马赫-曾德调制器原理与应用_课件
- 格式:pdf
- 大小:1.84 MB
- 文档页数:27
马赫-曾德尔电光调制器原理及其在光纤通信中的应用马赫-曾德尔电光调制器(MZ调制器)是一种重要的光学器件,广泛应用于光纤通信系统中。
它采用电场的调制原理,将电信号转换为光信号,在光纤通信中起到了关键作用。
本文将介绍MZ调制器的原理和应用,并探讨它在光纤通信中的重要性。
一、马赫-曾德尔电光调制器原理MZ调制器是利用光的干涉效应来实现光信号的调制。
它由两束光线分别沿两条不等长度的光波导传输并最终相遇,通过变化电场的方式来控制这两束光的相位差,进而实现调制功能。
MZ调制器的基本结构是由两个平行的电极极板组成,这两个电极分别控制两条光波导的折射率。
当施加电压时,电极中的电场会改变光波导的折射率,从而改变光的传播速度,最终影响光的相位。
通过调控电压大小和频率,可以使两束光线在相遇时发生不同的相位变化,实现光信号的调制。
二、马赫-曾德尔电光调制器在光纤通信中的应用1. 高速调制:MZ调制器能够实现高速的光信号调制,其响应速度远远快于传统的光调制器,适用于高速光纤通信系统。
2. 宽带调制:由于MZ调制器可以实现高速调制,因此能够适应更宽的频率范围,从而实现更高的频带利用率。
3. 低功耗:相比于其他光调制器,MZ调制器的功耗相对较低,有效降低了光纤通信系统的能耗。
4. 高稳定性:MZ调制器的结构简单、稳定性高,在光纤通信系统中能够长时间运行而不易发生故障。
5. 多路复用:利用MZ调制器可以实现波分复用技术,将多路信号通过光波分复用器转为一路信号传输,提高了光纤通信系统的传输效率和容量。
三、结语马赫-曾德尔电光调制器作为一种重要的光学器件,在光纤通信领域中具有重要的应用价值。
它不仅能够实现高速、宽带、低功耗的光信号调制,还能够实现多路复用等技术,在提升光纤通信系统性能和效率方面发挥了重要作用。
未来随着光纤通信技术的不断发展,马赫-曾德尔电光调制器必将发挥更加重要的作用,推动光纤通信技术的发展和应用。
马赫曾德干涉仪工作原理嘿,朋友们!今天咱来聊聊马赫曾德干涉仪的工作原理,这玩意儿可神奇啦!你看啊,马赫曾德干涉仪就像是一个超级精密的“光影魔术师”。
它主要是由两个分束器和两个反射镜组成的。
这就好比是一场精彩表演的舞台道具,分束器就是那个能把光线巧妙分开的神奇“魔法棒”,而反射镜呢,就像是忠实的“配角”,配合着完成这场光影大戏。
光线从光源出来,一路欢快地跑着,碰到第一个分束器。
哇塞,这一下就被分成了两束,就像一个人突然变成了两个分身一样。
这两束光呀,各自沿着不同的路径跑,一个通过长长的“通道”,另一个则在另一个“小道”上溜达。
然后呢,它们分别碰到了反射镜,被反射回来。
这时候就有意思啦!这两束被分开又回来的光,再次碰到分束器。
哎呀呀,它们又重新汇聚到一起啦!你说神奇不神奇?这就好像两个许久未见的朋友,在经历了一番不同的旅程后又重逢了。
那这重新汇聚的光会怎么样呢?嘿嘿,这就有讲究了。
如果这两束光在它们各自的旅程中没有遇到什么“干扰”,那它们汇聚后就会形成一些非常漂亮、有规律的明暗条纹。
这就像是给我们呈现了一场绝美的视觉盛宴!但要是在它们的旅程中有什么因素让它们发生了变化,比如光程差改变了,那这明暗条纹可就不一样啦,就像是一场表演突然有了新的剧情转折。
咱说马赫曾德干涉仪这玩意儿,在好多领域都大显身手呢!在光学测量里,它能精确地测量各种物理量,这可不是一般的厉害!就好像它是一个超级侦探,能找出那些隐藏得很深的秘密。
