高等数学 5.1定积分的概念与性质
- 格式:ppt
- 大小:1.44 MB
- 文档页数:34
第五单元 定积分5-1 定积分概念,性质和微积分基本公式[教学基本要求]高等数学 1.理解定积分的概念和几何意义,了解定积分的性质和积分中值定理.2.理解变上限的积分作为其上限的函数及其求导定理.3.掌握牛顿-莱布尼兹公式.微积分 1.了解定积分的概念和几何性质;了解定积分的基本性质和积分中值定理. 2.了解变上限定积分;会求变上限定积分的导数; 3.熟练运用牛顿一莱布尼兹公式计算定积分.[知识要点]1. 定积分的意义中要点可概括为以下五点:(1)()f x 在闭区间[,]a b 上有意义;(2)把区间[,]a b 任意分割成n 个小区间;(3)作乘积()i i f x ξ⋅∆,i ξ1[,]i i x x -∈且取和1()nn iii S f x ξ==∆∑;(4)求和式nS ,当0λ→时的极限,这个极限不仅存在且与区间[,]a b 的分法和点i ξ的取法无关;(5)这个极限值就称为函数()f x 在[,]a b 上的定积分。
由此可以看出,第一点是条件;第二、三、四是作法,第五点是结论。
再概括就是:“分割取近似,求和取极限”。
提示注意:①定义中所说的极限存在是指对于区间的任意分法,i ξ的任意取法,只要当0λ→时,则积分和∑=∆ni i i x f 1)(ξ都趋于一个共同的数值。
因此有:② 定积分⎰badx x f )(是一个数,这个数仅与被积函数及积分区间有关,而与积分变量的记 法无关,即⎰ba dx x f )(=⎰b adt t f )(=⎰b adu u f )(. ③a b =时,⎰b adx x f )(=⎰aadx x f )(=0. ④ 当a b >时,⎰badx x f )(()abf x dx =-⎰如果函数()f x 在区间[,]a b 上可积,称()f x 在[,]a b 上的定积分存在。
2.可积函数类:下列函数均可积:①()f x 在[,]a b 上连续;②()f x 在[,]a b 上单调有界;③()f x 在[,]a b 上有界且至多有有限个第一类间断点3. 定积分的几何意义: 在[,]a b 上,若()0f x ≥,则()baf x dx ⎰在几何上表示由曲线()y f x =,两条直线,x a x b ==与x 轴所围成的曲边梯形的面积.一般情形下⎰badx x f )(的几何意义为:这是介于x 轴,函数()f x 的图形及两条直线x a =,x b =之间各部分面积的代数和(规定对x 轴下方图形的面积赋予负号).4. 定积分的性质以下均设()f x ,()g x 在[,]a b 上可积① (线性性质)定积分对被积函数具有线性质性,即⎰±badx x g x f )]()([=⎰badx x f )(±⎰badx x f )(,⎰b adx x kf )(=⎰badx x f k )((k 为常数)②(定积分对积分区间的可加性)设a b c <<,如果将区间[,]a b 分为[,]a c , [,]c b 则:⎰badx x f )(=⎰c adx x f )(+⎰bcdx x f )(③如果()f x ()g x ≤([,]x a b ∀∈)则⎰badx x f )(⎰≤badx x g )(特别地注意:当()0f x ≥,([,]x ab ∀∈),则⎰≥bax f 0)(;若()f x 在[,]a b 上可积,则|()|f x 在[,]a b 上也可积,且⎰badx x f )(⎰≤badx x f )(④(积分估计),设,M m 分别是函数()f x 在[,]a b 上的最大值和最小值,则()()()bam b a f x dx M b a -≤≤-⎰⑤若()f x 与()g x 在[,]a b 上仅在有限个点处的值不相等,则有⎰badx x f )( =⎰badx x g )(.⑥(积分第一中值定理)设()f x 在[,]a b 上连续,则在[,]a b 上至少有一个数ξ,使得()()()baf x dx f b a ξ=-⎰成立.提示注意:通常称dx x f a b ba⎰-)(1为函数()f x 在[,]a b 上的平均值.5. 变上限定积分 定积分⎰xadt t f )(是上限变量x 的函数,记作()()xax f t dt Φ=⎰,称为变上限定积分.注:①如果()f x 在[,]a b 上可积,则()()xax f t dt Φ=⎰在[,]a b 上连续.②如果()f x 在[,]a b 上连续,则()()xax f t dt Φ=⎰在[,]a b 上可导,且有[])()(/x f x x =Φ.③如果函数()f x 在[,]a b 上连续,()x ϕ可微,则()()[()]()x a d f t dt f x x dxϕϕϕ'=⎰. ④如果函数()f x 在[,]a b 上连续,()x ϕ,)(x ψ均可微,则[]()//()()()()[()]()x x d f t dt f x x f x x dx ψϕψψϕϕ=-⎰ ①②两式合起来就是通常所说的原函数存在定理,它揭示了“连续函数必有原函数”这一基本结论.6.牛顿——莱布尼兹公式若函数()f x 在[,]a b 上连续,()F x 为()f x 的一个原函数,即()()F x f x '=,则)()()()(a F b F x F dx x f ba ba-==⎰,通常把这一公式又叫做微积分基本公式。