高二数学必修5综合检测题
- 格式:doc
- 大小:95.13 KB
- 文档页数:2
必修5综合测试题(2010.11)班级 姓名一、选择题1. 数列1,3,6,10,…的一个通项公式是( )A. a n =n 2-(n-1) B . a n =n 2-1 C. a n =2)1(+n n D. a n =2)1(-n n 2. 2b ac =是a,b,c 成等比数列的( )A 、充分非必要条件B 、必要非充分条件C 、充要条件D 、既不充分也非必要条件 3.已知等差数列{a n }的公差d ≠0,若a 5、a 9、a 15成等比数列,那么公比为 ( )A .B .C .D .4. 等差数列{a n }共有2n+1项,其中奇数项之和为4,偶数项之和为3,则n 的值是( )A.3B.5C.7D.9 5.△ABC 中,cos cos A aB b=,则△ABC 一定是( ) A .等腰三角形 B .直角三角形C .等腰直角三角形D .等边三角形6.已知△ABC 中,a =4,b =43,∠A =30°,则∠B 等于( )A .30°B .30°或150°C .60°D .60°或120°7. 在△ABC 中,∠A =60°,a =6,b =4,满足条件的△ABC( )(A )无解 (B )有解 (C )有两解 (D )不能确定 8.若110a b<<,则下列不等式中,正确的不等式有 ( ) ①a b ab +< ②a b > ③a b < ④2b aa b+>A .1个B .2个C .3个D .4个 9.下列不等式中,对任意x ∈R 都成立的是 ( )A .2111x <+ B .x 2+1>2x C .lg(x 2+1)≥lg2x D .244xx +≤110. 下列不等式的解集是空集的是( )A.x 2-x+1>0B.-2x 2+x+1>0C.2x -x 2>5D.x 2+x>211.不等式组 (5)()0,03x y x y x -++≥⎧⎨≤≤⎩表示的平面区域是( )A 。
高中数学(人教版)必修五第二章数列综合测试卷本试卷满分150分,其中选择题共75分,填空题共25分,解答题共50分。
试卷难度:0.63一.选择题(共15小题,满分75分,每小题5分)1.(5分)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1B.2C.4D.82.(5分)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏3.(5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440B.330C.220D.1104.(5分)已知数列{a n}、{b n}、{c n},以下两个命题:①若{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,则{a n}、{b n}、{c n}都是递增数列;②若{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,则{a n}、{b n}、{c n}都是等差数列;下列判断正确的是()A.①②都是真命题B.①②都是假命题C.①是真命题,②是假命题D.①是假命题,②是真命题5.(5分)一给定函数y=f(x)的图象在下列图中,并且对任意a1∈(0,1),=f(a n)得到的数列{a n}满足a n+1>a n,n∈N*,则该函数的图象是由关系式a n+1()A.B.C.D.6.(5分)若数列{a n},{b n}的通项公式分别为a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,则实数a的取值范围是()A.B.[﹣1,1)C.[﹣2,1)D.7.(5分)数列{a n}是正项等比数列,{b n}是等差数列,且a6=b7,则有()A.a3+a9≤b4+b10B.a3+a9≥b4+b10C.a3+a9≠b4+b10D.a3+a9与b4+b10大小不确定8.(5分)已知数列{a n}满足:a1=1,a n+1=(n∈N*)若(n∈N*),b1=﹣λ,且数列{b n}是单调递增数列,则实数λ的取值范围是()A.B.λ<1C.D.9.(5分)设△A n B n C n的三边长分别是a n,b n,c n,△A n B n C n的面积为S n,n∈N*,若b1>c1,b1+c1=2a1,b n+1=,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列10.(5分)《张丘建算经》是我国南北朝时期的一部重要数学著作,书中系统的介绍了等差数列,同类结果在三百多年后的印度才首次出现.书中有这样一个问题,大意为:某女子善于织布,后一天比前一天织的快,而且每天增加的数量相同,已知第一天织布5尺,一个月(按30天计算)总共织布390尺,问每天增加的数量为多少尺?该问题的答案为()A.尺B.尺C.尺D.尺11.(5分)已知数列{a n}为等差数列,S n其前n项和,且a2=3a4﹣6,则S9等于()A.25B.27C.50D.5412.(5分)《九章算术》是我国古代的数字名著,书中《均属章》有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各德几何.”其意思为“已知A、B、C、D、E五人分5钱,A、B两人所得与C、D、E三人所得相同,且A、B、C、D、E每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,E所得为()A.钱B.钱C.钱D.钱13.(5分)已知等差数列{a n}的前n项和为s n,且S2=10,S5=55,则过点P(n,a n),Q(n+2,a n+2)(n∈N*)的直线的斜率为()A.4B.C.﹣4D.﹣14.(5分)已知等差数列{a n}的前n项和为S n,且S3=9,a2a4=21,数列{b n}满足,若,则n的最小值为()A.6B.7C.8D.915.(5分)已知函数f(x)的图象关于x=﹣1对称,且f(x)在(﹣1,+∞)上单调,若数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),则{a n}的前100项的和为()A.﹣200B.﹣100C.﹣50D.0二.填空题(共5小题,满分25分,每小题5分)16.(5分)等比数列{a n}的各项均为实数,其前n项为S n,已知S3=,S6=,则a8=.17.(5分)等差数列{a n}的前n项和为S n,a3=3,S4=10,则=.18.(5分)“中国剩余定理”又称“孙子定理”.1852年英国来华传教伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2017这2016个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{a n },则此数列的项数为.19.(5分)已知无穷数列{a n },a 1=1,a 2=2,对任意n ∈N *,有a n +2=a n ,数列{b n }满足b n +1﹣b n =a n (n ∈N *),若数列中的任意一项都在该数列中重复出现无数次,则满足要求的b 1的值为.20.(5分)设数列{a n }的通项公式为a n =n 2+bn ,若数列{a n }是单调递增数列,则实数b 的取值范围为.三.解答题(共5小题,满分50分,每小题10分)21.(10分)对于给定的正整数k ,若数列{a n }满足:a n ﹣k +a n ﹣k +1+…+a n ﹣1+a n +1+…+a n +k ﹣1+a n +k =2ka n 对任意正整数n (n >k )总成立,则称数列{a n }是“P (k )数列”.(1)证明:等差数列{a n }是“P (3)数列”;(2)若数列{a n }既是“P (2)数列”,又是“P (3)数列”,证明:{a n }是等差数列.22.(10分)设{a n }和{b n }是两个等差数列,记c n =max {b 1﹣a 1n ,b 2﹣a 2n ,…,b n ﹣a n n }(n=1,2,3,…),其中max {x 1,x 2,…,x s }表示x 1,x 2,…,x s 这s 个数中最大的数.(1)若a n =n ,b n =2n ﹣1,求c 1,c 2,c 3的值,并证明{c n }是等差数列;(2)证明:或者对任意正数M ,存在正整数m ,当n ≥m 时,>M ;或者存在正整数m ,使得c m ,c m +1,c m +2,…是等差数列.23.(10分)已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5. (Ⅰ)求{a n }的通项公式;(Ⅱ)求和:b 1+b 3+b 5+…+b 2n ﹣1.24.(10分)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=﹣6.(1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.25.(10分)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3﹣x 2=2. (Ⅰ)求数列{x n }的通项公式;(Ⅱ)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1,1),P 2(x 2,2)…P n +1(x n +1,n +1)得到折线P 1 P 2…P n +1,求由该折线与直线y=0,x=x 1,x=x n +1所围成的区域的面积T n.高中数学(人教版)必修五第二章数列综合测试卷参考答案与试题解析一.选择题(共15小题,满分75分,每小题5分)1.(5分)(2017•新课标Ⅰ)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1B.2C.4D.8【考点】85:等差数列的前n项和;84:等差数列的通项公式.【专题】11 :计算题;34 :方程思想;4O:定义法;54 :等差数列与等比数列.【分析】利用等差数列通项公式及前n项和公式列出方程组,求出首项和公差,由此能求出{a n}的公差.【解答】解:∵S n为等差数列{a n}的前n项和,a4+a5=24,S6=48,∴,解得a1=﹣2,d=4,∴{a n}的公差为4.故选:C.【点评】本题考查等差数列的面公式的求法及应用,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.2.(5分)(2017•新课标Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏【考点】89:等比数列的前n项和;88:等比数列的通项公式.【专题】11 :计算题;34 :方程思想;54 :等差数列与等比数列.【分析】设这个塔顶层有a盏灯,由题意和等比数列的定义可得:从塔顶层依次向下每层灯数是等比数列,结合条件和等比数列的前n项公式列出方程,求出a 的值.【解答】解:设这个塔顶层有a盏灯,∵宝塔一共有七层,每层悬挂的红灯数是上一层的2倍,∴从塔顶层依次向下每层灯数是以2为公比、a为首项的等比数列,又总共有灯381盏,∴381==127a,解得a=3,则这个塔顶层有3盏灯,故选B.【点评】本题考查了等比数列的定义,以及等比数列的前n项和公式的实际应用,属于基础题.3.(5分)(2017•新课标Ⅰ)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440B.330C.220D.110【考点】8E:数列的求和.【专题】35 :转化思想;4R:转化法;54 :等差数列与等比数列.【分析】方法一:由数列的性质,求得数列{b n}的通项公式及前n项和,可知当N为时(n∈N+),数列{a n}的前N项和为数列{b n}的前n项和,即为2n ﹣n﹣2,容易得到N>100时,n≥14,分别判断,即可求得该款软件的激活码;方法二:由题意求得数列的每一项,及前n项和S n=2n+1﹣2﹣n,及项数,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,分别分别即可求得N的值.