你想想,要是没有马赫曾德干涉仪,我们好多科学研究和技术应用该咋办呀?它就像是一个默默无闻却又无比重要的幕后英雄,为我们的科技进步贡献着力量。
总之呢,马赫曾德干涉仪真的是太牛啦!它用看似简单却又极其精妙的原理,为我们打开了一扇通往神奇光学世界的大门。
让我们能更好地探索光的奥秘,为人类的发展添砖加瓦。
所以呀,可别小瞧了这个小小的干涉仪哦!。
马赫曾德干涉仪马赫——曾德干涉仪。
马赫——曾德干涉仪(Mach-Zehnder; inter-ferometer)是一种重要的光学和光子学器件,广泛应用于干涉计量、光通信等领域;它用分振幅法产生双光束以实现干涉,被广泛用作传感器和光调制器。
一、实验目的1.掌握马赫曾德干涉仪的原理和结构;2. 组装并调节马赫曾德干涉仪,观察干涉条纹。
3. 学会调节两束相干光的干涉;二、实验原理与仪器He-Ne 激光器、平面反射镜1和平面反射镜2 、分束器、合束器、扩束滤波准直系统、可变光阑、光强衰减片、白屏。
图1 实验装置及光路图图1为马赫曾德的实验装置图,:由He-Ne激光器发出的激光由扩束镜(显微物镜)、针孔滤波和透镜准直后形成宽口径平面波,经可变光阑后,光斑直径变为1厘米后,再经分束器形成两路:透射光和反射光。
透射光被反射镜2反射后垂直入射到原始物平面Po上的物体上,经衍射后的物光经过合束器到达距离z=20厘米处的CCD记录面P H上。
经过分束器后的反射光作为参考光被反射镜1和合束器反射到P H面上与物光干涉产生干涉条纹,被CCD 记录下来传输到计算机中。
三、实验内容和步骤1 光学器件的共轴调节调节激光器水平,调整各器件的高度的俯仰,使其共轴。
在调节透镜时要注意反射光点重合。
2 平行光调节利用调平的激光器,通过调节扩束准直系统,得到平行光。
加入可变光阑,使平行光中心通过光阑的中心。
通过针孔滤波和透镜准直获得宽口径平面波后搭建MZ干涉仪,保证两束光在合束器后完全重合并产生平行直条纹的干涉图样。
3.首先在激光束的传播方法放置分束器,将He-Ne激光器的主光束平分得到两个分光束。
调整分束器角度,得到两条严格垂直的分光束。
在光路1中放置反射镜1,将分光束1的传播方向改变,该反射镜与分光器位于同一列螺纹孔。
反复调节反射镜的位置和反射角度,得到严格平行并且等高的两束光线。
在光路2中放置反射镜2,如果调节的方法正确,主分光束的反射光和另外一条分光束可以刚好在空间相交,该交点基本可以刚好满足严格的等过程。
马赫曾德搞涉仪之阳早格格创做马赫——曾德搞涉仪.马赫——曾德搞涉仪(Mach-Zehnder; inter-ferometer)是一种要害的光教战光子教器件,广大应用于搞涉计量、光通疑等范围;它用分振幅法爆收单光束以真止搞涉,被广大用做传感器战光调造器.一、真验手段1.掌握马赫曾德搞涉仪的本理战结构;2. 组拆并安排马赫曾德搞涉仪,瞅察搞涉条纹.3. 教会安排二束相搞光的搞涉;二、真验本理取仪器He-Ne 激光器、仄里反射镜1战仄里反射镜2、分束器、合束器、扩束滤波准曲系统、可变光阑、光强衰减片、黑屏.图1 真验拆置及光路图图1为马赫曾德的真验拆置图,:由He-Ne激光器收出的激光由扩束镜(隐微物镜)、针孔滤波战透镜准曲后产死宽心径仄里波,经可变光阑后,光斑曲径形成1厘米后,再经分束器产死二路:透射光战反射光.