函数的奇、偶性
- 格式:doc
- 大小:202.00 KB
- 文档页数:2
函数的概念与性质函数是数学中常见且重要的概念之一。
它在多个数学分支中有广泛的应用,也在实际问题的建模与解决中扮演着重要的角色。
本文将从函数的概念和性质两个方面进行探讨,旨在帮助读者建立对函数的深入了解。
一、函数的概念函数是一种特殊的关系,它将一个集合中的每个元素都对应到另一个集合中的唯一元素。
在数学中,我们通常将第一个集合称为自变量的定义域,将第二个集合称为因变量的值域。
函数可以用数学符号表示为:y = f(x),其中 x 表示自变量,y 表示因变量,f(x) 表示函数。
这种表示方法将函数的输入与输出之间的关系清晰地表示出来。
函数可以用图像来描述,通常以直角坐标系上的曲线形式展现。
曲线上的每一个点,代表了函数在相应自变量值下的因变量值。
通过观察曲线的形状和趋势,我们可以获得函数的更多信息。
二、函数的性质1. 定义域和值域函数的定义域是指自变量允许取值的范围,而值域则是函数所有可能的因变量值的范围。
函数的定义域和值域对于确定函数的适用范围和输出范围非常重要。
2. 单调性函数的单调性是指函数在定义域内的取值随自变量的增减而单调增加或单调减少。
如果函数在定义域内的取值随自变量的增减而单调增加,则称函数为单调递增函数;反之,如果函数在定义域内的取值随自变量的增减而单调减少,则称函数为单调递减函数。
3. 奇偶性函数的奇偶性描述了函数在定义域内的对称性。
如果函数满足 f(x) = f(-x) ,则称函数为偶函数;如果函数满足 f(x) = -f(-x),则称函数为奇函数。
而如果函数既不满足偶性,也不满足奇性,则称函数为非奇非偶函数。
4. 周期性函数的周期性是指函数在定义域内存在一个常数 T ,使得 f(x) =f(x+T),其中 x 表示自变量。
如果函数存在这样的周期 T ,那么称函数为周期函数。
周期函数常见的例子有正弦函数和余弦函数。
5. 极限在函数中,极限是一个重要的概念。
函数的极限描述了当自变量趋近某个特定值时,函数的取值趋近于何值。
函数的奇偶性、指数函数、对数函数知识精要一、函数的奇偶性一般地,对于函数f(x)(1)如果对于函数定义域内的任意一个x ,都有f(-x)=f(x)那么函数f(x)就叫做偶函数。
(2)如果对于函数定义域内的任意一个x ,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。
(3)如果对于函数定义域内的任意一个x ,都有f(-x)=-f(x)和f(-x)=f(x),(x∈D,且D 关于原点对称.)那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。
(4)如果对于函数定义域内的任意一个x ,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。
说明:①奇、偶性是函数的整体性质,对整个定义域而言。
②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不具有奇偶性。
(分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论) ③判断或证明函数是否具有奇偶性的根据是定义。
④如果一个奇函数f(x)在x=0处有意义,则这个函数在x=0处的函数值一定为0。
奇偶函数图像的特征定理 奇函数的图像关于原点成中心对称图形,偶函数的图像关于y 轴的轴对称图形。
f(x)为奇函数<=>f(x)的图像关于原点对称 点(x,y )→(-x,-y ) f(x)为偶函数<=>f(x)的图像关于Y 轴对称 点(x,y )→(-x,y ) 奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。
偶函数在某一区间上单调递增,则在它的对称区间上单调递减。
利用一些已知函数的奇偶性及以下准则(前提条件为两个函数的定义域交集不为空集):两个奇函数的代数和是奇函数;两个偶函数的和是偶函数;奇函数与偶函数的和既非奇函数也非偶函数;两个奇函数的积为偶函数;两个偶函数的积为偶函数;奇函数与偶函数的积是奇函数。
究竟如何判别函数的奇偶性?附判断方法与8字口诀