【解答】解:设该数列为{a n},设b n=+…+=2n﹣1,(n∈N+),则=a i,由题意可设数列{a n}的前N项和为S N,数列{b n}的前n项和为T n,则T n=21﹣1+22﹣1+…+2n﹣1=2n﹣n﹣2,),数列{a n}的前N项和为数列{b n}的前n项和,可知当N为时(n∈N+即为2n﹣n﹣2,容易得到N>100时,n≥14,A项,由=435,440=435+5,可知S440=T29+b5=230﹣29﹣2+25﹣1=230,故A 项符合题意.B项,仿上可知=325,可知S330=T25+b5=226﹣25﹣2+25﹣1=226+4,显然不为2的整数幂,故B项不符合题意.C项,仿上可知=210,可知S220=T20+b10=221﹣20﹣2+210﹣1=221+210﹣23,显然不为2的整数幂,故C项不符合题意.D项,仿上可知=105,可知S110=T14+b5=215﹣14﹣2+25﹣1=215+15,显然不为2的整数幂,故D项不符合题意.故选A.方法二:由题意可知:,,,…,根据等比数列前n项和公式,求得每项和分别为:21﹣1,22﹣1,23﹣1, (2)﹣1,每项含有的项数为:1,2,3,…,n,总共的项数为N=1+2+3+…+n=,所有项数的和为S n:21﹣1+22﹣1+23﹣1+…+2n﹣1=(21+22+23+…+2n)﹣n=﹣n=2n+1﹣2﹣n,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,则①1+2+(﹣2﹣n)=0,解得:n=1,总共有+2=3,不满足N>100,②1+2+4+(﹣2﹣n)=0,解得:n=5,总共有+3=18,不满足N>100,③1+2+4+8+(﹣2﹣n)=0,解得:n=13,总共有+4=95,不满足N>100,④1+2+4+8+16+(﹣2﹣n)=0,解得:n=29,总共有+5=440,满足N >100,∴该款软件的激活码440.故选A.【点评】本题考查数列的应用,等差数列与等比数列的前n项和,考查计算能力,属于难题.4.(5分)(2017•上海模拟)已知数列{a n}、{b n}、{c n},以下两个命题:①若{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,则{a n}、{b n}、{c n}都是递增数列;②若{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,则{a n}、{b n}、{c n}都是等差数列;下列判断正确的是()A.①②都是真命题B.①②都是假命题C.①是真命题,②是假命题D.①是假命题,②是真命题【考点】81:数列的概念及简单表示法.【专题】11 :计算题;35 :转化思想;4O:定义法;5L :简易逻辑.【分析】对于①不妨设a n=2n,b n=3n、c n=sinn,满足{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,但是不满足c n=sinn是递增数列,对于②根据等差数列的性质和定义即可判断.【解答】解:对于①不妨设a n=2n,b n=3n、c n=sinn,∴{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,但c n=sinn不是递增数列,故为假命题,对于②{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,不妨设公差为分别为a,b,c,∴a n+b n﹣a n﹣1﹣b n﹣1=a,b n+c n﹣b n﹣1﹣c n﹣1=b,a n+c n﹣a n﹣1﹣c n﹣1=c,设{a n},{b n}、{c n}的公差为x,y,x,∴则x=,y=,z=,故若{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,则{a n}、{b n}、{c n}都是等差数列,故为真命题,故选:D【点评】本题考查了等差数列的性质和定义,以及命题的真假,属于基础题.5.(5分)(2017•徐汇区校级模拟)一给定函数y=f(x)的图象在下列图中,并且对任意a1∈(0,1),由关系式a n+1=f(a n)得到的数列{a n}满足a n+1>a n,n∈N*,则该函数的图象是()A.B.C.D.【考点】81:数列的概念及简单表示法.【专题】31 :数形结合;51 :函数的性质及应用.=f(a n)得到的数列{a n}满足a n+1>a n(n∈N*),根据点与【分析】由关系式a n+1直线之间的位置关系,我们不难得到,f(x)的图象在y=x上方.逐一分析不难得到正确的答案.=f(a n)>a n知:f(x)的图象在y=x上方.【解答】解:由a n+1故选:A.【点评】本题考查了数列与函数的单调性、数形结合思想方法,考查了推理能力与计算能力,属于基础题.6.(5分)(2017•河东区二模)若数列{a n},{b n}的通项公式分别为a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,则实数a的取值范围是()A.B.[﹣1,1)C.[﹣2,1)D.【考点】82:数列的函数特性.【专题】32 :分类讨论;35 :转化思想;54 :等差数列与等比数列;59 :不等式的解法及应用.【分析】由a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,可得:(﹣1)n+2016•a<2+,对n分类讨论即可得出.【解答】解:a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,∴(﹣1)n+2016•a<2+,n为偶数时:化为a<2﹣,则a<.n为奇数时:化为﹣a<2+,则a≥﹣2.则实数a的取值范围是.故选:D【点评】本题考查了数列通项公式、分类讨论方法、数列的单调性,考查了推理能力与计算能力,属于中档题.7.(5分)(2017•宝清县一模)数列{a n}是正项等比数列,{b n}是等差数列,且a6=b7,则有()A.a3+a9≤b4+b10B.a3+a9≥b4+b10C.a3+a9≠b4+b10D.a3+a9与b4+b10大小不确定【考点】82:数列的函数特性.【专题】54 :等差数列与等比数列.【分析】由于{b n}是等差数列,可得b4+b10=2b7.已知a6=b7,于是b4+b10=2a6.由于数列{a n}是正项等比数列,可得a3+a9=≥=2a6.即可得出.【解答】解:∵{b n}是等差数列,∴b4+b10=2b7,∵a6=b7,∴b4+b10=2a6,∵数列{a n}是正项等比数列,∴a3+a9=≥=2a6,∴a3+a9≥b4+b10.【点评】本题考查了等差数列与等比数列的性质、基本不等式的性质,属于中档题.8.(5分)(2017•湖北模拟)已知数列{a n}满足:a1=1,a n+1=(n∈N*)若(n∈N*),b1=﹣λ,且数列{b n}是单调递增数列,则实数λ的取值范围是()A.B.λ<1C.D.【考点】82:数列的函数特性.【专题】11 :计算题;35 :转化思想;4O:定义法;54 :等差数列与等比数列.【分析】根据数列的递推公式可得数列{+1}是等比数列,首项为+1=2,公=(n﹣2λ)•2n,根据数列的单调性即可求出λ的范围.比为2,再代值得到b n+1【解答】解:∵数列{a n}满足:a1=1,a n+1=(n∈N*),∴=+1,化为+1=+2∴数列{+1}是等比数列,首项为+1=2,公比为2,∴+1=2n,=(n﹣2λ)(+1)=(n﹣2λ)•2n,∴b n+1∵数列{b n}是单调递增数列,>b n,∴b n+1∴(n﹣2λ)•2n>(n﹣1﹣2λ)•2n﹣1,解得λ<1,但是当n=1时,b2>b1,∵b1=﹣λ,∴(1﹣2λ)•2>﹣λ,故选:A.【点评】本题考查了变形利用等比数列的通项公式的方法、单调递增数列,考查了推理能力与计算能力,属于中档题.9.(5分)(2017•海淀区校级模拟)设△A n B n C n的三边长分别是a n,b n,c n,△A nB nC n的面积为S n,n∈N*,若b1>c1,b1+c1=2a1,b n+1=,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列【考点】82:数列的函数特性.【专题】54 :等差数列与等比数列;58 :解三角形;59 :不等式的解法及应用.【分析】由a n=a n可知△A n B n C n的边B n C n为定值a1,由b n+1+c n+1﹣2a1=(b n+c n+1﹣2a n),b1+c1=2a1得b n+c n=2a1,则在△A n B n C n中边长B n C n=a1为定值,另两边A n C n、A n B n的长度之和b n+c n=2a1为定值,由此可知顶点A n在以B n、C n为焦点的椭圆上,根据b n﹣c n+1=(c n﹣b n),得b n﹣c n=,可知n→+∞时b n→c n,+1据此可判断△A n B n C n的边B n C n的高h n随着n的增大而增大,再由三角形面积公式可得到答案.【解答】解:b1=2a1﹣c1且b1>c1,∴2a1﹣c1>c1,∴a1>c1,∴b1﹣a1=2a1﹣c1﹣a1=a1﹣c1>0,∴b1>a1>c1,又b1﹣c1<a1,∴2a1﹣c1﹣c1<a1,∴2c1>a1,∴c1,+c n+1=+a n,∴b n+1+c n+1﹣2a n=(b n+c n﹣2a n),由题意,b n+1∴b n+c n﹣2a n=0,∴b n+c n=2a n=2a1,∴b n+c n=2a1,﹣c n+1=,又由题意,b n+1∴b n﹣(2a1﹣b n+1)==a1﹣b n,b n+1﹣a1=(a1﹣b n)=(b1 +1﹣a1).∴b n=a1+(b1﹣a1),c n=2a1﹣b n=a1﹣(b1﹣a1),=•=单调递增.可得{S n}单调递增.故选:B.【点评】本题主要考查由数列递推式求数列通项、三角形面积海伦公式,综合考查学生分析解决问题的能力,有较高的思维抽象度,属于难题.10.(5分)(2017•汉中二模)《张丘建算经》是我国南北朝时期的一部重要数学著作,书中系统的介绍了等差数列,同类结果在三百多年后的印度才首次出现.书中有这样一个问题,大意为:某女子善于织布,后一天比前一天织的快,而且每天增加的数量相同,已知第一天织布5尺,一个月(按30天计算)总共织布390尺,问每天增加的数量为多少尺?该问题的答案为()A.尺B.尺C.尺D.尺【考点】84:等差数列的通项公式.【专题】11 :计算题;34 :方程思想;4O:定义法;54 :等差数列与等比数列.【分析】由题意,该女子从第一天起,每天所织的布的长度成等差数列,其公差为d,由等差数列的前n项和公式能求出公差.【解答】解:由题意,该女子从第一天起,每天所织的布的长度成等差数列,记为:a1,a2,a3,…,a n,其公差为d,则a1=5,S30=390,∴=390,∴d=.故选:B.【点评】本题查等差数列的公差的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.11.(5分)(2017•徐水县模拟)已知数列{a n}为等差数列,S n其前n项和,且a2=3a4﹣6,则S9等于()A.25B.27C.50D.54【考点】84:等差数列的通项公式.【专题】11 :计算题.【分析】由题意得a2=3a4﹣6,所以得a5=3.所以由等差数列的性质得S9=9a5=27.【解答】解:设数列{a n}的首项为a1,公差为d,因为a2=3a4﹣6,所以a1+d=3(a1+3d)﹣6,所以a5=3.所以S9=9a5=27.故选B.【点评】解决此类题目的关键是熟悉等差数列的性质并且灵活利用性质解题.12.(5分)(2017•安徽模拟)《九章算术》是我国古代的数字名著,书中《均属章》有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各德几何.”其意思为“已知A、B、C、D、E五人分5钱,A、B两人所得与C、D、E三人所得相同,且A、B、C、D、E每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,E所得为()A.钱B.钱C.钱D.钱【考点】84:等差数列的通项公式.【专题】11 :计算题;21 :阅读型;33 :函数思想;51 :函数的性质及应用;54 :等差数列与等比数列.【分析】设A=a﹣4d,B=a﹣3d,C=a﹣2d,D=a﹣d,E=a,列出方程组,能求出E所得.