雨中行走问题
- 格式:ppt
- 大小:325.00 KB
- 文档页数:12
雨季漫步放松身心的好方法雨季漫步:放松身心的好方法雨季,常常让人们感到郁闷和无聊。
然而,与其与雨季为敌,不如学会享受和利用这段雨季的时间。
在雨中漫步是一种既能放松身心,又能享受自然美景的好方法。
本文将探讨雨季漫步的好处以及如何最大程度地享受这个活动。
一、雨季漫步的好处1. 放松身心:雨季漫步能够帮助我们放松身心,减轻内心的压力和焦虑。
雨水的自然声音以及湿润的空气可以舒缓神经和放松肌肉,给人一种宁静和安心的感觉。
2. 接触大自然:雨季漫步是接触大自然的好机会。
雨后的世界充满了生机,雨水滋润了植物,使得周边的景观显得更加鲜艳和美丽。
漫步在雨中,你可以欣赏到开放的花朵、潺潺的小溪以及清新的空气,这是平常难以体验到的。
3. 锻炼身体:雨季漫步是一种轻度的锻炼方式,对身体健康有益。
虽然在雨中行走可能会增加一些困难,但它可以锻炼到平常运动中很少有机会用到的肌肉群,尤其是腿部肌肉。
同时,因为气温较低,雨季漫步也能帮助消耗体内的多余热量。
4. 激发创造力:雨季漫步是一个静思的好机会。
在雨中散步,你可以独自沉思,思考一些重要的问题或者进行一些创造性思维。
通过与大自然的接触,你能够开启自己的内在灵感,并激发自己的创造力。
二、如何最大程度地享受雨季漫步1. 选择合适的时间和地点:要想尽情享受雨季漫步,首先需要选择合适的时间和地点。
尽量选择雨稍小的时间段,以免被大雨淋湿。
另外,寻找有绿树和花草的公园或者山区,这样能够让你欣赏到更多自然美景。
2. 准备合适的装备:在雨季漫步前,务必准备好适合雨中漫步的装备,例如雨伞、雨鞋和雨衣等。
这些装备能够保证你在走过雨季漫步后仍然保持身体的干燥。
3. 放松心态:在雨中漫步的过程中,放松心态是非常重要的。
不要过于在意身体被雨水打湿,相反,要将注意力放在周围的自然景观上,感受大自然的美丽和宁静。
4. 慢步放松:在雨季漫步中,不必急于行进,可以放慢脚步,感受雨水滴落在身上和大地上的感觉。
这样的慢步放松有助于更好地放松身心,与自然融为一体。
数学建模之雨中行走问题模型摘要:由于降雨方向的变化,在跑步过程中尽力快跑不一定是最好的策略。
就淋雨量与跑步快慢这个问题,我们通过建立数学模型来探讨在雨中如何行走才能使淋雨量最少。
在不考虑雨的方向时,当然是跑的越快淋得越少;考虑雨的方向时,那么再分情况讨论,若雨是迎着你前进的方向落下,这时以最大的速度向前跑可使淋雨量最少;若雨是从你的背后落下,那么你应控制在雨中行走的速度,让它刚好等于落雨速度的水平分量。
关键词:淋雨量,数学模型,降雨的方向。
正文1.问题的提出要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变,试建立数学模型讨论是否跑得越快,淋雨量越少。
将人体简化成一个长方形,高a=1.5(颈部以下),宽b=0.5m,厚c=0.2m,设跑步的距离d=1000m,跑步的最大速度v m=5m/s,雨速u=4m/s,降雨量ω=2cm/h,及跑步速度为v,按以下步骤进行讨论(1)不考虑雨的方向,设降雨淋遍全身,以最大速度跑步估计跑完全程的淋雨量;(2)雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体夹角为 ,问跑步速度v 为多大时可使淋雨量最少。
(3)雨从背面吹来,雨线方向跑步方向在同一平面内,且与人体的夹角为α,如图2.建立总淋雨量与速度v及参数a,b,c,d,u,ω,α之间的关系,问速度v多大,总淋雨量最小。
计算α=30°的总淋雨量.(说明:题目中所涉及的图形为网上提供)2.问题的分析总的淋雨量等于人体的各个面上的淋雨量之和。