函数的奇偶性是函数的一个重要的性质,其重要性质体现在它与函数的各种性质的联系之中,那么,怎样来判断函数的奇偶性呢?下面是组合教育张老师整理的关于函数奇偶性知识点,希望对考生复习有帮助。
一般地,对于函数f(x)
(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。
(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。
(2)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函
数f(x)既是奇函数又是偶函数,称为既奇又偶函数。
(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。
(5) 若f(x)=0,既是奇函数,又是偶函数。
说明:
1.奇、偶性是函数的整体性质,对整个定义域而言;
2.奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。
(分析:判断函数的奇偶性,首先是检验期定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)
判断或证明函数是否具有奇偶性的根据是定义函数奇偶性知识点的全部知识点就分享到这里,更多精彩敬请点击视频查看详解。
函数奇偶性口诀:
内偶则偶,内奇同外。
奇函数+奇函数=奇函数
偶函数+偶函数=偶函数
奇函数*奇函数=偶函数
偶函数*偶函数=偶函数
奇函数*偶函数=奇函数。
函数奇偶性知识点归纳考点分析配经典案例分析函数的奇偶性定义:1.偶函数:一般地,对于函数()f x 的定义域内的任意一个x ,都有()()f x f x -=,那么()f x 就叫做偶函数.2.奇函数:一般地,对于函数()f x 的定义域的任意一个x ,都有()()f x f x -=-,那么()f x 就叫做奇函数.二、函数的奇偶性的几个性质1、对称性:奇(偶)函数的定义域关于原点对称;2、整体性:奇偶性是函数的整体性质,对定义域内任意一个x 都必须成立;3、可逆性:)()(x f x f =-⇔)(x f 是偶函数;)()(x f x f -=-⇔)(x f 奇函数;4、等价性:)()(x f x f =-⇔0)()(=--x f x f (||)()f x f x ⇔=;)()(x f x f -=-⇔0)()(=+-x f x f ;5、奇函数的图像关于原点对称,偶函数的图像关于y 轴对称;6、可分性:根据函数奇偶性可将函数分类为四类:奇函数、偶函数、既是奇函数又是偶函数、非奇非偶函数。
7、判断或证明函数是否具有奇偶性的根据是定义。
8、如果一个奇函数f(x)在x=0处有意义,则这个函数在x=0处的函数值一定为0。
并且关于原点对称。
三、关于奇偶函数的图像特征 一般地:奇函数的图像关于原点对称,反过来,如果一个函数的图像关于原点对称,那么这个函数是奇函数; 即:f(x)为奇函数<=>f(x)的图像关于原点对称 点(x,y )→(-x,-y )偶函数的图像关于y 轴对称,反过来,如果一个函数的图像关于y 轴对称,那么这个函数是偶函数。
即: f(x)为偶函数<=>f(x)的图像关于Y 轴对称 点(x,y )→(-x,y )奇函数对称区间上的单调性相同(例:奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。
)偶函数对称区间上的单调性相反(例:偶函数在某一区间上单调递增,则在它的对称区间上单调递减)。
1.3.2奇偶性课标要点课标要点学考要求高考要求1.奇函数、偶函数的概念b b2.奇函数、偶函数的性质c c知识导图学法指导1.要深挖函数“奇偶性”的实质,也就是图象的对称性:是关于原点的中心对称还是关于y轴的轴对称.2.学习本节知识注意结合前面所学的知识,如单调性、函数图象、解析式等,加强它们之间的联系.3.学习奇偶性时不能忘记函数的定义域,奇偶性是函数整个定义域上的性质,忽略定义域是一个易错点.知识点奇、偶函数1.偶函数的定义一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数.2.奇函数的定义一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数.3.