【解答】解:由题意:设A=a﹣4d,B=a﹣3d,C=a﹣2d,D=a﹣d,E=a,则,解得a=,故E所得为钱.故选:A.【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质、等差数列的性质的合理运用.13.(5分)(2017•南开区模拟)已知等差数列{a n}的前n项和为s n,且S2=10,S5=55,则过点P(n,a n),Q(n+2,a n+2)(n∈N*)的直线的斜率为()A.4B.C.﹣4D.﹣【考点】84:等差数列的通项公式.【专题】54 :等差数列与等比数列.【分析】设出等差数列的首项和公差,由已知列式求得首项和公差,代入两点求直线的斜率公式得答案.【解答】解:设等差数列{a n}的首项为a1,公差为d,由S2=10,S5=55,得,解得:.∴过点P(n,a n),Q(n+2,a n+2)的直线的斜率为k=.故选:A.【点评】本题考查等差数列的通项公式,考查等差数列的前n项和,训练了两点求直线的斜率公式,是基础题.14.(5分)(2017•枣阳市校级模拟)已知等差数列{a n}的前n项和为S n,且S3=9,a2a4=21,数列{b n}满足,若,则n的最小值为()A.6B.7C.8D.9【考点】84:等差数列的通项公式.【专题】34 :方程思想;35 :转化思想;54 :等差数列与等比数列;59 :不等式的解法及应用.【分析】设等差数列{a n}的公差为d,由S3=9,a2a4=21,可得3a1+d=9,(a1+d)(a1+3d)=21,可得a n.由数列{b n}满足,利用递推关系可得:=.对n取值即可得出.【解答】解:设等差数列{a n}的公差为d,∵S3=9,a2a4=21,∴3a1+d=9,(a1+d)(a1+3d)=21,联立解得:a1=1,d=2.∴a n=1+2(n﹣1)=2n﹣1.∵数列{b n}满足,∴n=1时,=1﹣,解得b1=.n≥2时,+…+=1﹣,∴=.∴b n=.若,则<.n=7时,>.n=8时,<.因此:,则n的最小值为8.故选:C.【点评】本题考查了等差数列通项公式与求和公式、数列递推关系及其单调性,考查了推理能力与计算能力,属于中档题.15.(5分)(2017•安徽一模)已知函数f(x)的图象关于x=﹣1对称,且f(x)在(﹣1,+∞)上单调,若数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),则{a n}的前100项的和为()A.﹣200B.﹣100C.﹣50D.0【考点】84:等差数列的通项公式.【专题】11 :计算题;35 :转化思想;4O:定义法;54 :等差数列与等比数列.【分析】由函数图象关于x=﹣1对称,由题意可得a50+a51=﹣2,运用等差数列的性质和求和公式,计算即可得到所求和.【解答】解:函数f(x)的图象关于x=﹣1对称,数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),可得a50+a51=﹣2,又{a n}是等差数列,所以a1+a100=a50+a51=﹣2,则{a n}的前100项的和为=﹣100故选:B.【点评】本题考查函数的对称性及应用,考查等差数列的性质,以及求和公式,考查运算能力,属于中档题.二.填空题(共5小题,满分25分,每小题5分)16.(5分)(2017•江苏)等比数列{a n}的各项均为实数,其前n项为S n,已知S3=,S6=,则a8=32.【考点】88:等比数列的通项公式.【专题】34 :方程思想;35 :转化思想;54 :等差数列与等比数列.【分析】设等比数列{a n}的公比为q≠1,S3=,S6=,可得=,=,联立解出即可得出.【解答】解:设等比数列{a n}的公比为q≠1,∵S3=,S6=,∴=,=,解得a1=,q=2.则a8==32.故答案为:32.【点评】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.17.(5分)(2017•新课标Ⅱ)等差数列{a n}的前n项和为S n,a3=3,S4=10,则=.【考点】8E:数列的求和;85:等差数列的前n项和.【专题】11 :计算题;35 :转化思想;49 :综合法;54 :等差数列与等比数列.【分析】利用已知条件求出等差数列的前n项和,然后化简所求的表达式,求解即可.【解答】解:等差数列{a n}的前n项和为S n,a3=3,S4=10,S4=2(a2+a3)=10,可得a2=2,数列的首项为1,公差为1,S n=,=,则=2[1﹣++…+]=2(1﹣)=.故答案为:.【点评】本题考查等差数列的求和,裂项消项法求和的应用,考查计算能力.18.(5分)(2017•汕头三模)“中国剩余定理”又称“孙子定理”.1852年英国来华传教伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2017这2016个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{a n},则此数列的项数为134.【考点】81:数列的概念及简单表示法.【专题】11 :计算题;35 :转化思想;4R:转化法;54 :等差数列与等比数列.【分析】由能被3除余1且被5除余1的数就是能被15整除余1的数,运用等差数列通项公式,以及解不等式即可得到所求项数.【解答】解:由能被3除余1且被5除余1的数就是能被15整除余1的数,故a n=15n﹣14.由a n=15n﹣14≤2017得n≤135,∵当n=1时,符合要求,但是该数列是从2开始的,故此数列的项数为135﹣1=134.故答案为:134【点评】本题考查数列模型在实际问题中的应用,考查等差数列的通项公式的运用,考查运算能力,属于基础题19.(5分)(2017•闵行区一模)已知无穷数列{a n},a1=1,a2=2,对任意n∈N*,=a n,数列{b n}满足b n+1﹣b n=a n(n∈N*),若数列中的任意一项都在有a n+2该数列中重复出现无数次,则满足要求的b1的值为2.【考点】81:数列的概念及简单表示法.【专题】35 :转化思想;48 :分析法;5M :推理和证明.【分析】依题意数列{a n}是周期数咧,则可写出数列{a n}的通项,由数列{b n}满足b n﹣b n=a n(n∈N*),可推出b n+1﹣b n=a n=⇒,,+1,,…要使数列中的任意一项都在该数列中重复出现无数次,则b2=b6=b10=…=b2n﹣1,b4=b8=b12=…=b4n,可得b8=b4=3即可,【解答】解:a1=1,a2=2,对任意n∈N*,有a n+2=a n,∴a3=a1=1,a4=a2=2,a5=a3=a1=1,∴a n=﹣b n=a n=,∴b n+1﹣b2n+1=a2n+1=1,b2n+1﹣b2n=a2n=2,∴b2n+2﹣b2n=3,b2n+1﹣b2n﹣1=3∴b2n+2∴b3﹣b1=b5﹣b3=…=b2n+1﹣b2n﹣1=3,b4﹣b2=b6﹣b4=b8﹣b6=…=b2n﹣b2n﹣2=3,b2﹣b1=1,,,,,,,…,=b4n﹣2∵数列中的任意一项都在该数列中重复出现无数次,∴b2=b6=b10=…=b4n﹣2,b4=b8=b12=…=b4n,解得b8=b4=3,b2=3,∵b2﹣b1=1,∴b1=2,故答案为:2【点评】本题考查了数列的推理与证明,属于难题.20.(5分)(2017•青浦区一模)设数列{a n}的通项公式为a n=n2+bn,若数列{a n}是单调递增数列,则实数b的取值范围为(﹣3,+∞).【考点】82:数列的函数特性.【专题】35 :转化思想;54 :等差数列与等比数列;59 :不等式的解法及应用.【分析】数列{a n}是单调递增数列,可得∀n∈N*,a n+1>a n,化简整理,再利用数列的单调性即可得出.【解答】解:∵数列{a n}是单调递增数列,∴∀n∈N*,a n>a n,+1(n+1)2+b(n+1)>n2+bn,化为:b>﹣(2n+1),∵数列{﹣(2n+1)}是单调递减数列,∴n=1,﹣(2n+1)取得最大值﹣3,∴b>﹣3.即实数b的取值范围为(﹣3,+∞).故答案为:(﹣3,+∞).【点评】本题考查了数列的单调性及其通项公式、不等式的解法,考查了推理能力与计算能力,属于中档题.三.解答题(共5小题,满分50分,每小题10分)21.(10分)(2017•江苏)对于给定的正整数k ,若数列{a n }满足:a n ﹣k +a n ﹣k +1+…+a n ﹣1+a n +1+…+a n +k ﹣1+a n +k =2ka n 对任意正整数n (n >k )总成立,则称数列{a n }是“P (k )数列”.(1)证明:等差数列{a n }是“P (3)数列”;(2)若数列{a n }既是“P (2)数列”,又是“P (3)数列”,证明:{a n }是等差数列.【考点】8B :数列的应用.【专题】23 :新定义;35 :转化思想;4R :转化法;54 :等差数列与等比数列.【分析】(1)由题意可知根据等差数列的性质,a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3=(a n ﹣3+a n +3)+(a n ﹣2+a n +2)+(a n ﹣1+a n +1)═2×3a n ,根据“P (k )数列”的定义,可得数列{a n }是“P (3)数列”;(2)由已知条件结合(1)中的结论,可得到{a n }从第3项起为等差数列,再通过判断a 2与a 3的关系和a 1与a 2的关系,可知{a n }为等差数列.【解答】解:(1)证明:设等差数列{a n }首项为a 1,公差为d ,则a n =a 1+(n ﹣1)d ,则a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3,=(a n ﹣3+a n +3)+(a n ﹣2+a n +2)+(a n ﹣1+a n +1),=2a n +2a n +2a n ,=2×3a n ,∴等差数列{a n }是“P (3)数列”;(2)证明:当n ≥4时,因为数列{a n }是P (3)数列,则a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3=6a n ,①,因为数列{a n }是“P (2)数列”,所以a n ﹣3+a n ﹣3+a n +a n +1=4a n ﹣1,②,a n ﹣1+a n +a n +2+a n +3=4a n +1,③,②+③﹣①,得2a n =4a n ﹣1+4a n +1﹣6a n ,即2a n =a n ﹣1+a n +1,(n ≥4),因此n ≥4从第3项起为等差数列,设公差为d ,注意到a 2+a 3+a 5+a 6=4a 4, 所以a 2=4a 4﹣a 3﹣a 5﹣a 6=4(a 3+d )﹣a 3﹣(a 3+2d )﹣(a 3+3d )=a 3﹣d ,因为a1+a2+a4+a5=4a3,所以a1=4a3﹣a2﹣a4﹣a5=4(a2+d)﹣a2﹣(a2+2d)﹣(a2+3d)=a2﹣d,也即前3项满足等差数列的通项公式,所以{a n}为等差数列.【点评】本题考查等差数列的性质,考查数列的新定义的性质,考查数列的运算,考查转化思想,属于中档题.22.(10分)(2017•北京)设{a n}和{b n}是两个等差数列,记c n=max{b1﹣a1n,b2﹣a2n,…,b n﹣a n n}(n=1,2,3,…),其中max{x1,x2,…,x s}表示x1,x2,…,x s这s个数中最大的数.(1)若a n=n,b n=2n﹣1,求c1,c2,c3的值,并证明{c n}是等差数列;(2)证明:或者对任意正数M,存在正整数m,当n≥m时,>M;或者存在正整数m,使得c m,c m+1,c m+2,…是等差数列.【考点】8B:数列的应用;8C:等差关系的确定.【专题】32 :分类讨论;4R:转化法;54 :等差数列与等比数列.【分析】(1)分别求得a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,代入即可求得c1,c2,c3;由(b k﹣na k)﹣(b1﹣na1)≤0,则b1﹣na1≥b k﹣na k,则c n=b1﹣na1=1﹣c n=﹣1对∀n∈N*均成立;﹣n,c n+1(2)由b i﹣a i n=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),分类讨论d1=0,d1>0,d1<0三种情况进行讨论根据等差数列的性质,即可求得使得c m,c m+1,c m+2,…是等差数列;设=An+B+对任意正整数M,存在正整数m,使得n≥m,>M,分类讨论,采用放缩法即可求得因此对任意正数M,存在正整数m,使得当n≥m时,>M.