价x (元)之间的关系满足22201558y x =--+(),由于某种原因,价格只能15≤x ≤22,那么一周可获得最大利润是( )A. 20B. 1508C. 1558D. 1585【解析】由题意知,一周利润y (元)与每件销售价x (元)之间的关系满足22201558y x =--+(), 且15≤x≤22,根据二次函数的开口方向向下,可知当x=20时, y 1558=最大值. 故选:C .7、某民俗旅游村为接待游客住宿需要,开设了有100张床位的旅馆.当每张床位每天收费100元时,床位可全部租出.若每张床位每天收费提高20元,则相应地减少了10张床位租出.如果每张床位每天以20元为单位提高收费,为使租出的床位少且租金高,那么每张床位每天最合适的收费是( )A. 140元B. 150元C. 160元D. 180元【解析】设每张床位提高x 个20元,每天收入为y 元.则有y=(100+20x )(100-10x )=-200x 2+1000x+10000.当x=-时,可使y 有最大值.又x 为整数,则x=2时,y=11200;x=3时,y=11200;则为使租出的床位少且租金高,每张床收费=100+3×20=160元. 故选C .8、如图,线段的长为2,C 为AB 上一个动点,分别以AC 、BC 为斜边在的同侧作两个等腰直角三角形∆ACD 和∆BCE ,那么DE 长的最小值是_______.【详解】设AC=x ,则BC=2-x ,∵△ACD 和△BCE 分别是等腰直角三角形,∴∠DCA=45°,∠ECB=45°,DC=x ,CE=(2-x ),∴∠DCE=90°, 故DE 2=DC 2+CE 2=x 2+(2-x )2=x 2-2x+2=(x-1)2+1,当x=1时,DE 2取得最小值,DE 也取得最小值,最小值为1,故答案为:1.二、填空题9、某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1 m 宽的门.已知计划中的材料可建墙体(不包括门)总长为27 m ,则能建成的饲养室面积最大为75m2 .10、如图,用长为10米的篱笆,一面靠墙(墙的长度超过10米),围成一个矩形花圃,设矩形垂直于墙的一边长为x 米,花圃面积为S 平方米,则S 关于x 的函数表达式是__________________________, 当边长x 为________ 米时,花圃有最大面积,最大面积为________ 平方米.答案:S =-2x 2+10x 52 252[解析] 由题意知平行于墙的一边长为(10-2x )米,则S =x (10-2x )=-2(x -52)2+252(0<x <5), 所以当x =52时,花圃有最大面积,最大面积为252平方米. 11、某商店出售某种文具盒,若每个获利x 元,一天可售出(6-x )个,则当x =________时,一天出售该种文具盒的总利润y 最大.[解析] 由题意可得y =(6-x )x ,即y =-x 2+6x ,当x =3时,y 有最大值.12、已知商场某商品的进价为每件40元,现在的销售单价是60元/件,一周内可卖出300件.市场调查反映:售价每件每涨价1元,一周内要少卖出10件商品.设售价每件涨价x 元,当x= 时,商场能在一周内获得最大利润.[解析] 设销售单价涨价x 元,一周内获得的利润为y 元,则涨价后,每件的利润为60+x-40=(x+20)元,平均每天的销售量为(300-10x )个,所以y=(x+20)(300-10x )=-10x 2+100x+6000.当x=-=5时,y 取得最大值.13、如图,在△ABC 中,∠B =90°,AB =12 mm ,BC =24 mm ,动点P 从点A 开始沿边AB 向点B 以2mm /s 的速度移动(不与点B 重合),动点Q 从点B 开始沿边BC 向点C 以4 mm /s 的速度移动(不与点C 重合).如果P ,Q 分别从A ,B 同时出发,那么经过________s ,四边形APQC 的面积最小.[解析] 设P ,Q 同时出发后,经过的时间为t s ,四边形APQC 的面积为S mm 2,则有S =S △ABC -S △PBQ =12×12×24-12×4t ×(12-2t )=4t 2-24t +144=4(t -3)2+108. ∵4>0, ∴当t =3时,S 取得最小值.