透射光被反射镜2反射后笔曲进射到本初物仄里Po上的物体上,经衍射后的物光通过合束器到达距离z=20厘米处的CCD记录里P H上.通太过束器后的反射光动做参照光被反射镜1战合束器反射到P H里上取物光搞涉爆收搞涉条纹,被CCD记录下去传输到估计机中.三、真验真质战步调1 光教器件的共轴安排安排激光器火仄,安排各器件的下度的俯俯,使其共轴.正在安排透镜时要注意反射光面沉合.2 仄止光安排利用调仄的激光器,通过安排扩束准曲系统,得到仄止光.加进可变光阑,使仄止光核心通过光阑的核心.通过针孔滤波战透镜准曲赢得宽心径仄里波后拆修MZ搞涉仪,包管二束光正在合束器后真足沉合并爆收仄止曲条纹的搞涉图样.3.最先正在激光束的传播要收搁置分束器,将He-Ne激光器的主光束仄分得到二个分光束.安排分束器角度,得到二条庄重笔曲的分光束.正在光路1中搁置反射镜1,将分光束1的传播目标改变,该反射镜取分光器位于共一列螺纹孔.反复安排反射镜的位子战反射角度,得到庄重仄止而且等下的二束光芒.正在光路2中搁置反射镜2,如果安排的要收精确,主分光束的反射光战其余一条分光束不妨刚刚佳正在空间相接,该接面基础不妨刚刚佳谦脚庄重的等历程.4.大概安排佳分束镜战反射镜的光路,使二路光正在合束器上汇合,并出射正在黑屏上(决定光斑是可降正在各镜里核心,可用揩镜纸沉沉挡正在镜里前瞅察光斑的位子).5.牢固一路激光,丈量记录光路的少度.安排另一路光路,使那路光的少度取刚刚刚刚记下的光路普遍,牢固光路.6.将黑屏移近(起码2m),瞅察黑屏上的二个激光斑,若没有沉合,安排分束镜的统造钮,使二个光斑完好沉合.7.把黑屏移回符合瞅察的位子,细调分束镜的统造钮并瞅察黑屏上的激光搞涉局里,曲到局里最明隐为止,得到浑晰的横曲搞涉条纹.五、思索题1.如果分束器后二路光光强分歧,该当使用什么元件革新?2.马赫曾德搞涉仪战迈克我逊搞涉仪的辨别是什么?各有什么特性?。
马赫-曾德光纤干涉实验光纤传感器是20世纪70年代中期发展起来的一种新型传感器,它是光纤和光通讯技术迅速发展的产物。
光纤马赫-曾德干涉仪(MZI)是一种功能型光纤传感器,它在光纤技术中常用作相位、频率等的调制解调器。
一、实验目的1.学习光纤 马赫-曾德(Mach-Zenhder ) 干涉原理2.掌握利用马赫-泽德光纤干涉仪对压力和温度的测量。
二、实验器材OFKM-Ⅳ型多功能全光纤干涉仪,He-Ne 激光器 三、实验原理1.光纤传感器基本工作原理光纤 马赫-曾德(Mach-Zenhder ) 干涉仪结构与原理如图 1所示。
光源发出的光经过耦合器(DC1),将光束一分为二,光纤一臂为信号臂,另一臂为参考臂。
经过耦合器 DC2 进行干涉,干涉光照到探测器上,光强表达式分别为)(cos 1t B A I Φ+= (1) )(cos 2t B A I Φ-= (2)在通过对干涉信号相位的获得来推知作用在信号臂上的外界物理量的变化。
2.马赫-曾德光纤温度传感器工作原理激光束从激光器发出后经分束器分别送入长度基本相同的两条光纤, 而后将两根光纤输出端汇合在一起,产生干涉光, 从而出现了干涉条纹。
当一条光纤臂温度相对另一条光纤臂的温度发生变化时, 两条光纤中传输光的相位差发生变化, 从而引起干涉条纹的移动。
干涉条纹的数量能反映出被测温度的变化。
光探测器接收到干涉条纹的变化信息, 并输入到适当的数据处理系统, 最后得到测量结果。
长度为 L 的光纤中传播光波的相位ΦnL k 00+Φ=Φ (3)其中0Φ 为光进入光纤前的初始相位, 0k (00/2λπ=k ,0λ为真空中波长)为传播常数, n 为光纤的折射率;L 为光纤的长度。