【解答】解:(1)a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,当n=1时,c1=max{b1﹣a1}=max{0}=0,当n=2时,c2=max{b1﹣2a1,b2﹣2a2}=max{﹣1,﹣1}=﹣1,当n=3时,c3=max{b1﹣3a1,b2﹣3a2,b3﹣3a3}=max{﹣2,﹣3,﹣4}=﹣2,下面证明:对∀n∈N*,且n≥2,都有c n=b1﹣na1,当n∈N*,且2≤k≤n时,则(b k﹣na k)﹣(b1﹣na1),=[(2k﹣1)﹣nk]﹣1+n,=(2k﹣2)﹣n(k﹣1),=(k﹣1)(2﹣n),由k﹣1>0,且2﹣n≤0,则(b k﹣na k)﹣(b1﹣na1)≤0,则b1﹣na1≥b k﹣na k,因此,对∀n∈N*,且n≥2,c n=b1﹣na1=1﹣n,c n+1﹣c n=﹣1,∴c2﹣c1=﹣1,∴c n﹣c n=﹣1对∀n∈N*均成立,+1∴数列{c n}是等差数列;(2)证明:设数列{a n}和{b n}的公差分别为d1,d2,下面考虑的c n取值,由b1﹣a1n,b2﹣a2n,…,b n﹣a n n,考虑其中任意b i﹣a i n,(i∈N*,且1≤i≤n),则b i﹣a i n=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n,=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),下面分d1=0,d1>0,d1<0三种情况进行讨论,①若d1=0,则b i﹣a i n═(b1﹣a1n)+(i﹣1)d2,当若d2≤0,则(b i﹣a i n)﹣(b1﹣a1n)=(i﹣1)d2≤0,则对于给定的正整数n而言,c n=b1﹣a1n,此时c n+1﹣c n=﹣a1,∴数列{c n}是等差数列;当d2>0,(b i﹣a i n)﹣(b n﹣a n n)=(i﹣n)d2>0,则对于给定的正整数n而言,c n=b n﹣a n n=b n﹣a1n,﹣c n=d2﹣a1,此时c n+1∴数列{c n}是等差数列;此时取m=1,则c1,c2,…,是等差数列,命题成立;②若d1>0,则此时﹣d1n+d2为一个关于n的一次项系数为负数的一次函数,故必存在m∈N*,使得n≥m时,﹣d1n+d2<0,则当n≥m时,(b i﹣a i n)﹣(b1﹣a1n)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i≤n),因此当n≥m时,c n=b1﹣a1n,此时c n﹣c n=﹣a1,故数列{c n}从第m项开始为等差数列,命题成立;+1③若d1<0,此时﹣d1n+d2为一个关于n的一次项系数为正数的一次函数,故必存在s∈N*,使得n≥s时,﹣d1n+d2>0,则当n≥s时,(b i﹣a i n)﹣(b n﹣a n n)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i ≤n),因此,当n≥s时,c n=b n﹣a n n,此时==﹣a n+,=﹣d2n+(d1﹣a1+d2)+,令﹣d1=A>0,d1﹣a1+d2=B,b1﹣d2=C,下面证明:=An+B+对任意正整数M,存在正整数m,使得n≥m,>M,若C≥0,取m=[+1],[x]表示不大于x的最大整数,当n≥m时,≥An+B≥Am+B=A[+1]+B>A•+B=M,此时命题成立;若C<0,取m=[]+1,当n≥m时,≥An+B+≥Am+B+C>A•+B+C≥M﹣C﹣B+B+C=M,此时命题成立,因此对任意正数M,存在正整数m,使得当n≥m时,>M;综合以上三种情况,命题得证.【点评】本题考查数列的综合应用,等差数列的性质,考查与不等式的综合应用,考查“放缩法”的应用,考查学生分析问题及解决问题的能力,考查分类讨论及转化思想,考查计算能力,属于难题.23.(10分)(2017•北京)已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求和:b1+b3+b5+…+b2n﹣1.【考点】8E:数列的求和;8M:等差数列与等比数列的综合.【专题】11 :计算题;35 :转化思想;49 :综合法;54 :等差数列与等比数列.【分析】(Ⅰ)利用已知条件求出等差数列的公差,然后求{a n}的通项公式;(Ⅱ)利用已知条件求出公比,然后求解数列的和即可.【解答】解:(Ⅰ)等差数列{a n},a1=1,a2+a4=10,可得:1+d+1+3d=10,解得d=2,所以{a n}的通项公式:a n=1+(n﹣1)×2=2n﹣1.(Ⅱ)由(Ⅰ)可得a5=a1+4d=9,等比数列{b n}满足b1=1,b2b4=9.可得b3=3,或﹣3(舍去)(等比数列奇数项符号相同).∴q2=3,}是等比数列,公比为3,首项为1.{b2n﹣1b1+b3+b5+…+b2n﹣1==.【点评】本题考查等差数列与等比数列的应用,数列求和以及通项公式的求解,考查计算能力.24.(10分)(2017•新课标Ⅰ)记S n为等比数列{a n}的前n项和.已知S2=2,S3=﹣6.(1)求{a n}的通项公式;(2)求S n,并判断S n+1,S n,S n+2是否成等差数列.【考点】8E:数列的求和;89:等比数列的前n项和.【专题】35 :转化思想;4R:转化法;54 :等差数列与等比数列.【分析】(1)由题意可知a3=S3﹣S2=﹣6﹣2=﹣8,a1==,a2==,由a1+a2=2,列方程即可求得q及a1,根据等比数列通项公式,即可求得{a n}的通项公式;(2)由(1)可知.利用等比数列前n项和公式,即可求得S n,分别求得S n+1,S n+2,显然S n+1+S n+2=2S n,则S n+1,S n,S n+2成等差数列.。
2014—2015学年度第一学期期中考试高二文科数学试题(A )(必修五)一、选择题(每题5分,共10小题)1.设a 、b 、c 、d∈R,且a >b,c >d,则下列结论正确的是( ) A .a+c >b+dB .a-c >b-dC .ac >bdD .a d >b c211两数的等比中项是( ) A .2B .-2C .±2D .以上均不是3.若三角形三边长的比为5∶7∶8,则它的最大角和最小角的和是( ) A .90°B .120°C .135°D .150°4.数列{a n }中,2n a 2n 29n 3=-++,则此数列最大项的值是( )A .103B .11088C .11038D .1085.若△ABC 的周长等于20,面积是BC 边的长是 ( ) A .5B .6C .7D .86.在数列{a n }中,a 1=1,a n a n-1=a n-1+(-1)n(n≥2,n∈N *),则35a a 的值是( ) A .1516B .158C .34 D .387.在△ABC 中,角A ,B 均为锐角,且cosA >sinB ,则△ABC 的形状是( ) A .直角三角形 B .锐角三角形C .钝角三角形D .等腰三角形8.在等差数列{a n }中,2(a 1+a 4+a 7)+3(a 9+a 11)=24,则此数列的前13项之和等于( ) A .13B .26C .52D .1569.数列222222235721,,,,122334(1)n n n +⋅⋅⋅⨯⨯⨯+的前n 项的和是 ( )A . 211n-B .211n+C .211(1)n ++ D .211(1)n -+ 10.已知不等式(x + y )(1x + ay)≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为( )A .2B .4C .6D .8二、填空题(每题5分,共5小题) 11.数列{a n }的通项公式a n =1n n ++,则103-是此数列的第 项.12. 设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =1,b =2,cos C =14,则sin B =________.13. 已知点(x,y )满足x 0y 0x y 1≥⎧⎪≥⎨⎪+≤⎩,则u=y-x 的取值范围是_______.14.如图,在四边形ABCD 中,已知AD⊥CD,AD =10,AB =14,∠BDA=60°,∠BCD=135°,则BC 的长为______. 15.在△ABC 中,给出下列结论:①若a 2>b 2+c 2,则△ABC 为钝角三角形; ②若a 2=b 2+c 2+bc,则角A 为60°; ③若a 2+b 2>c 2,则△ABC 为锐角三角形; ④若A∶B∶C=1∶2∶3,则a∶b∶c=1∶2∶3. 其中正确结论的序号为 . 三、解答题(共6小题,共75分)16.(12分)已知不等式ax 2-3x+6>4的解集为{x|x<1或x>b}. (1)求a,b .(2)解不等式ax 2-(ac+b )x+bc<0.17.(12分)在△ABC中,内角A,B,C的对边分别为a,b,c,且b sin A=3a cos B.(1)求角B的大小;(2)若b=3,sin C=2sin A,求a,c的值.18.(12分)设数列{a n}的前n项和为S n=2a n-2n.(1)求a3,a4; (2)证明:{a n+1-2a n}是等比数列;(3)求{a n}的通项公式.19.(12分)设函数()cosfθθθ=+,其中,角θ的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P(x,y),且0≤θ≤π.(1)若点P的坐标为12⎛⎝⎭,求f(θ)的值;(2)若点P(x,y)为平面区域Ω:1,1,1x yxy+≥⎧⎪≤⎨⎪≤⎩上的一个动点,试确定角θ的取值范围,并求函数f(θ)的最小值和最大值.20.(13分)某书商为提高某套丛书的销量,准备举办一场展销会.据市场调查,当每套丛书售价定为x 元时,销售量可达到15-0.1x 万套.现出版社为配合该书商的活动,决定进行价格改革,将每套丛书的供货价格分成固定价格和浮动价格两部分,其中固定价格为30元,浮动价格(单位:元)与销售量(单位:万套)成反比,比例系数为10.假设不计其他成本,即销售每套丛书的 利润=售价-供货价格,问:(1)每套丛书定价为100元时,书商能获得的总利润是多少万元? (2)每套丛书定价为多少元时,单套丛书的利润最大?21.(本小题满分14分)已知数列{}n a 的各项排成如图所示的三角形数阵,数阵中每一行的第一个数1247,,,,a a a a ⋅⋅⋅构成等差数列{}n b ,n S 是{}n b 的前n 项和,且1151,15b a S ===(1)若数阵中从第三行开始每行中的数按从左到右的顺序均构成公比为正数的等比数列,且公比相等,已知916a =,求50a 的值; (2)设122111n n n nT S S S ++=++⋅⋅⋅+,求n T .参考答案1.设a 、b 、c 、d∈R,且a >b,c >d,则下列结论正确的是( ) (A )a+c >b+d (B )a-c >b-d (C )ac >bd (D )a d >b c1.【解析】选A .由不等式的可加性可知a+c >b+d, 而当a=2,b=1,c=-2,d=-3时,B 不一定成立, C ,D 中a 、b 、c 、d 符号不定,不一定成立. 2.11两数的等比中项是( )A .2B .-2C .±2D .以上均不是2.【解析】设等比中项为x ,则x 2=1)1)=4.所以x=±2.故应选C .答案:C3.若三角形三边长的比为5∶7∶8,则它的最大角和最小角的和是( ) (A )90° (B )120° (C )135° (D )150°3.【解析】选B .设三边长为5x,7x,8x ,最大的角为C ,最小的角为A .由余弦定理得:()()()2225x 8x 7x 1cosB ,25x 8x2+-==⨯⨯所以B=60°,所以A+C=180°-60°=120°.4.数列{a n }中,2n a 2n 29n 3=-++,则此数列最大项的值是( )(A )103 (B )11088 (C )11038(D )108 4.【解析】选D .