故答案为3.14、两个数的和为6,这两个数的积最大可以达到__9____15、某果园有90棵橘子树,平均每棵树结520个橘子.根据经验估计,每多种一棵橘子树,平均每棵树就会少结4个橘子.设果园里增种x 棵橘子树,橘子总个数为y 个,则果园里增种________棵橘子树时,橘子总个数最多.[解析] 设果园里增种x 棵橘子树,那么果园里共有(x +90)棵橘子树,∵每多种一棵树,平均每棵树就会少结4个橘子,∴平均每棵树结(520-4x )个橘子.∴y =(x +90)(520-4x )=-4x 2+160x +46800,∴当x =-b 2a =-1602×(-4)=20时,y 最大,橘子总个数最多. 16、将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是____12.5____cm 2三、解答题17、如图所示,已知平行四边形ABCD 的周长为8 c m ,∠B =30°,若边长AB =x cm :(1)写出▱ABCD 的面积y (cm 2)与x (cm)的函数关系式,并求自变量x 的取值范围;(2)当x 取什么值时,y 的值最大?并求最大值.答案:(1)y =-12x 2+2x (0<x <4);(2)当x =2时,y 有最大值,最大值为2. 18、某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长为50 m .设饲养室的一边长为x (m),占地面积为y (m 2).(1)如图①,则饲养室的一边长x 为多少时,占地面积y 最大?(2)如图②,现要求在所示位置留2 m 宽的门,且仍使饲养室的占地面积最大,小敏说:“只要饲养室的一边长x 比(1)中的长多2 m 就行了.”请你通过计算,判断小敏的说法是否正确.解:(1)∵y =x ·50-x 2=-12(x -25)2+6252(0<x <50), ∴当x =25时,占地面积y 最大,即当饲养室的一边长x 为25 m 时,占地面积y 最大.(2)∵y =x ·50-(x -2)2=-12(x -26)2+338, ∴当x =26时,占地面积y 最大.∵26-25=1(m)≠2 m ,∴小敏的说法不正确.19、为了改善小区环境,某小区决定要在一块一边靠墙(墙长25 m )的空地上修建一个矩形绿化带ABCD ,绿化带一边靠墙,另三边用总长为40 m 的栅栏围住(如图).设绿化带的BC 边长为x m ,绿化带的面积为y m 2.(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围.(2)当x 为何值时,绿化带的面积最大?解: (1)∵四边形ABCD 为矩形,BC =x m , ∴AB =40-x 2m. 根据题意,得y =AB ·BC =40-x 2·x =-12x 2+20x (0<x ≤25). (2)∵y =-12x 2+20x =-12(x -20)2+200, ∴当x =20时,绿化带的面积最大.20、某食品零售店为食品厂代销一种面包,未售出的面包可退回厂家.经统计销售情况发现,当这种面包的单价定为7角时,每天卖出160个.在此基础上,这种面包的单价每提高1角时,该零售店每天就会少卖出20个.考虑了所有因素后该零售店每个面包的成本是5角.设这种面包的单价提高到x (角),零售店每天销售这种面包所获得的利润为y (角).(1)用含x 的代数式分别表示出每个面包的利润与卖出的面包个数;(2)求y 与x 之间的函数关系式;(3)当面包单价定为多少时,该零售店每天销售这种面包获得的利润最大?最大利润为多少?答案:(1),5-x ()x x 20300720160-=--,(2)150040020)20300)(5(2-+-=--=x x x x y ,(3)150040020)20300)(5(2-+-=--=x x x x y =-20(x-10)2+500当定价为10角时,利润最大,为500角.21、小明大学毕业后回家乡创业,第一期培植盆景与花卉各50盆,售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元,经调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元,每减少1盆,盆景的平均每盆利润增加2元; ②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x 盆,第二期盆景与花卉售完后的利润分别为W 1,W 2(单位:元).