奇、偶函数的图象特征(1)奇函数的图象关于原点成中心对称图形;反之,如果一个函数的图象是以坐标原点为对称中心的中心对称图形,则这个函数是奇函数.(2)偶函数的图象关于y轴对称;反之,如果一个函数的图象关于y轴对称,则这个函数是偶函数.奇偶函数的定义域关于原点对称,反之,若定义域不关于原点对称,则这个函数一定不具有奇偶性.[小试身手]1.判断(正确的打“√”,错误的打“×”)(1)偶函数的图象关于(0,0)对称.()(2)奇函数的图象关于y轴对称.()(3)函数f(x)=x2,x∈[-1,2]是偶函数.()(4)若f(x)是定义在R上的奇函数,则f(-x)+f(x)=0.()答案:(1)×(2)×(3)×(4)√2.下列函数为奇函数的是()A.y=|x|B.y=3-x C.y=1x3D.y=-x2+14解析:A、D两项,函数均为偶函数,B项中函数为非奇非偶函数,而C项中函数为奇函数.答案:C3.若函数y=f(x),x∈[-2,a]是偶函数,则a的值为()A.-2 B.2 C.0 D.不能确定解析:因为偶函数的定义域关于原点对称,所以-2+a=0,所以a=2.答案:B4.下列图象表示的函数是奇函数的是________,是偶函数的是________.(填序号)解析:(1)(3)关于y轴对称是偶函数,(2)(4)关于原点对称是奇函数.答案:(2)(4)(1)(3)类型一函数奇偶性的判断例1判断下列函数的奇偶性:(1)f(x)=x3+x;(2)f(x)=1-x2+x2-1;(3)f(x)=2x2+2xx+1;(4)f(x)=⎩⎪⎨⎪⎧x-1,x<0,0,x=0,x+1,x>0.【解析】(1)函数的定义域为R,关于原点对称.又f(-x)=(-x)3+(-x)=-(x3+x)=-f(x),因此函数f(x)是奇函数.(2)由⎩⎨⎧1-x2≥0,x2-1≥0得x2=1,即x=±1.因此函数的定义域为{-1,1},关于原点对称.又f(1)=f(-1)=-f(-1)=0,所以f(x)既是奇函数又是偶函数.(3)函数f(x)的定义域是(-∞,-1)∪(-1,+∞),不关于原点对称,所以f(x)既不是奇函数也不是偶函数.(4)函数f(x)的定义域为R,关于原点对称.f(-x)=⎩⎪⎨⎪⎧-x-1,-x<0,0,-x=0,-x+1,-x>0,即f(-x)=⎩⎪⎨⎪⎧-(x+1),x>0,0,x=0,-(x-1),x<0.于是有f(-x)=-f(x).所以f(x)为奇函数.满足f(-x)=f(x)是偶函数,f(-x)=-f(x)是奇函数.方法归纳函数奇偶性判断的方法(1)定义法:(2)图象法:若函数的图象关于原点对称,则函数为奇函数;若函数图象关于y轴对称,则函数为偶函数.此法多用在解选择、填空题中.跟踪训练1判断下列函数的奇偶性:(1)f(x)=x2(x2+2); (2)f(x)=|x+1|-|x-1|;(3)f(x)=1-x2x;(4)f(x)=⎩⎪⎨⎪⎧x+1,x>0,-x+1,x<0.解析:(1)∵x∈R,∴-x∈R.又∵f(-x)=(-x)2[(-x)2+2]=x2(x2+2)=f(x),∴f(x)为偶函数.(2)∵x∈R,∴-x∈R.又∵f(-x)=|-x+1|-|-x-1|=|x-1|-|x+1|=-(|x+1|-|x-1|)=-f(x),∴f(x)为奇函数.(3)f(x)的定义域为[-1,0)∪(0,1].即有-1≤x≤1且x≠0,则-1≤-x≤1,且-x≠0,又∵f(-x)=1-(-x)2-x=-1-x2x=-f(x),∴f(x)为奇函数.(4)f(x)的定义域是(-∞,0)∪(0,+∞),关于原点对称.当x>0时,-x<0,f(-x)=1-(-x)=1+x=f(x);当x<0时,-x>0,f(-x)=1+(-x)=1-x=f(x).综上可知,对于x∈(-∞,0)∪(0,+∞),都有f(-x)=f(x),f(x)为偶函数.根据函数奇偶性定义判断.类型二函数奇偶性的图象特征例2设奇函数f(x)的定义域为[-5,5],若当x∈[0,5]时,f(x)的图象如图,则不等式f(x)<0的解集是________.【解析】由奇函数的性质知,其图象关于原点对称,则f(x)在定义域[-5,5]上的图象如图,由图可知不等式f(x)<0的解集为{x|-2<x<0或2<x≤5}.【答案】{x|-2<x<0或2<x≤5}根据奇函数的图象关于原点对称作图,再求出f(x)<0的解集.