根据题意结合二次函数的性质可得:22n 229a 2n 29n 32(n n)322929292(n )3.48=-++=--+⨯=--++∴n=7时,a n =108为最大值.5.若△ABC 的周长等于20,面积是103,A=60°,则BC 边的长是 ( ) A .5B .6C .7D .85.解析:由1sin 2ABC S bc A ∆=得1103sin 602bc =︒,则bc=40.又a+b+c=20,所以b+c=20-a .由余弦定理得()2222222cos 3a b c bc A b c bc b c bc =+-=+-=+-, 所以()2220120a a =--,解得a=7.答案:C6.在数列{a n }中,a 1=1,a n a n-1=a n-1+(-1)n(n≥2,n∈N *),则35a a 的值是( ) (A )1516 (B )158 (C )34 (D )386.【解析】选C .当n=2时,a 2·a 1=a 1+(-1)2,∴a 2=2; 当n=3时,a 3a 2=a 2+(-1)3,∴a 3=12; 当n=4时,a 4a 3=a 3+(-1)4,∴a 4=3;当n=5时,()5354455a 23a a a 1a .3a 4=+-∴=∴=,, 7.在△ABC 中,角,A B 均为锐角,且,sin cos B A >则△ABC 的形状是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .等腰三角形 7.解析:cos sin()sin ,,22A AB A B ππ=->-都是锐角,则,,222A B A B C πππ->+<>,选C .答案:C8.在等差数列{a n }中,2(a 1+a 4+a 7)+3(a 9+a 11)=24,则此数列的前13项之和等于( ) (A )13 (B )26 (C )52 (D )1568.【解析】选B .∵2(a 1+a 4+a 7)+3(a 9+a 11)=6a 4+6a 10=24,∴a 4+a 10=4.()()1134101313a a 13a a S 26.22++∴===9.数列222222235721,,,,122334(1)n n n +⋅⋅⋅⨯⨯⨯+的前n 项的和是 ( )A . 211n -B . 211n +C . 211(1)n ++D . 211(1)n -+9.解析:因为22222111,(1)(1)n n a n n n n +==-++所以数列的前n项和2222222221111111111.1223(1)1(1)(1)n S n n n n =-+-+⋅⋅⋅+-=-=-+++ 答案:D10.已知不等式(x + y )(1x + ay )≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为( ) A .2B .4C .6D .810.解析:不等式(x +y )(1ax y+)≥9对任意正实数x ,y 恒成立,则1y axa x y+++≥1a +≥24(舍去),所以正实数a 的最小值为4,选B . 答案:B11.数列{a n }的通项公式a n是此数列的第 项.解析:因为a n ,所以n=9. 答案:91 4,则sin B=________12.设△ABC的内角A,B,C的对边分别为a,b,c,且a=1,b=2,cos C=.12.15 4[解析] 由余弦定理,得c2=a2+b2-2ab cos C=1+4-2×1×2×14=4,解得c=2,所以b=c,B=C,所以sin B=sin C=1-cos2C=154.13.已知点(x,y)满足x0y0x+y1≥⎧⎪≥⎨⎪≤⎩,则u=y-x的取值范围是_______.13.【解析】作出可行域如图,作出y-x=0,由A(1,0),B (0,1),故过B时u最大,u max=1,过A点时u最小,u min=-1.答案:[-1,1]14.如图,在四边形ABCD中,已知AD⊥CD,AD=10,AB=14,∠BDA=60°,∠BCD=135°,则BC的长为______.14.【解析】在△ABD中,设BD=x,则BA2=BD2+AD2-2BD·AD·cos∠BDA,即142=x2+102-2·10x·cos60°,整理得x2-10x-96=0,解之得x1=16,x2=-6(舍去).由正弦定理得BC BDsin CDB sin BCD ∠∠=,∴BC=16sin135︒·sin30°=.答案:15.在△ABC中,给出下列结论:①若a2>b2+c2,则△ABC为钝角三角形;②若a2=b2+c2+bc,则角A为60°;③若a2+b2>c2,则△ABC为锐角三角形;④若A∶B∶C=1∶2∶3,则a∶b∶c=1∶2∶3.其中正确结论的序号为.解析:在①中,cos A=2222b c abc+-<0,所以A为钝角,所以△ABC为钝角三角形,故①正确;在②中,b2+c2-a2=-bc,所以cos A=2222b c abc+-=-2bcbc=-12,所以A=120°,故②不正确;在③中,cos C=2222a b cab+->0,故C为锐角,但△ABC不一定是锐角三角形,故③不正确;在④中A∶B∶C=1∶2∶3,故A=30°,B=60°,C=90°,所以确.答案:①16.已知不等式ax2-3x+6>4的解集为{x|x<1或x>b}.(1)求a,b.(2)解不等式ax2-(ac+b)x+bc<0.【解】(1)因为不等式ax2-3x+6>4的解集为{x|x<1或x>b},所以x1=1与x2=b是方程ax2-3x+2=0的两个实数根,且b>1.由根与系数的关系得31,21,b a b a ⎧+=⎪⎪⎨⎪⨯=⎪⎩解得1,2.a b =⎧⎨=⎩ (2)解不等式ax 2-(ac+b )x+bc<0,即x 2-(2+c )x+2c<0,即(x-2)(x-c )<0,所以①当c>2时,不等式(x-2)(x-c )<0的解集为{x|2<x<c};②当c<2时,不等式(x-2)(x-c )<0的解集为{x|c<x<2};③当c=2时,不等式(x-2)(x-c )<0的解集为∅.17.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且b sin A =3a cos B .(1)求角B 的大小;(2)若b =3,sin C =2sin A ,求a ,c 的值.17.解:(1)由b sin A =3a cos B 及正弦定理a sin A =b sin B,得 sin B =3cos B ,所以tan B =3,所以B =π3. (2)由sin C =2sin A 及a sin A =csin C,得c =2a . 由b =3及余弦定理b 2=a 2+c 2-2ac cos B ,得9=a 2+c 2-ac ,将c =2a 代入得, a =3,c =23.18.(12分)设数列{a n }的前n 项和为S n =2a n -2n.(1)求a 3,a 4;(2)证明:{a n+1-2a n }是等比数列;(3)求{a n }的通项公式.(1)解:因为a 1=S 1,2a 1=S 1+2,所以a 1=2,S 1=2,由2a n =S n +2n 知:2a n+1=S n+1+2n+1=a n+1+S n +2n+1,得a n+1=S n+2n+1, ①所以a 2=S 1+22=2+22=6,S 2=8,a 3=S 2+23=8+23=16,S 3=24,a 4=S 3+24=40.(2)证明:由题设和①式得:a n+1-2a n =(S n +2n+1)-(S n +2n )=2n+1-2n =2n ,所以{a n+1-2a n }是首项为a 2-2a 1=2,公比为2的等比数列.(3)解:a n =(a n -2a n-1)+2(a n-1-2a n-2)+…+2n-2(a 2-2a 1)+2n-1a 1=(n+1)·2n-1.19. (12分)设函数()3sin cos f θθθ=+,其中,角θ的顶点与坐标原点重合,始边与x 轴非负半轴重合,终边经过点P (x,y ),且0≤θ≤π.(1)若点P 的坐标为13,22⎛⎫⎪ ⎪⎝⎭,求f (θ)的值;(2)若点P (x,y )为平面区域Ω: 1,1,1x y x y +≥⎧⎪≤⎨⎪≤⎩上的一个动点,试确定角θ的取值范围,并求函数f (θ)的最小值和最大值.解:(1)由点P 的坐标和三角函数的定义可得3sin ,21cos ,2θθ⎧=⎪⎪⎨⎪=⎪⎩所以31()3sin cos 3 2.2f θθθ=+=⨯+= (2)作出平面区域(即三角形区域ABC )如图,其中A (1,0),B (1,1),C (0,1),则0≤θ≤2π.又()cos 2sin .6f πθθθθ⎛⎫=+=+⎪⎝⎭. 故当62ππθ+=,即3πθ=时, max ()2f θ=; 当66ππθ+=,即θ=0时, min ()1f θ=.20.某书商为提高某套丛书的销量,准备举办一场展销会.据市场调查,当每套丛书售价定为x 元时,销售量可达到15-0.1x 万套.现出版社为配合该书商的活动,决定进行价格改革,将每套丛书的供货价格分成固定价格和浮动价格两部分,其中固定价格为30元,浮动价格(单位:元)与销售量(单位:万套)成反比,比例系数为10.假设不计其他成本,即销售每套丛书的利润=售价-供货价格,问:(1)每套丛书定价为100元时,书商能获得的总利润是多少万元?(2)每套丛书定价为多少元时,单套丛书的利润最大?20. 【解析】(1)每套丛书定价为100元时,销售量为15-0.1×100=5(万套),此时每套供货价格为30+105=32(元),故书商所获得的总利润为5×(100-32) =340(万元). (2)每套丛书售价定为x 元时,由150.1x 0x 0-⎧⎨⎩>>,得0<x <150. 依题意,单套丛书利润 P=x-(30+10150.1x -)=x-100150x--30, ∴P=-[(150-x )+100150x -]+120, ∵0<x <150,∴150-x >0,由(150-x )+100150x-≥)150x -=2×10=20, 当且仅当150-x =100150x-,即x=140时等号成立,此时P max =-20+120=100.答:(1)当每套丛书售价定为100元时,书商能获得总利润为340万元;(2)每套丛书售价定为140元时,单套丛书的利润取得最大值100元.21.(本小题满分14分)已知数列{}n a 的各项排成如图所示的三角形数阵,数阵中每一行的第一个数1247,,,,a a a a ⋅⋅⋅构成等差数列{}n b ,n S 是{}n b 的前n 项和,且1151,15b a S ===( I )若数阵中从第三行开始每行中的数按从左到右的顺序均构成公比为正数的等比数列,且公比相等,已知916a =,求50a 的值;(Ⅱ)设122111n n n n T S S S ++=++⋅⋅⋅+,求n T . 20.(本小题满分12分)解:(Ⅰ){}n b 为等差数列,设公差为155,1,15,51015,1d b S S d d ==∴=+== 1(1)1.n b n n ∴=+-⨯= …………………………………………………………………………2分 设从第3行起,每行的公比都是q ,且0q >,2294,416,2,a b q q q ===……………………4分 1+2+3+…+9=45,故50a 是数阵中第10行第5个数,而445010102160.a b q ==⨯=……………………………………………………………………7分 (Ⅱ)12n S =++…(1),2n n n ++=…………………………………………………………8分 1211n n n T S S ++∴=++…21n S + 22(1)(2)(2)(3)n n n n =++++++…22(21)n n ++ 11112(1223n n n n =-+-+++++…11)221n n +-+ 1122().121(1)(21)n n n n n =-=++++友情提示:本资料代表个人观点,如有帮助请下载,谢谢您的浏览!。