(1)用含x 的代数式表示W 1,W 2;(2)当x 取何值时,第二期培植的盆景与花卉售完后获得的总利润W 最大,最大总利润是多少?解:(1)W 1=(50+x )(160-2x )=-2x 2+60x +8000,W 2=19(50-x )=-19x +950.(2)W =W 1+W 2=-2x 2+41x +8950(x 为整数).∵-2<0,抛物线的开口向下,-412×(-2)=414, ∴当0≤x <414时,W 随x 的增大而增大; 当414<x ≤50时,W 随x 的增大而减小, 又∵x 取整数,故当x =10时,W 最大,W 最大=-2×102+41×10+8950=9160.即当x =10时,第二期培植的盆景与花卉售完后获得的总利润最大,最大总利润是9160元.22、已知:如图,直角梯形ABCD 中,AD BC ∥,90A ∠=,10BC CD ==, 30=∠C .(1)求梯形ABCD 的面积;(2)点E F ,分别是BC CD ,上的动点,点E 从点B 出发向点C 运动,点F 从点C 出发向点D 运动,若两点均以每秒1个单位的速度同时出发,连接EF .求EFC △面积的最大值,并说明此时E F ,的位置.答案: (1)S =232550-, (2).425)5(41254122+--=+-=t t t S (100<<t ), 当t =5时,S 最大值=.425此时E 在BC 中点,F 在CD 中点. 23、东坡商贸公司购进某种水果的成本为20元/千克,经过市场调研发现,这种水果在未来48天的销售单价p(元/千克)与时间t(天)之间的函数关系式为p =⎩⎨⎧14t +30(1≤t ≤24,t 为整数),-12t +48(25≤t ≤48,t 为整数),且其日销售量y(千克)与时间t(天)的关系如下表:时间t(天) 1 3 6 10 20 40 …日销售量y(千克) 118 114 108 100 80 40 …(1)已知(2)问哪一天的销售利润最大?最大日销售利润为多少?(3)在实际销售的前24天中,公司决定每销售1千克水果就捐款n 元利润(n<9)给“精准扶贫”对象.现发现:在前24天中,每天扣除捐款后的日销售利润随时间t 的增大而增大,求n 的取值范围.解:(1)依题意,得y =120-2t .当t =30时,y =120-60=60. 答:在第30天的日销售量为60千克.(2)设日销售利润为W 元,则W =(p -20)y .当1≤t ≤24时,W =(14t +30-20)(120-2t )=-12t 2+10t +1200=-12(t -10)2+1250. 当t =10时,W 最大=1250.当25≤t ≤48时,W =(-12t +48-20)(120-2t )=t 2-116t +3360=(t -58)2-4. 由二次函数的图象及性质知,当t =25时,W 最大=1085.∵1250>1085, ∴在第10天的销售利润最大,最大日销售利润为1250元.(3)依题意,得每天扣除捐款后的日销售利润W =(14t +30-20-n )(120-2t )=-12t 2+2(n +5)t +1200-120n . 其图象对称轴为直线t =2n +10,要使W 随t 的增大而增大.由二次函数的图象及性质知,2n +10≥24,解得n ≥7.又∵n <9,∴7≤n <9.。
初三数学培优试题一学校: 班级: 姓名: 分数:一.选择题1、下列函数:① 3y x =-,②21y x =-,③()10y x x=-<,④223y x x =-++ 其中y 的值随x 值的增大而增大的函数有( )(A )4个 (B )3个 (C )2个 (D )1个2.(2018济南,9,4分)如图,在平面直角坐标系中,△ABC 的顶点都在方格线的格点上,将△ABC 绕点P 顺时针方向旋转90°,得到△A ′B ′C ′,则点P 的坐标为( )A .(0,4)B .(1,1)C .(1,2)D .(2,1)xy–1–2–3–412341234567BCA A'C 'B'O3、按下面的程序计算,若开始输入x 的值为正数,最后输出的结果为656,则满足条件的x 的不同值最多有( )(A )2个 (B )3个 (C )4个 (D )5个4、已知关于x 的不等式组12x a x a ->-⎧⎨-<⎩的解集中任意一个x 的值均不..在04x ≤≤的范围内,则a 的取值范围是( )(A )5a >或2a <- (B )25a -≤≤ (C )25a -<< (D )5a ≥或2a ≤-5、如图所示,已知点A 是半圆上一个三等分点,点B 是AN 的中点,点P 是半径ON 上的动点。
