单片机LCD定时闹钟程序
- 格式:docx
- 大小:16.74 KB
- 文档页数:6
单片机电子闹钟程序(亲自编写-可用)————————————————————————————————作者:————————————————————————————————日期:学校电子钟,有闹钟功能,按键可调时间,可调打铃时间,打铃时间长短显示,每个模块有功能注释。
其中正常时间显示和闹钟时间显示可用一个开关来调整。
芯片选择STC89C52程序:#include<reg51.h>#include<intrins.h>#define uchar unsigned char#define uint unsigned int//定义显示段码uchar code table[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x00};uchar codebbtime[]={0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71}; uchar clock[]={0,0,0,0};uchar clock1[]={12,30,0};uchar weikong[6];uchar bbduration=4;uchar lingtime=9;//学校打铃时间组uchar shangwu1[]={8,30};uchar shangwu2[]={10,0};uchar shangwu3[]={10,20};uchar shangwu4[]={11,50};uchar xiawu1[]={13,30};uchar xiawu2[]={15,00};uchar xiawu3[]={15,15};uchar xiawu4[]={16,45};//按键定义sbit mode=P1^7;sbit sec_clr=P1^0;sbit min_set_add=P1^3;sbit min_set_sub=P1^4;sbit hour_set_add=P1^1;sbit hour_set_sub=P1^2;sbit bb_set_add=P1^5;sbit bb_set_sub=P1^6;sbit speaker=P2^6;//延时函数void delay(unsigned int t){while(t--);//时钟进位函数void clockjinwei(){clock[0]++;if(clock[0]==20){clock[1]++;clock[0]=0;if(clock[1]==60){clock[2]++;clock[1]=0;if(clock[2]==60){clock[3]++;clock[2]=0;if(clock[3]==24)clock[3]=0;}}}}//定时器0中断服务函数void timer0(void) interrupt 1 using 1 {TMOD=0x01;TH0=0x3c;TL0=0xb0;clockjinwei();}//时钟分位显示函数void fenwei(){weikong[0]=clock[3]/10;weikong[1]=clock[3]%10;weikong[2]=clock[2]/10;weikong[3]=clock[2]%10;weikong[4]=clock[1]/10;weikong[5]=clock[1]%10;}//闹钟分位显示函数void naofen(){weikong[0]=clock1[0]/10;weikong[1]=clock1[0]%10;weikong[2]=clock1[1]/10;weikong[3]=clock1[1]%10;weikong[4]=clock1[2]/10;weikong[5]=clock1[2]%10; }//闹钟定时显示函数void naozhongdisplay(){uchar z,s;uchar x=0x01;naofen();for(z=0;z<6;z++){P2=0;P0=table[weikong[z]];P2=x;x=_crol_(x,1);for(s=0;s<255;s++);}}//时钟显示函数void display(){uchar i,j;uchar x=0x01;fenwei();for(i=0;i<6;i++){P2=0;P0=table[weikong[i]];P2=x;x=_crol_(x,1);for(j=0;j<255;j++);}}//总显示函数void zhongxian(){if(mode==1)delay(100);if(mode==1)display();if(mode==0)delay(100);if(mode==0)naozhongdisplay();}//按键处理程序void