方法归纳根据奇偶函数在原点一侧的图象求解与函数有关的值域、定义域、不等式问题时,应根据奇偶函数图象的对称性作出函数在定义域另一侧的图象,根据图象特征求解问题.跟踪训练2如图,给出了偶函数y=f(x)的局部图象,试比较f(1)与f(3)的大小.解析:方法一因函数f(x)是偶函数,所以其图象关于y轴对称,补全图如图.由图象可知f (1)<f (3).方法二 由图象可知f (-1)<f (-3). 又函数y =f (x )是偶函数, 所以f (-1)=f (1),f (-3)=f (3),故f (1)<f (3).方法一是利用偶函数补全图象,再比较f(1)与f(3)的大小; 方法二f(1)=f(-1),f(3)=f(-3),观察图象判断大小.类型三 利用函数奇偶性求参数例3 (1)设函数f (x )=(x +1)(x +a )x为奇函数,则a =________; (2)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+x ,x >0,ax 2+x ,x <0是奇函数,则a =________.【解析】 (1)方法一(定义法) 由已知 f (-x )=-f (x ),即(-x +1)(-x +a )-x=-(x +1)(x +a )x . 显然x ≠0得,x 2-(a +1)x +a =x 2+(a +1)x +a , 故a +1=0,得a =-1.方法二(特值法) 由f (x )为奇函数得 f (-1)=-f (1),即(-1+1)(-1+a )-1=-(1+1)(1+a )1, 整理得a =-1.(2)(特值法) 由f (x )为奇函数, 得f (-1)=-f (1),[基础巩固](25分钟,60分)一、选择题(每小题5分,共25分) 1.下列函数是偶函数的是( ) A .y =2x 2-3 B .y =x 3 C .y =x 2,x ∈[0,1] D .y =x解析:对于A ,f (-x )=2(-x )2-3=2x 2-3=f (x ),∴f (x )是偶函数,B ,D 都为奇函数,C 中定义域不关于原点对称,函数不具备奇偶性,故选A.答案:A2.函数f (x )=1x -x 的图象( )A .关于y 轴对称B .关于直线y =x 对称C .关于坐标原点对称D .关于直线y =-x 对称解析:∵f (x )的定义域为(-∞,0)∪(0,+∞),关于原点对称,且f (-x )=-1x -(-x )=x -1x =-f (x ),∴f (x )是奇函数,图象关于原点对称.答案:C3.下列图象表示的函数具有奇偶性的是( )解析:选项A 中的图象不关于原点对称,也不关于y 轴对称,故排除;选项C ,D 中函数的定义域不关于原点对称,也排除.选项B 中的函数图象关于y 轴对称,是偶函数,故选B.答案:B4.下列四个结论:①偶函数的图象一定与y 轴相交; ②奇函数的图象一定通过原点; ③偶函数的图象关于y 轴对称;④奇函数y =f (x )(x ∈R )的图象必过(-a ,f (a )).表述正确的个数是( ) A .1 B .2 C .3 D .4解析:偶函数的图象一定关于y 轴对称,但不一定与y 轴相交,例如,函数f (x )=x 0,其定义域为{x |x ≠0},故其图象与y 轴不相交,但f (x )=x 0=1(x ≠0)是偶函数,从而可知①是错误的,③是正确的. 奇函数的图象关于原点对称,但不一定经过坐标原点,例如,函数f (x )=1x ,其定义域为{x |x ≠0},可知其图象不经过坐标原点,但f (x )=1x 是奇函数,从而可知②是错误的.若点(a ,f (a ))在奇函数y =f (x )(x ∈R )的图象上,则点(-a ,-f (a ))也在其图象上,故④是错误的.答案:A5.如图,给出奇函数y =f (x )的局部图象,则f (-2)+f (-1)的值为( )A .-2B .2C .1D .0解析:由图知f (1)=12,f (2)=32,又f (x )为奇函数,所以f (-2)+f (-1)=-f (2)-f (1)=-32-12=-2.故选A.答案:A二、填空题(每小题5分,共15分)6.若函数f (x )=kx 2+(k -1)x +3是偶函数,则k 等于________.解析:由于函数f (x )=kx 2+(k -1)x +3是偶函数,因此k -1=0,k =1.答案:17.