若O 的半径长为,则AP BP +的最小值为( )(A )2 (B )3 (C )2 (D )6.(3分)如图,矩形ABCD 中,E 是AB 的中点,将△BCE 沿CE 翻折,点B 落在点F 处,tan ∠DCE=.设AB=x ,△ABF 的面积为y ,则y 与x 的函数图象大致为( )A .B .C .D .P B A二、填空题(本大题共8小题,每小题3分,共24分,不需写出解答过程)7.已知一组数据:12.10.8.15.6.8.则这组数据的中位数是。
初三数学培优试题一学校: 班级: 姓名: 分数:一.选择题1、下列函数:① 3y x =-,②21y x =-,③()10y x x=-<,④223y x x =-++ 其中y 的值随x 值的增大而增大的函数有( )(A )4个 (B )3个 (C )2个 (D )1个2.(2018济南,9,4分)如图,在平面直角坐标系中,△ABC 的顶点都在方格线的格点上,将△ABC 绕点P 顺时针方向旋转90°,得到△A ′B ′C ′,则点P 的坐标为( )A .(0,4)B .(1,1)C .(1,2)D .(2,1)xy–1–2–3–412341234567BCA A'C 'B'O3、按下面的程序计算,若开始输入x 的值为正数,最后输出的结果为656,则满足条件的x 的不同值最多有( )(A )2个 (B )3个 (C )4个 (D )5个4、已知关于x 的不等式组12x a x a ->-⎧⎨-<⎩的解集中任意一个x 的值均不..在04x ≤≤的范围内,则a 的取值范围是( )(A )5a >或2a <- (B )25a -≤≤ (C )25a -<< (D )5a ≥或2a ≤-5、如图所示,已知点A 是半圆上一个三等分点,点B 是AN 的中点,点P 是半径ON 上的动点。
若O 的半径长为,则AP BP +的最小值为( )(A )2 (B )3 (C )2 (D )6.(3分)如图,矩形ABCD 中,E 是AB 的中点,将△BCE 沿CE 翻折,点B 落在点F 处,tan ∠DCE=.设AB=x ,△ABF 的面积为y ,则y 与x 的函数图象大致为( )A .B .C .D .P B A二、填空题(本大题共8小题,每小题3分,共24分,不需写出解答过程)7.已知一组数据:12.10.8.15.6.8.则这组数据的中位数是。
九年级下数学培优1一、选择题11.如图所示,第(1)个多边形由正三角形“扩展”而来,边数为12,第(2)个多边形由正方形“扩展”而来,边数为20,…·,第(3)个多边形由正五边形“扩展”而来,边数为30,……依此类推,由正7边形“扩展”而来的多边形的边数为A.40B.50C.56D.6412.如果关于x 的方程ax 2+4x-2=0有两个不相等的实数根,且关于x 的分式方程22-x ax -1x 21=+-有正数解,则符合条件的所有整数a 的值的和是 A.-1 B.0 C.1 D.2二、填空题18.一条笔直的公路上顺次有A 、B 、C 三地,甲车从B 地出发往A 地匀速行驶,到达A 地后停止,在甲车出发的同时,乙车从B 地出发往A 地匀速行驶,到达A 地停留1小时后,调头按原遠向C 地行驶,若AB 两地相距200千米,在两车行驶的过程中,甲、乙两车之间的距离(千米)与乙车行驶时间x(小时)之间的函数图象如图所示,则在他们出发后经过_____小时相遇.三、解答题20. 如图,一次函数y=ax+b(a ≠0)的图象与反比例函数y=xk (k ≠0)的图象交于第二象限的点A(m,1),且与y轴交于点C.过点A 作AD ⊥x 轴于点D,连接CD,已知△ADC 的面积为23,且 ∠ACO=45°(1)求:一次函数和反比例函数的解析式(2)若点E 是点C 关于x 轴的对称点,点B 的纵坐标为-3,求△ABE 的面积23.九龙技区某社区开展全民读书活动,以丰富人们业余文化生活现计划筹资3000元用于购买科普书籍和文艺刊物(1)计划购买文艺刊物的资金不少于购买科普书籍资金的2倍,那么最少用多少资金购买文艺刊物?(2) 经初步了解,有200户居民自愿参与集资,那么平均每户需集资150元.经筹委会进步宣传,自愿参加的户数在200户的基础上增加了a%(其中a >50),如果每户平均集资在150元的基础上减少52a%,那么实际筹资将比计划筹资多6000元,求a 的值。