key_set(){zhongxian();P1=0xff;if(min_set_add==0){delay(100);if(min_set_add==0){if(mode==1){clock[2]++;if(clock[2]==60){clock[2]=0;}while(min_set_add==0)zhongxian();}}if(mode==0){clock1[1]++;if(clock1[1]==60){clock1[1]=0;}while(min_set_add==0)zhongxian();}}//if(min_set_sub==0){delay(100);if(min_set_sub==0){if(mode==1){clock[2]--;if(clock[2]==0)clock[2]=59;}while(min_set_sub==0)zhongxian();if(mode==0){clock1[1]--;if(clock1[1]==0)clock1[1]=59;}while(min_set_sub==0)zhongxian();}}//if(hour_set_add==0){delay(100);if(hour_set_add==0){if(mode==1){clock[3]++;if(clock[3]==24){clock[3]=0;}while(hour_set_add==0)zhongxian();}if(mode==0){clock1[0]++;if(clock1[0]==24){clock1[0]=0;}while(hour_set_add==0)zhongxian();}}}//if(hour_set_sub==0){delay(100);if(hour_set_sub==0){if(mode==1){clock[3]--;if(clock[3]==0)clock[3]=23;}while(hour_set_sub==0)zhongxian();if(mode==0){clock1[0]--;if(clock1[0]==0)clock1[0]=23;}while(hour_set_sub==0)zhongxian();}}//if(sec_clr==0){delay(100);if(sec_clr==0){clock[1]=0;}while(sec_clr==0)zhongxian();}}//闹钟响铃函数void bb(){if(clock[1]<=bbduration){speaker=1;delay(100);speaker=0;}else speaker=0;}//打铃函数void daling(){if(clock[1]<=lingtime){speaker=1;delay(100);speaker=0;}else speaker=0;}//时间比较函数void bijiao(){if(clock[3]==shangwu1[0]){if(clock[2]==shangwu1[1])daling();}if(clock[3]==shangwu2[0]){if(clock[2]==shangwu2[1])daling();}if(clock[3]==shangwu3[0]){if(clock[2]==shangwu3[1])daling();}if(clock[3]==shangwu4[0]){if(clock[2]==shangwu4[1])daling();}if(clock[3]==xiawu1[0]){if(clock[2]==xiawu1[1])daling();}if(clock[3]==xiawu2[0]){if(clock[2]==xiawu2[1])daling();}if(clock[3]==xiawu3[0]){if(clock[2]==xiawu3[1])daling();}if(clock[3]==xiawu4[0]){if(clock[2]==xiawu4[1])daling();}}//闹钟比较void naobijiao(){if(clock[3]==clock1[0]){if(clock[2]==clock1[1]||clock[2]==clock1[1]+1||clock[2]==clock1[1]+2) bb();}}//响铃时长显示函数void bbtimeshow(){P3=bbtime[bbduration];if(bbduration>15)bbduration=0;}//响铃按键处理函数void bbtime_set(){bbtimeshow();if(bb_set_add==0){delay(100);if(bb_set_add==0)bbduration++;while(bb_set_add==0)bbtimeshow();}if(bb_set_sub==0){delay(100);if(bb_set_sub==0)bbduration--;while(bb_set_sub==0)bbtimeshow();}}//主程序void main(){EA=1;ET0=1;TR0=1;while(1){key_set();bijiao();bbtime_set();naobijiao();}}电路图:分四部分显示:如果在学习这个程序过程中有什么问题,可以发邮件到询问。