给出下列四个函数的论断: ①y =-|x |是奇函数;②y =x 2(x ∈(-1,1])是偶函数;解得b=0.答案:0三、解答题(每小题10分,共20分)9.判断下列函数的奇偶性:(1)f(x)=x3-x2x-1;(2)f(x)=x2-x3;(3)f(x)=|x-2|-|x+2|;(4)f(x)=x2+ax(x≠0,a∈R).解析:(1)∵函数f(x)=x3-x2x-1的定义域为{x|x∈R且x≠1},定义域不关于原点对称,∴该函数既不是奇函数也不是偶函数.(2)f(x)的定义域为R,是关于原点对称的.∵f(-x)=(-x)2-(-x)3=x2+x3,又-f(x)=-x2+x3,∴f(-x)既不等于f(x),也不等于-f(x).故f(x)=x2-x3既不是奇函数也不是偶函数.(3)方法一(定义法)函数f(x)=|x-2|-|x+2|的定义域为R,关于原点对称.∵f(-x)=|-x-2|-|-x+2|=|x+2|-|x-2|=-(|x-2|-|x+2|)=-f(x),∴函数f(x)=|x-2|-|x+2|是奇函数.方法二(根据图象进行判断)f(x)=|x-2|-|x+2|=⎩⎪⎨⎪⎧-4,x≥2,-2x,-2<x<2,4,x≤-2,画出图象如图所示,图象关于原点对称,因此函数f(x)是奇函数.(4)当a=0时,f(x)=x2为偶函数.当a≠0时,f(x)=x2+ax(x≠0),取x=±1,得f(-1)+f(1)=2≠0,f(-1)-f(1)=-2a≠0,即f(-1)≠-f(1),f(-1)≠f(1),∴函数f(x)既不是奇函数也不是偶函数.综上所述,当a∈R且a≠0时,函数f(x)既不是奇函数也不是偶函数;当a=0时,函数f(x)为偶函数.10.已知函数f(x)是定义域为R的奇函数,当x>0时,f(x)=x2-2x.(1)求出函数f(x)在R上的解析式;(2)画出函数f(x)的图象.解析:(1)①由于函数f(x)是定义域为R的奇函数,则f(0)=0;②当x<0时,-x>0,∵f(x)是奇函数,∴f(-x)=-f(x),∴f(x)=-f(-x)=-[(-x)2-2(-x)]=-x2-2x,综上,f(x)=⎩⎪⎨⎪⎧x2-2x,(x>0)0,(x=0)-x2-2x,(x<0)(2)图象如图:[能力提升](20分钟,40分)11.定义两种运算:a b=a2-b2,a⊗b=(a-b)2,则函数f(x)=2x(x⊗2)-2为()A.奇函数B.偶函数C.奇函数且为偶函数D.非奇函数且非偶函数解析:由定义知f(x)=4-x2(x-2)2-2=4-x2|x-2|-2,由4-x2≥0且|x-2|-2≠0,得-2≤x<0或0<x≤2,即函数f(x)的定义域为{x|-2≤x<0或0<x≤2},关于原点对称;f(x)=4-x22-x-2=-4-x2x,f(-x)=-4-x2-x=-f(x).故f(x)是奇函数.故选A.答案:A12.若f(x)是[-2,2]上的偶函数,在(0,2]上为增函数,且f(m-1)>f(m+1),则m的取值范围为________.解析:∵f(x)为偶函数,。
函数奇偶性知识点归纳考点分析配经典案例分析函数的奇偶性定义:1.偶函数:一般地,对于函数()f x 的定义域内的任意一个x ,都有()()f x f x -=,那么()f x 就叫做偶函数.2.奇函数:一般地,对于函数()f x 的定义域的任意一个x ,都有()()f x f x -=-,那么()f x 就叫做奇函数.二、函数的奇偶性的几个性质1、对称性:奇(偶)函数的定义域关于原点对称;2、整体性:奇偶性是函数的整体性质,对定义域内任意一个x 都必须成立;3、可逆性:)()(x f x f =-⇔)(x f 是偶函数;)()(x f x f -=-⇔)(x f 奇函数;4、等价性:)()(x f x f =-⇔0)()(=--x f x f (||)()f x f x ⇔=;)()(x f x f -=-⇔0)()(=+-x f x f ;5、奇函数的图像关于原点对称,偶函数的图像关于y 轴对称;6、可分性:根据函数奇偶性可将函数分类为四类:奇函数、偶函数、既是奇函数又是偶函数、非奇非偶函数。
7、判断或证明函数是否具有奇偶性的根据是定义。
8、如果一个奇函数f(x)在x=0处有意义,则这个函数在x=0处的函数值一定为0。
并且关于原点对称。