九年级数学下册2023年中考专题培优训练(培优篇):函数一、单选题1.下列曲线中不能..表示y 是x 的函数的是( ) A . B .C .D .2.如图,直线1:3L y x =+与直线2:L y ax b =+相交于点()4A m ,,则关于x 的不等式3x ax b +≤+的解集是( ).A .4x ≥B .4x ≤C .1x ≥D .1x ≤3.若直线3y x =与x 轴所夹的锐角为α,则sin α的值为( ) A 3B .12C 3D 34.下列四个选项中,不符合直线3y x =--的性质特征的选项是( ) A .经过第二、三、四象限 B .y 随x 的增大而减小 C .与x 轴交于()3,0 D .与y 轴交于()0,3-5.已知反比例函数()0ky k x=≠,当21x -≤≤-时,y 的最大值是6,则当2x ≥时,y 有( )A .最小值6-B .最小值3-C .最大值6-D .最大值3-6.如图,正比例函数y ax =(a 为常数,且0a ≠)和反比例函数ky x=(k 为常数,且0k ≠)的图像相交于)(2,A m -和B 两点,则不等式kax x<的解集为( )A .<2x -或2x >B .22x -<<C .20x -<<或2x >D .<2x -或02x <<7.对于反比例函数2023y x=,下列说法正确的是( ) A .图象分布在第二、四象限内 B .图象经过点()1,2023-- C .y 随x 的增大而减小 D .0x <时,y 随x 的增大而增大8.如图,P 是反比例函数()50y x x=>的图象上一点,PA x ⊥轴于点A ,动点B 从原点O 出发,沿y 轴正方向移动,连接AB ,BP .在点B 移动过程中,PAB 的面积( )A .越来越大B .不变C .越来越小D .先变大后变小9.对于二次函数()222y x =-+的图像,下列说法正确的是( ) A .对称轴为直线2x =- B .最低点的坐标为()2,2 C .与x 轴有两个公共点D .与y 轴交点坐标为()0,210.如图,在平面直角坐标系中,点()12,A m y -,()2,B m y 都在二次函数()21y x n =-+的图象上.若12y y >,则m 的取值范围是( )A .1m <B .1m >C .2m <D .>2m11.如图,一场篮球比赛中,一名篮球运动员投篮,球沿抛物线20.2y x bx c =-++运行,然后准确落入篮筐内,已知球出手时离地面高2.25米,距篮筐中心的水平距离OH 是4米,篮筐的中心离地面的高度为3.05m ,该抛物线的表达式为( )A .20.2 2.25y x x =--+B .20.2 2.25y x x =-++C .20.22 2.25y x x =--+D .20.22 2.25y x x =-++12.二次函数2(0)y ax bx c a =++≠的部分图象如图所示,其对称轴为直线12x =-,且与x轴的一个交点坐标为()2,0-.下列结论:①0abc >;①a b =;①930a b c -+>;①20a c +=;①关于x 的一元二次方程20ax bx c ++=有两个相等的实数根.其中正确结论的个数是( )A .1个B .2个C .3个D .4个二、填空题13.如图,点A 是反比例函数ky x=图象上一点,过点A 作AH x ⊥轴,垂足为H ,连接OA ,已知AOH △的面积是6,则k 的值是__________.14.把抛物线2(1)3y x =-++向左平移2个单位长度,然后向下平移3个单位长度,平移后抛物线的表达式为__________.15.一辆汽车匀速通过某段公路,所需时间t (h )与行驶速度v (km/h )满足函数关系kt v=,其图象为如图所示的一段曲线,且端点为()40,1A 和(),0.5B m .