基于单片机液晶定时闹钟的设计方案1 设计方案论证1.1 应用近几年,单片机在各个领域得到广泛的应用。
从工业到人们的日常生活,大部分的科技产品都是通过单片机来控制。
在它问世之前,自动控制设备不能被广泛的应用,这是因为控制设备的体积庞大,耗电量大,价格昂贵。
在第一台微处理器成功研制不久,第一个单片机就问世了。
因为其小巧的体积,低功耗,以及高效的性能,单片机受到了大家的欢迎。
今天,单片机成为了解决低复杂度,中等复杂度控制问题的传统选择。
我们选择的方法是单片机开发设计使用的传统方法,通过本次设计,可以了解整个单片机开发的流程。
利用STC89C52单片机结合七段显示器完成的简易的定时闹铃时钟,干电路系统由秒信号发生器、“时、分、秒”计数器、译码器及显示器、校时电路、闹钟电路组成。
秒信号产生器是整个系统的时基信号,它直接决定计时系统的精度,一般用石英晶体振荡器加分频器来实现。
译码显示电路将“时”、“分”、“秒”计数器的输出送到七段显示译码驱动器译码驱动,通过LCD液晶显示屏显示出来。
闹钟电路是用比较器来比较计时系统和定时系统的输出状态,如果计时系统和定时系统的输出状态相同,则发出一个脉冲信号,再和一个高频信号混合,送到放大电路驱动扬声器发声,从而实现定时闹响的功能。
通过设置现在的时间及显示闹铃设置时间,并在定时时间发出一阵声响,可以进—步扩充控制电器的启停等。
1.2 方案选择用单片机来设计数字钟,软件实现各种功能比较方便,但因软件的执行需要一定的时间,所以就会出现误差。
因此我进一步努力,通过对比实际的时钟,查找出误差的来源,并作出调整,使得误差尽可能减小,达到实际数字钟系统的允许误差范围。
在程序设计中,采用模块化的程序设计思想,对整个设计划分了若干个模块,先对各个模块分别进行设计,然后整合各个模块,进行仿真模拟,对出现的错误进行分析,然后找出问题的所在,改进程序,再仿真模拟,观察结果、分析结果,直至最终结果满足设置要求。
西南科技大学单片机原理及接口技术课程设计报告课题名称LCD显示的定时闹钟姓名刘XX学号2011XXXX学院制造科学与工程学院班级机械11XX指导教师张XX2014年 06 月 12 日目录1.设计要求 (1)2.设计方案 (1)2.1原理 (1)2.2系统总框图 (2)2.3原理及工作过程说明 (2)3.元器件介绍 (2)3.1AT89C51 (2)3.2 1602LCD液晶显示器 (5)3.3 其他重要元件 (6)4.软件设计 (8)4.1系统流程图 (8)4.2 源代码 (10)5.系统仿真 (20)5.1系统总图 (20)5.2设定时间时LCD显示 (20)5.3设定闹钟时LCD显示 (21)5.4显示闹钟时LCD显示 (21)5.5待机时LCD显示 (21)6.实物图 (22)7.实验总结及心得体会 (22)8.参考资料 (24)1.设计要求使用AT89C51单片机结合字符型LCD显示器设计一个简易的定时闹钟LCD 时钟,若LCD选择有背光显示的模块,在夜晚或黑暗的场合中也可使用。
定时闹钟的基本功能如下:⏹显示格式为“时时:分分”。
⏹由LED闪动来做秒计数表示。
⏹一旦时间到则发出声响,同时继电器启动,可以扩充控制家电开启和关闭。
⏹程序执行后工作指示灯LED闪动,表示程序开始执行,LCD显示“00:00”,按下操作键K1~K4动作如下:(1) K1—设置现在的时间。
(2) K2—显示闹钟设置的时间。
(3) K3—设置闹铃的时间。
(4) K4—闹铃ON/OFF的状态设置,设置为ON时连续三次发出“哗”的一声,设置为OFF发出“哗”的一声。
设置当前时间或闹铃时间如下。
(1) K1—时调整。
(2) K2—分调整。
(3) K3—设置完成。
(4) K4—闹铃时间到时,发出一阵声响,按下本键可以停止声响。
本项目的难点在于4个按键每个都具有两个功能,以最终实现菜单化的输入功能。
采用通过逐层嵌套的循环扫描,实现嵌套式的键盘输入。
中南大学《自动化工程训练》设计题目 LCD时钟程序设计指导老师设计者专业班级自动化级班号设计日期2016年9月目录一、设计任务要求分析 (1)1.1设计总体方案及其方案论证 (1)二、组成电路介绍 (1)2.1 复位电路: (1)2.2晶振电路: (1)2.3键盘控制系统设计: (2)2.4闹钟部分: (3)2.5显示电路设计 (3)2.5.1 LCD1602简介 (3)三、软件设计 (4)3.1程序主流程图 (5)3.2初始化流程图 (5)3.3延时中断子程序 (6)3.4时间设置子程序 (7)四、系统测试 (7)4.1 测试方法 (7)4.2 测试结果 (7)4.3 结果分析 (8)五、源程序 (8)一、设计任务要求分析本设计要实现的功能是:实时显示当前的时钟,并且可以设定闹铃,以蜂鸣器鸣响5秒的方式作为闹铃。
1.1设计总体方案及其方案论证按照系统的设计功能所要求的,液晶显示电子时钟原理图如图所示。