每个面上的淋雨量等于单位面积、单位时间的淋雨量与面积以及时间的乘积。
面积由已知各边长乘积得出,时间为总路程与人前行速度的比值。
再由速度分解,合成,相对速度等知识确定各面淋雨量公式,列出总的方程,根据各变量关系,得出最优解。
淋雨量(V )=降雨量(ω)×人体淋雨面积(S )×淋浴时间(t ) ①时间(t )=跑步距离(d )÷人跑步速度(v ) ②由①② 得: 淋雨量(V )=ω×S ×d/v3.合理假设3.1模型的假设(1)人身体的表面非常复杂,为了使问题简单化,假设将人视为一个长方体,并设其高1.5m(颈部以下),宽0.5m,厚0.2m.其前、侧、顶的面积之比为1:b:c, (2)假设降雨量到一定时间时,应为定值; (3)此人在雨中跑步应为直线跑步;(4)、问题中涉及的降雨量应指天空降落到地面的雨,而不是人工,或者流失的水量,因为它可以直观的表示降雨量的多少;(5)设雨速为常速且方向不变,选择适当的空间直角坐标系,使人行走的速度为(u,0,0)设雨的速度为(,,)x y z v v v v =,人行走的距离为d=100米。
雨中行走问题的分析吴珍数学与应用数学二班 A班冯奎艳数学与应用数学二班 A班杨彦云数学与应用数学二班 A班摘要本文讨论了雨线方向、跑步速度与淋雨量关系的问题.针对问题一,将人视为长方体,采用物理学中流体计算的思想方法计算淋雨量,得到速度越大淋雨量越小的结论。
针对问题二,首先引入雨滴降落频率的概念,解决了用雨速来确定降雨量雨滴降落不连续的问题。
然后采用物理学中流体计算的思想方法计算淋雨量,建立跑步速度与淋雨量关系的优化模型,得到速度越大淋雨量越小的结论。
针对问题三,在问题二的基础上,改变雨线方向,采用物理学中流体计算的思想方法,建立与跑步速度与淋雨量关系的优化模型,确定淋雨量最小情况下的跑步速度.针对问题四,综合雨线方向与跑步方向夹角,跑步速度,淋雨量的关系,建立几何模型,采用数形结合的方法建立淋雨量模型。
关键词雨滴降落频率;优化模型;淋雨量一、问题重述一般情况下,行人未带雨具却突降大雨,都会选择加快行走速度以减少淋雨量,但如果考虑风速、雨速,就会发现淋雨量并不光与淋雨时间有关。
那么在雨中以何种速度跑,淋雨量最少。
现假设要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变,试建立数学模型,讨论是否跑得越快,淋雨量越少。
按以下步骤进行讨论:(1) 不考虑雨的方向,设降雨淋遍全身,以最大速度跑步,估计跑完全程的总淋雨量。
(2) 雨从迎面吹来,雨线与跑步方向在同一铅直平面内,且与人体的夹角为θ,问速度多大时,总淋雨量最少。
(3) 雨从背面吹来,雨线方向与跑步方向在同一铅直平面内,且与人体的夹角为α,问速度多大时,总淋雨量最少。
(4) 若雨线方向与跑步方向不在同一平面内即异面时,模型会有什么变化。
二、问题分析人在雨中行走时,行走时间即淋雨时间。
把人看成一个长方体,总淋雨量是各个面淋雨量之和。
为解决雨滴不是连续的,引进雨滴频率P (模型建立部分会做具体阐述)的概念。
对于问题一,在不考虑雨速方向的前提下,人的前、后、左、右以及顶部都会被淋到雨,此时淋雨量只与行走时间及单位时间内的降雨量有关。
雨中行走问题的研究
人们外出行走,途中遇雨,未带雨伞势必淋雨,自然就会想到,走多快才会少淋雨呢?一个简单的情形是只考虑人在雨中沿直线从一处向另一处行进,雨的速度(大小和方向)已知,问行人走的速度多大才能使淋雨量最少。
参与这问题的因素:
降雨的大小;风(降雨)的方向;路程的远近和人跑的快慢。
分析:
淋雨量在数学上如何表示?