若行驶速度不得超过60km/h ,则汽车通过该路段最少需要_________h ?16.反比例数4y x =-,当4y <时,x 的取值范围是______.17.如图,在平面直角坐标系中,OAC 的顶点A 在反比例函数ky x=的图象上,点C 在x 轴上,AC 边交反比例函数图象于点B ,若2BOCS=,且2AB BC =,则k 的值为___________.18.如图,直线334y x =--与x 轴、y 轴分别交于点A 和点B ,点C 是x 轴上的一个动点,将ABC 沿BC 所在直线折叠后,点A 恰好落在y 轴上点D 处,则点C 的坐标为______.三、解答题19.如图,直线1l :23y ax =+与x 轴和y 轴分别交于B ,C 两点,直线2l :23y x b =-+与x轴交于点A ,并且这两直线交点P 的坐标为()22,.(1)求两直线的解析式; (2)求四边形AOCP 的面积.20.李强用甲、乙两种具有恒温功能的热水壶同时加热相同质量的水,甲壶比乙壶加热速度快.在一段时间内,水温y (①)与加热时间x (s )之间近似满足一次函数关系,根据记录的数据,画函数图象如下:(1)加热前水温是 ①.(2)求乙壶中水温y 关于加热时间x 的函数解析式. (3)当甲壶中水温刚达到80①时,乙壶中水温是 ①.21.如图,直线2y ax =+与x 轴、y 轴分别相交于A 、B 两点,与双曲线()0k y x x=>相交于点P ,PC x ⊥轴于点C ,且4PC =,点A 的坐标为()4,0-.(1)求一次函数的解析式; (2)求双曲线的解析式;(3)若点Q 为双曲线上点P 右侧的一点,且QH x ⊥轴于H ,当以点Q 、C 、H 为顶点的三角形与AOB 相似时,求点Q 的坐标. 22.如图,已知一次函数112y x =-与反比例函数()0k y k x =≠相交于点(),1A m 、()2,B n -.过点A 分别向x 轴、y 轴作垂线,垂足分别为点M 、N .连接,,OA OB AB .(1)求反比例函数的解析式;(2)若四边形OMAN 的面积记作1S ,AOB 的面积记作2S ,求12S S 的值. 23.为了做好校园疫情防控工作,学校每周要对办公室和教室进行药物喷洒消毒,消毒药物在每间教室内空气中的浓度y (单位:3mg/m )与时间x (单位:min )的函数关系如图所示.在进行药物喷洒时y 与x 的函数关系式为2y x =,药物喷洒完成后y 与x 成反比例函数关系,两个函数图象的交点为(5,)A n .(1)n 的值为__________;(2)当5x ≥时,y 与x 的反比例函数关系式为__________;(3)当教室空气中的药物浓度不高于31mg/m 时,对人体健康无危害.当教室药物喷洒完成45min 后,学生能否进入教室?请通过计算说明.24.某果园有100棵橙子树,平均每棵树结600个橙子.现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.假设果园增种x 棵橙子树,增种后果园橙子的总产量为y 个,那么请你求出当果园增种多少棵橙子树时,橙子的总产量最多,并求出此时的总产量.25.如图,抛物线2y ax bx c =++经过点()()2,0,4,0A B -,与y 轴正半轴交于点C ,且2OC OA =,抛物线的顶点为D ,直线y mx n =+经过B ,C 两点,与对称轴交于点E .(1)求抛物线及直线BC 的函数表达式;(2)点M 是直线BC 上方抛物线上的动点,连接,MB ME ,得到MBE △,求出MBE △面积的最大值及此时点M 的坐标;(3)直线()0y kx k =>交线段BC 于点H ,若以点O ,B ,H 为顶点的三角形与CDE 相似,求k 的值;(4)点N 在对称轴上,满足BNC ABC ∠=∠,求出点N 的坐标.。
九年级数学培优
一、精心选一选: 1.在下列四个图案中,既是轴对称图形,又是中心对称图形的是( )
7. 把一副三角板如图甲放置,其中∠ACB=∠DEC=90° ,∠ A=45° ,∠D=30° ,斜边 AB=6,DC=7,把 三角板 DCE 绕着点 C 顺时针旋转 15° 得到△D1 CE1 ,如图乙.此时 AB 与 CD1 交于点 O,则线段 AD1 的长为( ) 。
A. 3 2
B.5
C.4
D. 31
A
B
C
D
)