三、关于奇偶函数的图像特征 一般地:奇函数的图像关于原点对称,反过来,如果一个函数的图像关于原点对称,那么这个函数是奇函数; 即:f(x)为奇函数<=>f(x)的图像关于原点对称 点(x,y )→(-x,-y )偶函数的图像关于y 轴对称,反过来,如果一个函数的图像关于y 轴对称,那么这个函数是偶函数。
即: f(x)为偶函数<=>f(x)的图像关于Y 轴对称 点(x,y )→(-x,y )奇函数对称区间上的单调性相同(例:奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。
)偶函数对称区间上的单调性相反(例:偶函数在某一区间上单调递增,则在它的对称区间上单调递减)。
八年级函数全知识点讲解函数是数学中非常重要的一个概念,是一种映射方法,用来描述两个变量之间的关系。
下面就为大家详细讲解八年级数学中的函数知识点。
一、函数的定义函数是一个映射方法,可以将一个自变量的值映射到一个因变量的值。
通常用符号 f(x)表示,在其中 x 表示自变量,f(x) 表示因变量。
函数从一组数到另一组数的映射,也就是说函数是一种关系。
映射方法 f 将自变量 x 映射到因变量 y,在数学中用 (x, y) 表示这个映射关系。
函数常用于表示各种自然现象以及数学中导数、积分等运算。
二、函数的特点1. 定义域和值域函数的定义域是指自变量 x 的所有取值,在这些区间内映射后得到的函数值定义了函数的值域。
例如,y = 2x + 1 这个函数的定义域为实数集合,值域为所有的实数集合。
2. 奇偶性函数的奇偶性指函数在自变量 x 为正或负时对应的函数值是否相等。
如果一个函数在自变量 x 为负时对应的函数值与 x 为正时对应的函数值相等,则这个函数具有偶性;如果函数在自变量 x 为负时对应的函数值与 x 为正时对应的函数值相反,则这个函数具有奇性。
3. 对称性函数的对称性包含水平和垂直两种对称性。
如果函数曲线在直线 y = k 垂直平面上对称,则称函数关于该垂直线具有对称性。
如果函数曲线在直线 x = k 水平平面上对称,则称函数关于该水平线具有对称性。
4. 单调性函数在定义域内是单增还是单减的性质称为它的单调性。
如果函数的导数恒大于0,该函数称为单调递增;如果函数的导数恒小于0,该函数称为单调递减。
三、函数的类型1. 线性函数线性函数的表达式为 y = kx + b,其中 k 和 b 是常数,也叫函数的斜率和截距。
线性函数的图形是一条直线,反映了固定比例的关系。
2. 二次函数二次函数的标准表达式为 y = ax² + bx + c,其中 a, b, c 都是常数。
它的图形是一个抛物线。
3. 幂函数幂函数的表达式为 y = x^n,其中 n 为常数。
一、函数的奇偶性奇偶性定义:设函数()()y f x x D =∈,任取x D ∈,有()()f x f x =-,则称函数()y f x =为偶函数;()()f x f x =--,则称函数()y x =为奇函数.性质:(1)函数的奇偶性是函数的整体性质,是对函数的整个定义域而言;(2)由()()()()()f x f x f x f x =-=--知,若,x D ∈则x D -∈,因此,函数()f x 的定义域D 关于原点对称是函数()f x 为偶(奇)函数的必要条件(非充分)(3)若0D ∈,则()00f =是()f x 为奇函数的必要条件(非充分)(4)常数函数()()f x c x R =∈一定()0f x =是偶函数;若0c =则()f x 既是偶函数又是奇函数;函数()f x 既是偶函数又是奇函数⇔()0f x =(x D ∈,其中D 是关于原点对称的任何一个非空数集) (5)奇偶函数的图像特征:函数()f x 是奇函数⇔函数()f x 图像关于原点对称; 函数()f x 是偶函数⇔函数()f x 图像关于y 轴对称.(6)奇偶函数的运算性质:设()()1f x x D ∈为奇函数,()()2g x x D ∈为偶函数,12,D D D = 则在D 上有:(7)多项式函数()230123n n f x a a x a x a x a x =++++ 为奇函数⇔偶次项系数全为0; 多项式函数()230123n n f x a a x a x a x a x =++++ 为偶函数⇔奇次项系数全为0. 