高二数学必修5质量检测题姓名:_________班级:________ 得分:________第Ⅰ卷(选择题 共60分)一、选择题:本答题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 3,…那么A .第12项B .第13项C .第14项D .第15项2. 已知数列{a n }中,12n n a a -= (n ≥2),且a 1=1,则这个数列的第7项为A .512B .256C .128D .643. 已知等差数列}{n a 中,610416,2,a a a +==则6a 的值是A . 15B . 10 C. 5 D. 84. 数列{n a }的通项公式是n a =331n n -(n ∈*N ),则数列{n a }是 A .递增数列 B .递减数列C .常数列D .不能确定该数列的增减性5.在ABC ∆中,6016A AB ∠=︒=,,面积S =,则AC 等于A.50B.C.100D. 6.对于任意实数a 、b 、c 、d ,以下四个命题中的真命题是A .若,0,a b c >≠则ac bc >B .若0,,a b c d >>>则ac bd >C .若,a b >则11a b< D .若22,ac bc >则a b > 7. 在等比数列{a n }中,3S =1,6S =4,则101112a a a ++的值是A .81B .64C .32D .278. 已知等比数列{}n a 满足1223412a a a a +=+=,,则5a =A .64B .81C .128D .2439.设函数()246,06,0x x x f x x x ⎧-+≥=⎨+<⎩,则不等式()()1f x f > 的解集是A.()()3,13,-+∞ B. ()()3,12,-+∞ C. ()()1,13,-+∞ D. ()(),31,3-∞-10. 用铁丝制作一个面积为1 m 2的直角三角形铁框,铁丝的长度最少是A. 5.2 mB. 5 mC. 4.8 mD. 4.6 m11.已知点P (x ,y )在不等式组20,10,220x y x y -≤⎧⎪-≤⎨⎪+-≥⎩表示的平面区域上运动, 则12z x y =-+的取值范围是 A .[-1,-1] B .[-1,1] C .[1,-1] D .[1,1]12.某观察站C 与两灯塔A 、B 的距离分别为x 米和3千米,测得灯塔A 在观察站C 的正西方向,灯塔B 在观察站C 西偏南30,若两灯塔A 、B千米,则x 的值为C.或二、填空题:本大题共5小题,每小题6分,共30分.把本大题答案填在第Ⅱ卷题中横线上.13. 不等式2(2)(23)0x x x ---<的解集为14. 已知数列{}n a 的前n 项和23n S n n =-,则其通项公式为=n a ________ 15. 在29和34之间插入2个数,使这4个数成等比数列,则插入的2个数的乘积为 16.已知点(3,1)和(-1,1)在直线320x y a -+=的同侧,则a 的取值范围是17.若2+22+ (2)>130,n ∈N*,则n 的最小值为_______.高二数学必修5质量检测题(卷)2009.11第Ⅱ卷(非选择题)二、填空题:本大题共5小题,每小题6分,共30分.把答案填在题中横线上.13. ; 14. .15. . 16. ; 17.__________.三、解答题:本大题共4小题,共60分.解答应写出文字说明、证明过程或演算步骤.18.(本题满分15分)设不等式2430x x -+<的解集为A ,不等式260x x +->的解集为B.(1)求A∩B; (2)若不等式20x ax b ++<的解集为A∩B,求,a b 的值.19. (本题满分15分)在锐角△ABC 中,已知AC =2AB =, 60A ∠=. 求:(1)BC 边的长;(2)分别用正弦定理、余弦定理求B ∠的度数.20. (本题满分15分)已知a ∈R, 解关于x 的不等式:220x x a a ---<21. (本题满分15分)某种汽车购买时费用为16.9万元,每年应交付保险费及汽油费共1万元;汽车的维修费第一年为1千元,以后每年都比上一年增加2千元.(Ⅰ)设使用n 年该车的总费用(包括购车费用)为n S ,试写出n S 的表达式;(Ⅱ)求这种汽车使用多少年报废最合算(即该车使用多少年平均费用最少).高二数学必修5质量检测题参考答案及评分标准2009.11一、选择题:本答题共12小题,每小题5分,共60分.1. B (根据石油中学 魏有柱供题改编)2. D (根据铁一中张爱丽供题改编)3. C (根据金台高中高二数学组供题改编)4.B (根据铁一中周粉粉供题改编)5.A. (根据十二厂中学闫春亮供题改编)6.D (根据金台高中高二数学组供题改编)7. D (根据石油中学夏战灵供题改编)8. B (根据石油中学高建梅供题改编)9.A ( 09天津高考题 )10. B (根据教材第94页练习改编)11. B (根据铁一中周粉粉供题改编)12.D (根据金台高中高二数学组及斗鸡中学张永春供题改编)二、填空题:13.{}123或x x x <-<< (根据铁一中孙敏供题改编);14. 64n -(根据铁一中周粉粉供题改编);15. 16(根据铁一中孙敏供题改编); 16.{|}75或a a a <->(根据斗鸡中学张永春、铁一中张爱丽、石油中学高建梅供题改编); 17.7(根据石油中学夏战灵供题改编).三、解答题:本大题共5小题,共60分.18.设不等式2430x x -+<的解集为A ,不等式260x x +->的解集为B.(1)求A∩B; (2)若不等式20x ax b ++<的解集为A∩B,求,a b 的值.(根据斗鸡中学张永春、石油中学高建梅等供题改编)解:(1) A={}13x x <<, (3分) B={}32或x x x <->(6分)A∩B ={}23x x << (9分)(2)∵不等式20x ax b ++<的解集为A∩B∴ 23a +=-(11分) 23b ⨯= (13分)得5a =-,6b = (15分)19.在锐角△ABC 中,已知AC =AB =, 60A ∠=. 求:(1)BC 边的长;(2)分别用正弦定理、余弦定理求B ∠的度数. 解:(1)由余弦定理得2222cos BC AB AC AB AC A =+-∠ (3分)=22122+-⨯ =3 (6分)∴BC =(7分)(2)45B ∠= ,能用正弦定理求出B ∠的度数得4分,过程略.能用余弦定理求出B ∠的度数得4分,过程略.(根据铁一中张爱丽供题改编)20. 已知a ∈R, 解关于x 的不等式:220x x a a ---<解:由题意得(1)()0x a x a --+< (3分)∴ 当1a a +<-时,即12a <-时,解集为(1,)a a +- (7分) 当1a a +>-时,即12a >-时,解集为(,1)a a -+ (11分) 当1a a +=-时,即12a =-时,解集为φ (15分) (根据铁一中孙敏、金台高中高二数学组。
高二数学必修5质量检测参考答案及评分标准一、选择题:本大题共12小题,每小题5分,共60分.1.(教材习题改编)C.2.(教材练习题改编) C .3.(根据石油中学林华命题改编)D.4.(根据西关中学牛占林、张东月、十二厂中学司琴霞命题改编)A .5. ( 根据石油中学齐宗锁命题改编 )A .6.(教材例题改)D .7.(根据斗鸡中学梁春霞、强彩虹、张晓明命题改编)D .8.(根据胡伟红命题改编)B . 9.(根据沈涛命题改编)B .10.(根据十二厂中学王海燕命题改编) B .11.(教材习题改编)D . 12.(教材习题改编)C .二、填空题:本大题共 5小题,每小题6分,共30分. 13. 1,12x x x ⎧⎫<>⎨⎬⎩⎭或(教材习题改) 14. 1,2,4,8,16,14(教材复习题改)15. 11,23x x x ⎧⎫<--<<⎨⎬⎩⎭或(教材习题改) 16. 2(根据铁一中司婷命题改编) 17.72(根据胡伟红命题改)三、解答题:本大题共4小题,共60分.18.(本题满分15分)(教材习题改)解:不等式可化为()()10x x a ++< (4分)当1a =时 ,不等式的解集为∅;(7分)当1a <时,不等式的解集为{}1x x a -<<-;(11分)当1a >时,不等式的解集为{}1x a x -<<- (15分) 19.(本题满分15分)(根据铁一中司婷命题改编)解:设每天生产A 型桌子x 张,B 型桌子y 张,则283900,x y x y x y +≤⎧⎪+≤⎨⎪≥≥⎩(6分)目标函数为:z =2x +4y (8分)作出可行域(图略,11分):解方程2839x y x y +=⎧⎨+=⎩得直线28x y +=与39x y +=的交点坐标为M (3,2). 把直线l :2x +4y =0向右上方平移,直线经过可行域上的点M ,且与原点距离最大,此时z =2x +4y 取最大值234214z =⨯+⨯=(千元)答:每天应生产A 型桌子3张,B 型桌子2张才能获得最大利润,最大利润是14千元 (15分)20.(本题满分15分)(教材习题2-2第3题改)解:(正确画出图形2分)(1) 在△ABC 中,由正弦定理得:sin sin B AC AB C ==sin 4556sin 602=5 (7分) (2)∵∠ACD=120,在△ACD 中,由余弦定理得:2222cos AD AC CD AC CD ACD =+-∠=2253253cos120+-⨯⨯=49∴AD =7 (12分)(3)能求出△ABD 的面积,具体方法较多,只要学生言之有理,说清楚所求的角、边及所用的定理即可得分. (15分)21.(本题满分15分)(根据石油中学王蒙、胡伟红命题改)解:(1)设n a kn b =+, (3分)则有21103k b k b +=⎧⎨+=⎩ 得223k b =-⎧⎨=⎩ (5分)所以,223n a n =-+ (7分)(2)∵12,2n n a a n --=-≥∴{}n a 是首项为21,公差为2-的等差数列 (11分)∴ 当100n n a a +≥⎧⎨≤⎩时,前n 项和n S 有最大值,解得11n = ∴所求最大值为1111111()1212a a s +== (15分) (注:也可利用前n 项和公式求解)(完)。
数学必修5模块检测题(1)班级: 姓名:一、选择题1.点(3,1)和(4,6)-在直线320x y a -+=的两侧,则a 的取值范围是( ).A .[7,)-+∞B .(7,24)-C .(,7)(24,)-∞-+∞D .(](0,1)2,42.若数列{}n a 中,*1111,()2n n a a a n N +==-∈,则n a =( ). A .11()2n -- B .11()2n -- C .1()2n - D .1()2n - .3.如果a b >,那么下列不等式中正确的是( ).A .lg lg ,(0)a x b x x >>B .22ax bx >C .22a b >D .22x x a b >4.一货轮航行到M 处,测得灯塔S 在货轮的北偏东15 ,与灯塔S 相距20海里,随后货轮按北偏西30 的方向航行30分钟后,又得灯塔在货轮的东北方向,则货轮的速度为( ).A .海里/小时B . 海里/小时C . 海里/小时D . 海里/小时5.在数列{}n a 中,13a =且对于任意大于1的正整数n ,点1(,)n n a a -在直线60x y --=上,则357a a a -+的值为( ). A .27 B .6 C .81 D .96.如果关于x 的不等式250x a -≤的正整数解是1,2,3,那么实数a 的取值范围是( ).A .4580a ≤<B .4580a <<C .80a <D .45a >7.已知等差数列}{n a 的公差0d ≠,且1a d ≠,记前20项之和2010S M =,则M =( ).A .56a a +B .2102a a +C .102a d +D .210a d +8.给出下列三个结论,(1)若sin 2sin 2A B =,则ABC ❒是等腰三角形;(2)若sin sin A B =,则ABC ❒是等腰三角形;(3)若sin sin a b c A B==,则ABC ❒是直角三角形,其中正确的有( )个.A .0B .1C .2D .39.某镇人口第二年比第一年增长00m ,第三年比第二年增长00n ,又这两年的平均增长率为00p ,则p 与2m n +的关系为( ). A .2m n p +> B .2m n p += C .2m n p +≤ D .2m n p +≥ 10.在等比数列{}n a 中,9101920(0),a a a a a a b +=≠+=,则99100a a +=( ).A .109b aB .9()b aC .98b aD .10()b a 11.在ABC ∆中,若,2A B C A C B <<+=且,最大边为最小边的2倍,则三个角::A B C =( ).A .1:2:3B .2:3:4C .3:4:5D .4:5:612.