假设
1. 人行走的路线为直线,行走距离为L
选择适当的直角坐标系,使人行走速度为:v1=(u,0,0),则行走的时间为L/u.
2. 雨的速度不变,记为:v2=(vx,vy,vz)
相对速度:v= v2- v1 =(vx-u,vy,vz)
3. 人体为长方体,其前、侧、顶的面积之比为1:b:c
单位时间内的淋雨量: | vx -u|+| vy |b+| vz |c
从而总淋雨量:
R(u)=(| vx -u|+| vy |b+| vz |c)T (行走的时间为L/u)
=(| vx -u| +a)L/u (a=| vy |b+| vz |c >0)
于是雨中行走问题抽象成如下数学问题:
已知L,Vx,a,求u为何值时R(u)最小?
1. Vx > 0
vx >a的情形(有最小值)vx a时, u=vx才使取最小值Rmin=La/Vx
当vx a>0时,取u=Vx可使前后不淋雨,其淋雨总量最小,其它情况下,都应使u尽可能大,才能使淋雨量尽可能小,这比较符合人们生活的常识。
在冰雪和雨天行走时,防止滑倾是非常重要的安全问题。
不良的天气条件容易导致地面湿滑,增加人们行走时摔倒的风险。
为了有效预防意外事件的发生,有必要采取一些安全小贴士和措施。
本文将就如何防止在冰雪和雨天行走时滑倾提供一些实用建议。
一、冰雪天行走的安全小贴士1. 步履稳健:在结冰或积雪的路面上行走时,一定要保持步伐稳健,避免突然转弯或急停,以免摔倒。
2. 穿着适当的鞋子:选择具有防滑功能的鞋子,如橡胶底的靴子或专门的防滑鞋,可以增加脚下的摩擦力,减少滑倾的可能性。
3. 手持辅助物品:在需要的情况下,可以手持拐杖、雪杖或其他辅助物品,增加身体的平衡感,稳定行走。
4. 避开积雪深浅不一的地方:尽量选择已经被清理过的路面行走,避免行走在积雪深浅不一的地方,以免不稳定造成滑倾。
二、雨天行走的安全小贴士1. 选择合适的鞋子:在雨天行走时,选择防水、防滑的鞋子是非常重要的,可以有效避免因为湿滑路面而滑倾。
2. 注意行走姿势:雨天路面湿滑,行走时要尽量保持身体垂直,脚步稳健,避免突然转向或急刹车,以免滑倾。
3. 使用雨具:及时使用雨伞或雨衣等雨具,避免雨水淋湿身体和衣服,减少滑倾的风险。
4. 注意行走环境:雨天路面容易积水,行走时要留意积水区域,尽量绕开,避免造成滑倾事故。
三、其他注意事项:1. 提前规划行程:在天气条件不好的情况下,提前规划好行程,选择安全通行的路线,避免走在危险的路段。
2. 注意周围环境:在行走时要时刻留意周围的环境,避免与他人相撞或被车辆溅起的水花影响行走稳定性。
3. 保持警惕:无论是冰雪天还是雨天,都要保持高度警惕,避免因为大意而造成意外事件的发生。
总之,在冰雪和雨天行走时,防止滑倾是每个人都应该重视的安全问题。
通过采取一些简单的安全小贴士和措施,可以有效降低滑倾事故发生的风险,确保自身和他人的安全。
希望以上建议对大家在恶劣天气下的行走提供一些帮助,让我们共同营造一个安全的行走环境。
队号:第四队成员:刘桂清、徐丽蓉、林雪梅指导老师:刘于江老师雨中行走少淋雨问题真题摘要建一模型说明当你在雨中行走又想少淋雨时,应当如下做:(1)若你行走的方向是顺风且雨的夹角至少为,你应以雨速水平分量的速度行走,以便使雨相对于你是垂直下落的(2)在其他情况下,你都应以最快的速度行走。
关键词:少淋雨;雨速的水平分量;夹角;人速1.问题的重述当下雨时,假如你当时没带雨伞你又不得不从A地走到B地,该如何行走才能少淋到雨呢?针对这个问题,建立合理的数学模型。
讨论一下,人在顺风行走时,你以雨速的水平分量的速度走时,雨的夹角至少是多少?进而近一步讨论,在其他情况下,你都应以最快的速度行走。