2 将两个大小完 全相同的杯子 (如图甲) 叠放在一起 (如图乙) ,则图乙中实 物的俯(
二、认真填一填 2 8.函数 y = 中,自变量 x 的取值范围是 ____________ x 1
9.用一个半径为 2 3 ㎝的半圆围成一个圆锥的侧面,则这个圆锥的高为 ㎝
10.某居民区一处圆形下水管道破裂,修理人员准备更换一段与原管道同样粗细的新管道。
如 图,水面宽度原有 60CM ,发现时水面宽度只有 50 3 CM,同时水位也下降 25 CM,则修理人
A. B. C. D.
员应准备的半径为 60cm
A B
的管道
3 、一个盒子中放着三种颜色的球,每个球除颜色外都相同,红球 x 个,白球 7 个,黑球 y 个, 如果从中任取一个球,取得的白球的概率与取得非白球的概率相同,那么 x 与 y 的关系是 ( ) A. x+y=7 B. x+y=14 C. x=y=7 D. x-y=7
A
B
-3 4、点 A(x1 ,y1 ),B(x2 ,y2 ),C(x3 ,y3 )都在反比例函数 y= 的图象上,若 x1 <x2 <0<x3 ,则 y1 ,y2 ,y3 的大小 x 关系是( ). A. y3 <y1 <y2 B.y1 <y2 <y3 C.y3 <y2 <y1 D.y2 <y1 <y3
50 3 cm
11.在△ABC 中,∠BAC=600,∠ ABC=450,AB=2 2 ,D 是线段 BC 上的一个动点,以 AD 为直径
画⊙O 分别交 AB、AC 于 E、F,连接 EF,则线段 EF 长度的最小值为
三、耐心做一做:
5. 如图,在菱形 ABCD 中,DE⊥AB , cos A 则 tan ∠DBE 的值是( A. ) C.
3 ,BE=2, 5
.
12、(本小题满分 8 分)为迎接中国森博会,某商家计划从厂家采购 A,B 两种产品共 20 件, 产品的采购单价(元/件)是采购数量(件)的一次函数,下表提供了部分采购数据. 采购数量(件) A 产品单价(元/件) B 产品单价(元/件) 1 1480 1290
1
5 5 D. 2 5 2 6.如图,直线 y=kx (k>0)与双曲线 y= 交于 A、 B 两点,若 A、B 两点的坐标分别为 A x
1 2
B .2 (x 1·y 1),B(x 2,y 2), 则 x 1y 2+ x 2y 1 的值为( A.-8 B .4 C.-4 ) D.0
2 1460 1280
1
… … …
(1)设 A 产品的采购数量为 x (件),采购单价为 y (元/件),求 y 与 x 的关系式;
1
(2)经商家与厂家协商,采购 A 产品的数量不少于 B 产品数量的 于 1200 元,求该商家共有几种进货方案;
11 ,且 A 产品采购单价不低 9
(3)该商家分别以 1760 元/件和 1700 元/件的销售单价售出 A,B 两种产品,且全部售完,在 (2)的条件下,求采购 A 种产品多少件时总利润最大,并求最大利润.