已知数列{}n a 的前n 项的和1(0,)n n S q q q =->且为常数,某同学得出如下三个结论:①{}n a 的通项是1(1)n n a q q -=-;②{}n a 是等比数列;③当1q ≠时,221n n n S S S ++<,其中正确结论的个数为( ).A .0B .1C .2D .3二、填空题13.若一个直角三角形三内角的正弦值成等比数列,则其中最小内角的正弦值为_________.14.设n S 为等差数列{}n a 的前n 项和,若51010,5S S ==-,则数列{}n a 的公差为_______.15.若三角形的一边长为14,这条边所对的角为60,另两边之比为8:5,则此三角形的 面积是________.1 16.已知不等式组22430680x x x x ⎧-+<⎨-+<⎩的解集是不等式2290x x a -+<的解集的子集, 则实数a 的取值范围是 .三、解答题17.已知等差数列{}n a 的第10项为15,第22项为15-,问:(1)从第几项开始n a 为负?(2)从第几项开始n S 为负?18.在△ABC 中,11tan ,tan 23A B ==,且最大边的边长为1,(1)求角C 的大小; (2)最短的边长.19.设等差数列{}n a 的公差和等比数列{}n b 的公比都是d ,且11441010,,a b a b a b ===,(1)求1,a d ;(2)判断是否存在一项n a ,使16n a b =,若存在,求出n ,若不存在,请说明理由.20.已知二次函数()f x 的二次项系数为a ,且不等式()2f x x >-的解集为(1,3),(1)若方程()60f x a +=有两个相等的实根,求()f x 的解析式;(2)若()f x 的最大值为正数,求a 的取值范围.四.附加题:1.在△ABC 中,若b B a A cos sin =,则B ∠=( ). A .30 B .45 C .60 D .902.在△ABC 2sin b A =,则B ∠=( ).A .3πB .6πC . 3π或π32D .6π或π65 3.在数列{}n a 中,若111,23(1)n n a a a n +==+≥,则数列的通项=n a __________.4.设二次方程2110()n n a x a x n N *+-+=∈有两个实根α和β, 且满足6263ααββ-+=.(1)试用n a 表示1n a +;(2)求证:2{}3n a -是等比数列;(3)当176a =时,求数列{}n a 的通项公式.5.已知12a =,点1(,)n n a a +在函数2()2f x x x =+的图象上,其中1,2,3,n =⋅⋅⋅(1)证明数列{lg(1)}n a +是等比数列;(2)设12(1)(1)(1)n n T a a a =++⋅⋅⋅+,求n T 及数列{}n a 的通项;。
综合质量评估第一~三章 (120分钟 150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.如果a<0,b>0,那么,下列不等式中正确的是( )()(()()2211A B C a b D a b a b< < >2.在△ABC 中,∠A=60°,a =b=4,那么满足条件的△ABC ( ) (A)有一个解 (B)有两个解 (C)无解 (D)不能确定3.已知数列{a n }满足a 1=0,a n+1=a n +2n ,那么a 2 012的值是( ) (A)2 0122 (B)2 011×2 010 (C)2 012×2 013 (D)2 011×2 0124.(2011·辽宁高考)△ABC 的三个内角A ,B ,C 所对的边分别为a,b,c ,2asinAsinB bcos A +=则ba=( ) ()()((A B C D 5.已知各项均为正数的等比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6=( )()()()()A B 7C 6D6.设a,b, c ∈(-∞,0),则111a ,b ,c bca+++( ) (A)都不大于-2(B)都不小于-2 (C)至少有一个不大于-2 (D)至少有一个不小于-27.在△ABC 中,角A ,B ,C 的对边分别为a,b,c ,若(a 2+c 2-b 2则角B 的值为( )()()()()52A B C D 636633ππππππ 或或 8.已知x>0,y>0,2x+y=2,c=xy,那么c 的最大值为( )()()()()11A 1BCD 2249.在△ABC 中,关于x 的方程(1+x 2)sinA+2xsinB+(1-x 2)sinC=0有两个不相等的实根,则A 为( ) (A)锐角 (B)直角 (C)钝角 (D)不能确定10.已知数列{a n }为等比数列,S n 是它的前n 项和,若a 2·a 3=2a 1,且a 4与2a 7的等差中项为54,则S 5=( )(A)35 (B)33 (C)31 (D)2911.已知各项均为正数的等差数列{a n }的前20项和为100,那么a 3·a 18的最大值是( )(A)50 (B)25 (C)100 (D)12.已知等差数列{a n }中,|a 3|=|a 9|,公差d<0,则使等差数列{a n }前n 项和S n 取最大值的正整数n 是( )(A)4或5 (B)5或6 (C)6或7 (D)8或9 二、填空题(本大题共4小题,每小题5分,共20分,请把答案填在题中的横线上)13.数列{a n }的通项公式为a n =2n-49,S n 达到最小时,n 等于__________.14.在△ABC 中,A ,B ,C 分别为a,b,c 三条边的对角,如果b=2a,B=A+60°,那么A=________.15.若负数a,b,c 满足a+b+c=-1,则111a b c++的最大值是__________. 16.不等式ax 2+4x+a>1-2x 2对一切x ∈R 恒成立,则实数a 的取值范围是_______.三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)在△ABC 中,角A ,B ,C 成等差数列,并且sinA ·sinC=cos 2B ,三角形的面积ABC S =求三边a,b,c.18.(12分)(2011·福建高考)已知等差数列{a n }中,a 1=1,a 3=-3. (1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项的和S k =-35,求k 的值.19.(12分)(2011·山东高考)在△ABC 中,内角A ,B ,C 的对边分别为a,b,c,已知cosA 2cosC 2c a.cosB b--=(1)求sinCsinA的值; (2)若1cosB ,4=b=2,求△ABC 的面积S.20.(12分)已知f(x)=ax 2+(b-8)x-a-ab,当x ∈(-3,2)时,f(x)>0;x ∈(-∞,-3)∪(2,+∞)时,f(x)<0. (1)求y=f(x)的解析式;(2)c为何值时,ax2+bx+c≤0的解集为R.21.(12分)某公司计划在2012年内同时出售空调机和洗衣机,由于这两种产品的市场需求量非常大,有多少就能销售多少,因此该公司要根据实际情况(如资金、劳动力)确定产品的月供应量,以使得总利润达到最大.已知对这两种产品有直接限制的因素是资金和劳动力,通过调查,得到关于这两种产品的有关数据如表:试问:怎样确定两种货物的月供应量,才能使总利润达到最大,最大利润是多少?22.(12分)已知等差数列{a n}满足:a3=7,a5+a7=26.{a n}的前n项和为S n.(1)求a n及S n;(2)令n2n1ba1=-(n∈N*),求数列{b n}的前n项和T n.答案解析1.【解析】选A.如果a<0,b>0,那么110,0,ab<>11,a b∴<故选A. 2.【解析】选C.根据正弦定理得bsinA sinB 1,a ===>故无解.故选C.3.【解析】选D.由已知a n+1-a n =2n,∴a 2-a 1=2×1,a 3-a 2=2×2,a 4-a 3=2×3,…,a n -a n-1=2(n-1),以上各式两端分别相加得:()()()n 1n 2 012a a 2123n 1n n 1.a n n 1.a 2 011 2 012.-=++⋯+-=-=-∴=⨯[]即故选D.4.【解析】选D.2asinAsinB bcos A +=2sinAsinAsinB sinBcos A b sinBsinB a sinA∴+=∴=∴==故选D. 5.【解析】选A.18789123a a a q 2.a a a== ()99456123q a a a a a a q ∴===故选A.6.【解题提示】解答本题关键是分析111a b c bca+++++的最大值.【解析】选C.111a b c 6,b c a+++++≤- 三者不能都大于-2.故选C.7.【解析】选D.在△ABC 中,根据b 2=c 2+a 2-2cacosB 得a 2+c 2-b 2=2cacosB ,代入已知得sinB 2∴=2B B ,33ππ∴==或故选D.8.【解析】选B.由已知,22x y =+≥=1c ,2∴≤故选B.9.【解析】选A.4sin 2B-4(sin 2A-sin 2C)>0, 即sin 2B+sin 2C>sin 2A,由正弦定理得b 2+c 2>a 2, 再由余弦定理得cosA>0,所以A 为锐角,故选A. 10.【解析】选C.设公比为q,由题意知2323113647113133311a a a q 2a .5a 2a a q 2a q 2a q 25a q 2a q q 2⎧==⎪⎨+=+=⎪⎩⎧=⎪⎨+=⎪⎩即 解得11q .2a 16⎧=⎪⎨⎪=⎩故55116(1)2S 31 .112⨯-==-故选C.11.【解析】选B.由题可知()3181202031820a a 20a a )S 100,a a 10,22++===∴+=(2318318a a a a ()25.2+∴≤=故选B.12.【解题提示】解答本题的关键是分析出数列{a n }第几项开始有符号发生变化.【解析】选B.由|a 3|=|a 9|得()()()22111n 1a 2d a 8d .a 5d.a a n 1d n 6d,d 0,+=+∴=-=+-=-<()∴当n ≤6时,a n ≥0,当n>6时,a n <0, ∴前5项或前6项的和最大,故选B. 13.【解析】∵a n =2n-49,∴{a n }是等差数列,且首项为-47,公差为2,由()n n 1a 2n 490,a 2n 1490-=->⎧⎪⎨=--≤⎪⎩,解得n=25. ∴从第25项开始为正,前24项都为负数,即前24项之和最小. 答案:24【方法技巧】求等差数列前n 项和最值的方法:对于等差数列,当公差不等于零时,则其为单调数列,所以其前n 项和往往存在最大值或最小值,常用的方法有:(1)通项公式法:先求出通项公式,通过通项公式确定等差数列的单调性,再求其正项或负项为哪些项,从而确定前n 项和的最值. (2)二次函数法:根据等差数列的前n 项和S n 是关于项数n 的一元二次函数,从而可直接配方,求其最值,但应注意项数n 为正整数,由此,本题还可有以下解法:方法二,a n =2n-49,a 1=-47<0,公差d=2>0,∴数列{a n }为递增等差数列. 令a n =0,得1n 24.2=∴该数列中,a 1,a 2,…,a 24<0,a 25>0,…… ∴数列{a n }的前24项和最小,故n=24. 方法三,可知数列{a n }为等差数列,a 1=-47.()()1n n 222n a a n 472n 49S 22n 48n n 2424,+-+-∴===-=--()∴当n=24时,S n 取最小值,故n=24. 14.【解析】∵b=2a,B=A+60°,∴sinB=2sinA, sinB=sin(A+60°),∴2sinA=sin(A+60°).12sinA sinA tanA 223=+∴=又∵0°<A<180°,∴A=30°. 答案:30°15.【解题提示】解答本题一方面要注意常值代换的应用,另一方面要注意利用不等式的性质化“负”为“正”. 【解析】∵a+b+c=-1,∴1=-a-b-c.111a b c a b c a b ca b c a b cb ac a c b3()()()a b a c b c32229.---------∴++=++=--+-+-+≤----=-当且仅当a=b=c=13-时取等号. 答案:-916.