二、函数的单调性单调性定义(唯一证明方法):对于区间D 上的函数()f x ,在D 上任取两个1212,,,x x x x < 若()()120,f x f x -<称()f x 在区间D 上是增函数,区间D 成为函数()f x 的单调增区间; 若()()120,f x f x ->称()f x 在区间D 上是减函数,区间D 成为函数()f x 的单调减区间.性质:(1)函数单调性是函数的局部性质,研究函数的单调性可以在定义域的某个区间(定义域的子集)上进行(而不需要在整个定义域上);函数的定义域可以有若干个增减性不同的单调区间;若函数()f x 在整个定义域上单调,则称()f x 为单调函数. (2)函数单调性二个等价形式:①()()()121200f x f x x x -><⇔-在D 上单调递增(递减);②()()()()121200x x f x f x --><⇔⎡⎤⎣⎦()f x 在D 上单调递增(递减).(3)若()f x 在R 上单调递增,则()()f a f b a b >⇔>;若()f x 在R 上单调递减,则________. (4)设12,,x x D ∈则()()()()1212(0)x x f x f x f x --><⇔⎡⎤⎣⎦在D 上是增(减)函数.(5)单调性与奇偶性:若奇函数()f x 在区间[],a b 上单调递增(减),则()f x 在区间[],b a --上单调递增(减);若偶函数()f x 在区间[],a b 上单调递增(减),则()f x 在区间[],b a --上单调递减(增);(6)复合函数单调性:两个单调函数()f x 与()g x 复合,不论复合结果是()f g x ⎡⎤⎣⎦还是()g f x ⎡⎤⎣⎦,有如下性质:若()f x 与()g x 单调性相同,同增或同减,则复合结果为增;若()f x 与()g x 单调性相反,一个增一个减,则复合结果为减;以上性质可记为一句口诀:“同增异减”.单调区间的书写要求:若函数在区间的端点有定义,常常写成闭区间,当然写成开区间也是可以的.但是若函数在区间的端点处没有定义,则必须写成开区间.另外,若函数()f x 在其定义内的两个区间A 、B 上都是单调增(减)函数,一般不能认简单地认为()f x 在区间A B 上是增(减)函数.例如1()f x x=在区间(,0)-∞上是减函数,在区间(0,)+∞上也是减函数,但不能说它在定义域(,0)(0,)-∞+∞ 上是减函数.事实上,若取1211x x =-<=,有(1)11(1)f f -=-<<.一、函数的奇偶性题型一 判断并证明函数的奇偶性 方法:(1)定义法:首先判断其定义域是否关于原点中心对称.若不对称,则为非奇非偶函数;若对称,则再判断()()f x f x =-或()()f x f x =-是否定义域上的恒等式; (2)图象法:观察图像是否符合奇、偶函数的对称性. 说明:(1)分段函数的奇偶性的判定和分类讨论思想密切相关,要注意自变量在不同情况下表达式的不同形式以及它们之间的相互利用;(2)判断函数的奇偶性,首先要考查定义域是否对称; (3)若判断函数不具备奇偶性,只需举出一个反例即可;(4)函数就奇、偶性来划分可以分成奇函数、偶函数、非奇非偶函数、既是奇函数也是偶函数. 例1.判断下列函数的奇偶性:(1)x xx x f ++=1)(2; (2)()(1f x x =-(2)()0f x = (4) ()⎩⎨⎧≤+>+-=)0()0(22x x x x x x x f(5)()2212-+-=x x x f(6)已知函数)(x f 满足:),)(()(2)()(R y x y f x f y x f y x f ∈=-++,且0)0(≠f ,则函数)(x f 的奇偶性为________.题型二 利用奇偶性求函数式或函数值 例2.完成下列各题:1.设函数)(x f 为定义域为R 上奇函数,又当0>x 时2()23f x x x =--,试求)(x f 的解析式.3.设函数()f x 是定义域R 上的奇函数,(2)()f x f x +=-,当01x <≤时,()f x x =,求(7.5)f 的值.4.设()f x 在R 上是偶函数,在区间(,0)-∞上递增,且有22(21)(321)f a a f a a ++<-+,求a 的取值范围.5.已知函数53()4f x ax bx =++,若(2)0f -=,求(2)f 的值.6.若函数()f x 是偶函数,则=--+)211()21(f f ________. 7.已知()f x 是偶函数,()g x 是奇函数,且()()11f xg x x +=-,试求()()f x g x 与的表达式.题型三 逆用函数奇偶性求参数的值例3.1.若函数43()(2)(22)f x x m n x m n x mn =+-++-+为偶函数,求实数,m n 的值。