14 如图,在平面直角坐标系 xOy 中,梯形 AOBC 的边 OB 在 x 轴的正半轴上,AC∥OB ,BC ⊥OB, k 过点 A 的双曲线 y 的一支在第一象限交梯形对角线 OC 于点 D,交边 BC 于点 E. (1 )填 x 空:双曲线的另一支在第 象限,k 的取值范围是 ; (2 )若点 C 的坐标为(2 ,2 ),当点 E 在什么位置时?阴影部分面积 S 最小? OD 1 (3 )若 , S OAC 2 ,求双曲线的解析式. OC 2
13 如图,D 为⊙O 上一点,点 C 在直径 BA 的延长线上,且∠CDA=∠ CBD . (1 )求证:CD 2=CA•CB ; (2 )求证:CD 是⊙O 的切线; (3 )过点 B 作⊙O 的切线交 CD 的延长线于点 E,若 BC=12,tan ∠CDA=
2 ,求 BE 的长. 3
2
答案
12. 解:(1)设 y1与 x 的关系式 y1=kx+b, 由表知 (2)根据题意可得 ,解得 k=﹣20,b=1500,即 y1=﹣20x+1500(0<x≤20,x 为整数),
∵tan∠CDA=
,∴。
。
∵Rt△CDO∽Rt△CBE,∴ ∵BC=12,∴CD=8。
在 Rt△CBE 中,设 BE=x, ∴(x+8)2=x2+122,解得 x=5。
∴BE 的长为 5。
(1)通过相似三角形(△ADC∽△DBC)的对应边成比例来证得结论。
(2)如图,连接 OD.欲证明 CD 是⊙O 的切线,只需证明 CD⊥OA 即可。
, 解得 11≤x≤15,∵x 为整数,∴x 可取的值为:11,12,13,14,15,∴该商家共有 5 种进货方案; (3)通过相似三角形△EBC∽△ODC 的对应边成比例列出关于 BE 的方程,通过解方程来求线段 BE 的长度即可。
14. 解:(1)三,k>0;---------2 (2)∵梯形 AOBC 的边 OB 在 x 轴的正半轴上,AC∥OB,BC⊥OB,而点 C 的坐标标为(2,2), ∴A 点的纵坐标为 2,E 点的横坐标为 2,B 点坐标为(2,0),把 y=2 代入
(3)解法一:令总利润为 W, 则 W=30x2﹣540x+1200,=30(x﹣9)2+9570, ∵a=30>0,∴当 x≥9 时,W 随 x 的增大而增大,∵11≤x≤15, ∴当 x=15 时,W 最大=10650; 解法二:根据题意可得 B 产品的采购单价可表示为: y2=﹣10(20﹣x)+1300=10x+1100, 则 A、B 两种产品的每件利润可分别表示为: 1760﹣y1=20x+260,1700﹣y2=﹣10x+600, 则当 20x+260>﹣10x+600 时,A 产品的利润高于 B 产品的利润, 即 x> =11 时,A 产品越多,总利润越高,
y
k x
得 x=
k 2
;把 x=2 代入 y
k x
得
y=
k k k ,∴A 点的坐标为( ,2),E 点的坐标为(2, 2 2 2
),
∴ S阴影
1 1 3 1 k k 1 k 1 2 2 2 2 k 2 k 2 = k 2 8 2 2 2 2 2 2 2 8
,
当 k-2=0,即 k=2 时,S 阴影部分最小,最小值为
3 2
;
∴E 点的坐标为(2,1),即 E 点为 BC 的中点,∴当点 E 在 BC 的中点时,阴影部分的面积 S 最小;---------------6 (3)设 D 点坐标为(a,
∵11≤x≤15, ∴当 x=15 时,总利润最高, 此时的总利润为(20×15+260)×15+(﹣10×15+600)×5=10650. 13
解:(1)证明:∵∠CDA=∠CBD,∠C=∠C, ∴△ADC∽△DBC,
2
k a
),∵
OD 1 2k ,∴OD=DC,即 D 点为 OC 的中点,∴C 点坐标为(2a, OC 2 a
),∵ S OAC
),把
y=
2k a
代入
y
k x
得 x=
a a 2k ,确定 A 点坐标为( , 2 2 a
1 a 2k 2 ,∴ 2a × 2 2 a
=1,解
得 k= ∴ ,即 CD =CA•CB。
(2)证明:如图,连接 OD, ∵AB 是⊙O 的直径,∴∠ADB=90°。
∴∠1+∠3=90°。
∵OA=OD,∴∠2=∠3。
∴∠1+∠2=90°。
又∵∠CDA=∠CBD,即∠4=∠1, ∴∠4+∠2=90°,即∠CDO=90°。
∴OD⊥OA。
又∵OA 是⊙O 的半径,∴CD 是⊙O 的切线。
(3)如图,连接 OE, ∵EB、CD 均为⊙O 的切线,∴ED=EB,OE⊥DB。
∴∠ABD+∠DBE=90°,∠OEB+∠DBE=90°。
∴∠ABD=∠OEB。
∴∠CDA=∠OEB。
2 .--------10 3
3
。