【解析】不等式ax 2+4x+a>1-2x 2对一切x ∈R 恒成立,即(a+2)x 2+4x+a-1>0对一切x ∈R 恒成立,若a+2=0,则4x-3>0,显然不恒成立;若a+2≠0,则a 200+>⎧⎨∆<⎩,即()()2a 2044a 2a 10+>⎧⎪⎨-+-<⎪⎩,解得a>2. 答案:(2,+∞)17.【解析】∵角A ,B ,C 成等差数列, ∴A+C=2B ,A+B+C=180°,∴B=60°, 所以21sinAsinC cos 60.4=︒= ①又ABC 1S acsinB,2==得ac=16. ② 由①②及a csinA sinC=得:22ac a c ()()64,sinAsinC sinA sinCa c 8.sinA sinC asinBb 8sinB 8sin60sinA ========︒=所以又222a c b 1cosB ,2ac 2+-== ()()222222a cb ac,ac b 3ac,a c 484896,a c ∴+-=+-=∴+=+=∴+=③联立③与②得a 2,c 2,a 2,c 2.====或18.【解析】(1)设等差数列{a n }的公差为d,则a n =a 1+(n-1)d,由a 1=1,a 3=-3可得1+2d=-3.解得d=-2. 从而a n =1+(n-1)×(-2)=3-2n ,n ∈N *. (2)由(1)可知a n =3-2n.()2n n 132n S 2n n .2+-∴==-[]由S k =-35可得2k-k 2=-35. 即k 2-2k-35=0,解得k=7或k=-5. 又k ∈N *,故k=7.19.【解析】(1)由正弦定理设a b ck,sinA sinB sinC=== 则2c a 2ksinC ksinA 2sinC sinA ,b ksinB sinB ---==cosA 2cosC 2sinC sinAcosB sinB--∴=即(cosA-2cosC )sinB=(2sinC-sinA)cosB, 化简可得sin(A+B)=2sin(B+C), 又A+B+C=π,∴sinC=2sinA.因此sinC2.sinA= (2)由sinC2sinA=得c=2a.由余弦定理b 2=a 2+c 2-2accosB 及1cosB ,b 2.4==22214a 4a 4a .a 1.c 2.4=+-⨯==得解得从而又∵cosB=14且0<B<π,sinB 4∴=因此11S acsinB 122244==⨯⨯⨯= 20.【解析】(1)由x ∈(-3,2)时,f(x)>0;x ∈(-∞,-3)∪(2,+∞)时,f(x)<0知:-3,2是方程ax 2+(b-8)x-a-ab=0的两根且a <0,()2b 832a 3,a a ab b 5.32a f x 3x 3x 18.-⎧-+=-⎪=-⎧⎪∴⎨⎨--=⎩⎪-⨯=⎪⎩∴=--+得(2)由a<0,知二次函数y=ax 2+bx+c 的图象开口向下.要使-3x 2+5x+c ≤0的解集为R ,只需Δ≤0,即25+12c ≤0,得25c .12≤-∴当25c 12≤-时,ax 2+bx+c ≤0的解集为R. 21.【解析】设空调机、洗衣机的月供应量分别是x 台,y 台,总利润是z ,则z=6x+8y由题意有30x 20y 3005x 10y 110x 0y 0+≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩且x, y 均为整数. 作出可行域如图.由图知直线31y x z 48=-+过M (4,9)时,纵截距最大.这时z 也取最大值z max =6×4+8×9=96(百元).故当月供应量为空调机4台,洗衣机9台时,可获得最大利润9 600元.22.【解题提示】第(1)题可以列方程组求出首项和公差,从而易求a n ,S n .第(2)题要注意对b n 的化简变形和裂项求和法的应用.【解析】(1)设等差数列{a n }的首项为a 1,公差为d,由于a 3=7,a 5+a 7=26,∴a 1+2d=7,2a 1+10d=26.解得a 1=3,d=2.由于a n =a 1+(n-1)d,()1n n n a a S .2+=∴a n =2n+1,S n =n(n+2),n ∈N *.(2)∵a n =2n+1,()2n a 14n n 1.∴-=+()n 1111b ().4n n 14n n 1∴==-++ 故T n =b 1+b 2+…+b n()111111(1)4223n n 111n (1).4n 14n 1=-+-+⋯+-+=-=++ ∴数列{b n }的前n 项和()*n n T n N .4n 1=∈+,。
必修五 综合测试题 (第三套)一.选择题:1. 已知等差数列}{n a 中,12497,1,16a a a a 则==+的值是( )A . 15B . 30 C. 31 D. 642. 若全集U=R,集合M ={}24x x >,S =301x xx ⎧-⎫>⎨⎬+⎩⎭,则()U M S I ð=( ) A.{2}x x <- B. {23}x x x <-≥或 C. {3}x x ≥ D. {23}x x -≤<3. 若1+2+22+ (2)>128,n ÎN*,则n 的最小值为( ) A. 6 B. 7 C. 8 D. 9 4. 在ABC V 中,60B =o ,2b ac =,则ABC V 一定是( )A 、等腰三角形B 、等边三角形C 、锐角三角形D 、钝角三角形 5. 若不等式022>++bx ax的解集为⎭⎬⎫⎩⎨⎧<<-3121|x x ,则a -b 值是( )A.-10B.-14C. 10D. 14 6. 在等比数列{a n }中,4S =1,8S =3,则20191817a a a a +++的值是( )A .14B .16C .18D .207.已知12=+y x ,则y x 42+的最小值为( ) A .8 B .6 C .22 D .238. 黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案,则第n 个图案中有白色地面砖的块数是( ) A.42n +B.42n -C.24n +D.33n +9. 已知变量y x ,满足⎪⎩⎪⎨⎧≥<+≤+-12553034x y x y x ,目标函数是y x z +=2,则有( )A .3,12min max ==z zB .,12max=z z 无最小值C .z z ,3min=无最大值 D .z 既无最大值,也无最小值10.在R 上定义运算:(1)x y x y ⊗⊗=-,若不等式()()1x a x a -⊗+<对任意实数x 成立,则实数a 的取值范围是( ) A .11a -<< B .02a << C .1322a -<< D .3122a -<< 二填空题: 11. 在数列{}n a 中,11a =,且对于任意正整数n ,都有1n n a a n +=+,则100a =______第1个 第2个 第3个12.在⊿ABC 中,5:4:21sin :sin :sin=C B A ,则角A =13.某校要建造一个容积为83m ,深为2m 的长方体无盖水池,池底和池壁的造价每平方米分别为240元和160元,那么水池的最低总造价为 元。
高二数学上学期第四次质量检测
一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的)
1.已知集合M={x|x2<4},N={x|x2-2x-3<0},则集合M∩N等于() A.{x|x<-2}B.{x|x>3}
C.{x|-1<x<2} D.{x|2<x<3}
2.已知△ABC中,AB=3,AC=1且B=30°,则△ABC的面积等于()
A.
3
2 B.
3
4 C.
3
2或 3 D.
3
4或
3
2
3.在不等边△ABC中,a为最大边,如果a2<b2+c2,则A的取值范围是() A.90°<A<180°B.45°<A<90°
C.60°<A<90°D.0°<A<90°
4.等差数列{a n}的公差为1,若a1,a2,a4成等比数列,则a3=()
A.1 B.2 C.-3 D.3
5.各项不为零的等差数列{a n}中,有a27=2(a3+a11),数列{b n}是等比数列,且b7=a7,则b6b8=()
A.2 B.4 C.8 D.16
6.设x,y∈R,a>1,b>1,若a x=b y=3,a+b=2 3.则1
x+
1
y的最大值为()
A.2 B.3
2C.1 D.
1
2
7.公差不为零的等差数列{a n}的前n项和为S n,若a4是a3与a7的等比中项,S8=32,则S10等于()
A.18 B.24 C.60 D.90
8.古诗云:远望巍巍塔七层,红光点点倍加增.共灯三百八十一,请问尖头几盏灯?()
A.2 B.3 C.4 D.5
9.在R上定义运算☆,a☆b=ab+2a+b,则满足x☆(x-2)<0的实数x的取值范围为()
A.(0,2) B.(-2,1)
C.(-∞,-2)∪(1,+∞) D.(-1,2)
10.设A,B,C是△ABC的内角,则“B=
π
3”是“A,B,C依次成等差数列”的()
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
11.下列说法中不正确的个数是
①命题“∀x∈R,x3-x2+1≤0”的否定是“∃x0∈R,x30-x20+1>0”;②若“p ∧q”为假命题,则p,q均为假命题;③“三个数a,b,c成等比数列”是“b=ac”的既不充分也不必要条件.()
A.0 B.1 C.2 D.3
12.若∃x0∈R,使ax20+2x0+a<0,则实数a的取值范围是()
A.a<1 B.a≤1 C.-1<a<1 D.-1<a≤1
二、填空题(本大题共4小题,每小题5分,把答案填写在题中横线上)
13.若实数x,y满足
⎩
⎨
⎧x+y-2≥0
x≤4
y≤5
,则s=y-x的最小值为________.
14.已知实数m、n满足
⎩
⎨
⎧
≤
-
<
≤
+
≤
1
3
2
3
2
1
n
m
n
m
-
-
,则3m+4n的取值范围_____.
15.①若命题p:存在x∈R,tan x=2;命题q:任意x∈R,x2-x+
1
2>0.则命题“p且(¬q)”是假命题;②已知直线l1:ax+3y-1=0,l2:x+by+1=0,则l1⊥l2的充要条件是
a
b=-3;③“设a、b∈R,若ab≥2,则a
2+b2>4”的否命题为:“设a、b∈R,若ab<2,则a2+b2≤4”.
其中正确结论的序号为________.(把你认为正确结论的序号都填上)
16.正项数列{a}
n
满足
12222
11
211
2,1,(n,n2)
n n n
a a N
a a a+
-+
===+∈≥,则34
_______
a=.
三、解答题(本大题共6小题,共70分。
解答应写出文字说明,证明过程或演算步骤)
17.(本小题满分10分)已知常数a ∈R ,关于x 的不等式ax 2-2x +a<0: (1)当a =-1时,求不等式的解集; (2)当a>0时,求不等式的解集。
18.(本小题满分12分)设命题p :方程-x 2+x +6m -m 2=0有两个异号的实数
根,命题q :函数y=x 2-(3-m)x+1的图象与x 轴有公共点,若命题“q p ∨”为真命题,而“q p ∧”为假命题,求实数m 的取值范围.
19.(本小题满分12分)已知数列{a n }的前n 项和为Sn ,且Sn =1-a n ,数列
{b n }满足b n =n 42414a log ...a log a log +++;
(1)求数列{a n }的通项公式; (2)求数列{n
n b 1
a 1+}的前n 项和T n .
20.(本小题满分12分)在ABC ∆中,角,,A B C 的对边分别,,a b c
,且满足
cos A =
222a b c +-=. (1)求角B;
(2)设10b =,求ABC ∆的面积S.
21.(本小题满分12分)已知数列{a n }中a 1=1,)(1
21++∈+=N n a a a n n
n (1)求数列{a n }的通项公式;
(2)令)(=+-N ∈n a 3b n
1
n n ,求数列{b n }的前n 项和S n 。
22.(本小题满分12分)某厂用甲、乙两种原料生产A ,B 两种产品,制造1 t A,1 t B 产品需要的各种原料数、可得到利润以及工厂现有各种原料数如下表:
(1) (2)每吨B 产品的利润在什么范围变化时,原最优解不变?当超出这个范围时,最优解有何变化?。