函数的奇、偶性 一、奇、偶函数的定义
二、奇、偶函数的图象特征 三、常见函数的奇、偶性:
1、常函数的奇、偶性。
()3f x =(偶函数) ()0f x =(即奇又偶)
2、函数()x x f x a a -=+为偶函数,()x x f x a a -=-为奇函数
3、函数221
()(0,1)1
x x x x x x a a a f x a a a a a ----=
=>≠++为奇函数 4、函数1()log 1a x
f x x
-=+为奇函数
5
、函数()log (a f x x =+为奇函数
四、奇、偶函数的判断方法:(先求定义域,结果有:奇函数、偶函数、非奇非偶函数)
1、定义法:5y x = 1t a n ()5y x = 241y x =+ s i n (2)
3y x π
=+ 51y x =+ |1||1|
y x x =-++ 2、求商法:
()
1()f x f x -=±(含有指数时用) 21()21x x f x x +=- s i n s i n 21
()21
x x f x -=+
3、做差法:(当含有对数时)
4、规律:奇±奇=奇 偶±偶=偶 奇⨯奇=偶 偶⨯奇=奇 A ⨯奇=奇 A ⨯偶=偶 (奇±偶的奇偶性不确定)
5、图象法:(根据图象可知道函数的奇偶性)
6、取特殊值法:(选择、填空可用,解答题不可用)
7、分段函数:(1),0()(1),0x x x f x x x x +>⎧=⎨-<⎩ 2,1
()0,11
2,1
x x f x x x x +>-⎧⎪
=-≤≤⎨⎪-+>⎩
五、其他性质:
1、如果奇函数的定义域中包括0,则(0)0f =;反之,不成立。
2、定义在R 的函数都可以写成一个奇函数与一个偶函数的和。
六、复合函数的奇偶性:同奇则奇,一偶则偶。
函数奇、偶性练习题
1、如果奇函数()f x 在[,]a b 上是减函数,求证:()f x 在[,]b a --上也是减函数。
2、已知定义在R 上的函数()f x 在(8,)+∞上为减函数,且函数(8)y f x =+为偶函数,则 (6)f 与(9)f 的大小关系是
3、定义在R 上的函数()f x 满足()()f x f x -=-,当0m >时,()()f x m f x +<,则不等式
2()()0f x f x +<的解集是
4、设奇函数()f x 在(0,)+∞上为增函数,且(1)0f =,不等式
()()
0f x f x x
--<的解集是
5、函数3
()sin 1()f x x x x R =++∈,若()2f a =,则()f a -= 6、设函数()f x 是连续的偶函数,且当0x >时()f x 是单调函数,则满足3
()()4
x f x f x +=+ 的所有x 的和(积)为
7、设函数()f x 是定义在R 上的奇函数,若当(0,)x ∈+∞时,()lg f x x =,则()0f x >的解集为 8、设2
()lg(
)1f x a x
=+-是奇函数,则使()0f x <的解集是 9、定义在R 上的函数()f x 既是奇函数,又是周期函数,T 是它的一个正周期,若将方程()0f x =在闭区间[-T ,T]上的根的个数记为n ,则n 为 (奇、偶)数个
10、若函数2
()()x u f x e
--=的最大值是m ,且()f x 是偶函数,则m u +=
11、设()()f x x R ∈为偶函数,且31()()22
f x f x -=+恒成立,[2,3]x ∈时,()f x x =,则
[2,0]x ∈-时,()f x =
12、如果奇函数()f x 在[,]a b 上是减函数,求证:()f x 在[,]b a --上也是减函数。
13、已知函数()f x 是定义在R 上的奇函数,-2是它的一个零点,且在(0,)+∞上是增函数,则
该函数有 个零点,这几个零点的和等于 14、函数1sin cos 1sin cos x x
y x x
+-=
++的奇偶性为 非奇非偶(如果不判断定义域,容易
错填为奇函数)。