2.模型的假设与符号说明2.1模型的假设(1)把人体看作长方体,底边长a米、宽为b米;高为h米;(2)风速保持不变,人速以V(m/s)匀速行走;(3)人从A地行走到B地,路程为L=1000米;2.2符号说明a 人体的宽度 (m)b 人体的厚度 (m)h 人体的身高 (m)V 人的速度(m/s)ν风速(雨速)(m/s)L 人行走的路程 (m)θ下雨的方向与人的夹角t 人在雨中行走的时间 (s)ρ降雨密度3.模型的建立与求解(1)考虑人在顺风行走时,此种情况下,如图:人淋雨的部位有头、背后,则:头顶的淋雨量:C1=VLabθρνcos侧面的淋雨量:C2=VVLbh)sin(θνρ-总淋雨量: C=C1+C2=VVhaLb)]sin(cos[θνθνρ-+结论:可以看出总淋雨量与速度.角度有关,且与人的速度成反比,当V=νsinθ时,即=θarcsinνV,总淋雨量C最小。
所以,上述情况就转化为与θ有关的问题:(1)当0=θ时C=VhV a Lb )(+νρ=ρρνLbh VLab +结论:可以看出总淋雨量与人的行走速度成反比,当速度尽可能大的时候,淋雨量越小。
(2)当4πθ=时C=VV h a Lb )]22(22[ννρ-+=VLab νρ22+h Lb ρ-Vh Lb νρ22=(Vh Lbb a ρ22)1-+h Lb ρ结论:可以看出总淋雨量与人的行走速度成反比,当速度尽可能大的时候,淋雨量越小。
雨中行走问题数学模型案例
一个常见的数学模型案例是“雨中行走”问题。
在这个问题中,假设有一个人需要从一个地方到另一个地方,但是正在下雨。
人可以以一定的速度行走,但是会因为雨水而放慢速度。
问如何确定最快的路线,使得从起点到终点的时间最短。
为了建立这个数学模型,可以采用以下假设和变量:
1. 假设下雨时,人的行走速度是正常时的百分之多少,这个值称为“减速因子”。
假设减速因子为x%,则雨中行走的速度为正常速度的x%。
2. 假设人在雨中行走时的速度是与雨水的强度相关的。
可以假设速度与雨水强度成正比,即速度v与雨水强度I之间存在关系v = kI (其中k为比例常数)。
3. 假设人在雨中行走的路径是直线。
1
根据上述假设和变量,可以建立以下数学模型:
1. 定义起点和终点的坐标(x1,y1)和(x2,y2)。
2. 定义每个点(x,y)处的雨水强度I。
3. 计算人在一段距离(Δx,Δy)内花费的时间t:t = l / (v * x / 100),其中l是距离,v是速度,x是减速因子。
4. 计算从起点到终点的路线上每个点(x,y)的雨水强度I。
5. 根据模型3计算从起点到终点的每个区间的时间t,并将它们的
和作为总时间T。
6. 通过改变减速因子x,并重新计算总时间T,找到最小的总时间
对应的减速因子x,确定最快的路线。
这样,通过数学模型,可以帮助人们确定在雨中行走时最快的路线。
2。
承 诺 书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D 中选择一项填写): A 我们的参赛报名号为(如果赛区设置报名号的话): J2202所属学校(请填写完整的全名): 江西环境工程学院 参赛队员 (打印并签名) :1. 余钦玉 2. 李宇蒙 3. 钟世鸣 指导教师或指导教师组负责人 (打印并签名) 教练组 日期: 2012年 8月9日赛区评阅编号(由赛区组委会评阅前进行编号):通范高中。
在通电,根据空载与整使电力保护高保机组编 号 专 用 页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):、管路敷设技术不规范高中资料试卷问题,而且可保障各类管路习题到位。
在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。
管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。
线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷、电气课件中调试进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。