图1 光纤Mach-Zenhder 干涉仪原理图λπ=λπδ=∆ΦSP22λπ+=SP K I I I 2cos 00设光纤1L 温度不变,光纤2L 温度该变T ∆,则折射率n 的改变量为n ∆ ,光纤2L 长度改变量为2L ∆。
马赫-曾德尔干涉仪原理是利用两束光线在一个媒质中相互干涉的现象来验证物质中极微小的波动和振动。
在正常情况下,光会在一个波导中从一端传到另一端。
然而,当两条波导靠得很近时,光会从一条波导“红杏出墙”“节外生枝”,两根波导中的光信号互相一部分跑到对方里面。
设计者有意地让两条波导多次发生这种相互干扰,构造了很多个称为马赫·曾德尔干涉仪的基本单元,并且连接到一起组成一个网络。
原本最左面每条波导输入端口光的亮度表示了各个输入数据值的大小,经过这种很多次光的干涉之后,各条波导内的光可能变得更亮,也可能变得更暗,经过对所有干涉仪单元都进行适当的设置,测量下整个网络最右面各个输出端口光亮度,可以获得想要的计算结果,比如输入的是某一个向量各个元素值大小,获得的是一个新向量,表示输入向量与某一个矩阵相乘后的输出结果。
这个原理是物理学和光学的基础理论,深刻影响了物理学的发展,也为各种科学技术的发展奠定了基础。
万方数据第3期湖南工业职业技术学院学报2010年n,=n:=n。
+△n.=n。
+÷焉‰E(3)却e/出≠0,则输出光信号的频率发生漂移;若孑%/dt2≠0·说明z方向的外加电场作用在材料上,引起了x和Y方向折射率的变化。
折射率的变化与外加电压的比值和材料的非线性系数有关,构成电光调制器时尽可能选取一些具有较高二阶非线性系数的材料,像LiNb03,LiTa03,SBN,目前常用的电光调制器通常选用LiNbO,。
MZ电光调制器的结构如图1所示,输入光波经过一个Y分支后变为两路,由于两臂所加电压不同,导致两臂由Pocket效应引入的折射率变化不同,再经过一个Y分支将信号和为一路输出。
这是典型的MZ干涉结构。
输出的光功率可以由两臂的电压共同控制。
图1MZ电光调制器的结构图MZ干涉结构在LiNbO,称底上制成,两臂为波导结构,所以可以制成较小的尺寸。
在光波的传输方向上无电场,假设光波沿Y方向传播,则光电场振动方向可以沿x方向或者z方向。
依据TM模式光波电场的振动方向可以将LiNbO,波导的结构分为两种,如图2所示:(a)为x切结构,(b)为z切结构。
singnalgroundgroundsignalground产鼍,甓罗一topticalL—'Xwavegude(a)x切结构(b)Z切结构图2MZ电光调制器的丽种结构pl和P2分别为第一、第二个Y分支的耦合比例,A;为入射光波的复振幅,A。
为输出光波的复振幅,妒。
和妒:为经过上下两臂引入的相位。
则输出光波的复振幅可以表示为:^。
=At(∥可习;xp(tp。
)+石可j》xp(仡))(4)一般情况下P。
=P2=1/2A。
=jAiexp(.『半)咖(字)吐唧cj#L)jexp(,’鼍≯)cos(仃(U一屹)2v.(5)式中exp(jpL)jexp(J掣)为相位部分,其中,exp(jflL)j为固定的相位,可以通过选择恰当的调制器臂长,使得肚+仃/2=2k'n-,即此相位对调制器的输出光没有影响;exp(加(Vi+n)/(2v.))为所加电压对相位的影响,可以看出此相位只与两臂电压之和有关。