液晶显示电子时钟原理图本系统以AT89C51单片机为核心,该单片机可把数据进行处理,从而把数据传输到显示模块LCD1602液晶显示器,实现时间及日期的显示。
以LCD 液晶显示器为显示模块,把单片机传来的数据显示出来,并且显示多样化,还可以对时间和日期进行设置,主要靠按键来实现。
二、组成电路介绍2.1 复位电路:复位电路复位电路有两种方式:上电复位和按钮复位,我们主要用按钮复位方式。
如图所示:2.2晶振电路:晶振电路如图所示:晶振模块原理图选取原则:电容选取22pF,晶振为12MHz。
1)电源:AT89S51单片机的供电电源是5V的直流电。
2)EA非/Vpp脚:我们没有用外部扩展ROM,因此EA非/Vpp为高电平,即接+5V电源。
2.3键盘控制系统设计:按键需要4个,分别实现为时间调整、时间的加、时间的减、闹钟调整四个功能。
用单片机的4个I/O口接收控制信号,其电路如图所示:按键调时电路通过控制键来控制所要调节的是时、分、还是秒。
基于单片机定时闹钟的设计随着科技的快速发展,嵌入式系统已经深入到我们生活的各个角落。
其中,单片机以其高效性、灵活性和低成本性,广泛应用于各种设备的设计中。
本文将探讨如何基于单片机设计一个定时闹钟。
一、硬件需求1、单片机:选择一个适合你项目的单片机。
比如Arduino UNO,它具有丰富的IO口和易于使用的开发环境。
2、显示模块:为了能直观地展示时间,你需要一个LCD显示屏。
可以选择常见的16x2字符型LCD显示屏。
3、按键模块:用于设定时间和闹钟功能。
一般可以选择4个按键,分别代表功能设置、小时加、小时减和分钟加。
4、蜂鸣器:当到达设定时间时,蜂鸣器会发出声音提醒。
二、软件需求1、开发环境:你需要一个适用于你单片机的开发环境,例如Arduino IDE。
2、编程语言:一般使用C或C++进行编程。
3、程序设计:你需要编写一个程序来控制单片机,让其根据设定时间准时唤醒。
程序应包括初始化和设定时间的功能,以及到达设定时间后的闹钟提醒功能。
三、设计流程1、硬件连接:将单片机、显示模块、按键模块和蜂鸣器按照要求连接起来。
2、初始化:在程序中初始化所有的硬件设备。
3、时间设定:通过按键模块设定时间。
你需要编写一个函数来处理按键输入,并在LCD显示屏上显示当前时间。
4、闹钟提醒:在程序中加入一个计时器,当到达设定时间时,程序会唤醒并触发蜂鸣器发出声音。
5、循环检测:在主循环中不断检测时间是否到达设定时间,如果到达则触发闹钟提醒,然后继续检测。
四、注意事项1、时钟源:你需要一个稳定的时钟源来保证闹钟的准确性。
可以考虑使用网络时钟或者GPS模块。
2、功耗优化:如果你的设备需要长时间运行,那么需要考虑到功耗的问题,比如使用低功耗的单片机或者在不需要闹钟提醒的时候关闭蜂鸣器等。
3、人机交互:考虑增加更多的功能以满足用户的需求,如设置多个闹钟、调整闹钟的音量等。
4、安全性:保证设备的电源稳定,避免在突然断电的情况下数据丢失或设备损坏。
LCD显示的定时闹钟设计方案1.设计要求使用AT89C51单片机结合字符型LCD显示器设计一个简易的定时闹钟LCD 时钟,若LCD选择有背光显示的模块,在夜晚或黑暗的场合中也可使用。
定时闹钟的基本功能如下:显示格式为“时时:分分”。
由LED闪动来做秒计数表示。
一旦时间到则发出声响,同时继电器启动,可以扩充控制家电开启和关闭。
程序执行后工作指示灯LED闪动,表示程序开始执行,LCD显示“ 00:00”,按下操作键K1〜K4动作如下:(1)K1 —设置现在的时间。
(2)K2 —显示闹钟设置的时间。
(3)K3 —设置闹铃的时间。
⑷K4 —闹铃ON/OFF勺状态设置,设置为ON时连续三次发出“哗”的一声,设置为OFF发出“哗”的一声。
设置当前时间或闹铃时间如下。
(1)K1 —时调整。
(2)K2 —分调整。
(3)K3 —设置完成。
(4)K4 —闹铃时间到时,发出一阵声响,按下本键可以停止声响。
本项目的难点在于4 个按键每个都具有两个功能,以最终实现菜单化的输入功能。
采用通过逐层嵌套的循环扫描,实现嵌套式的键盘输入。
2.设计方案2.1 原理本LCD定时闹钟,是以单片机及外围接口电路为核心硬件,辅以其他外围硬件电路,用汇编语言设计的程序来实现的。
根据C51单片机的外围接口特点扩展相应的硬件电路,然后根据单片机的指令设计出数字钟相应的软件,再利用软件执行一定的程序来实现数字钟的功能。
由于采用集成芯片性的单片机来制作电子钟,这样设计制作简单而且功能多、精确度高,也可方便扩充其他功能,实现也十分简单。
本设计是利用AT89C51单片机为主控芯片,由LCD晶振、电阻、电容、发光二极管、开关、喇叭等元件组成硬件电路,通过编写软件程序来实现和控制的数字定时闹钟2.2系统总框图2.3原理及工作过程说明(1)定时闹钟的基本功能如下:(a)启动仿真软件,使用LCD液晶显示器来显示现在的时间。
(b)程序执行之后显示“ 00:00”并且LED闪烁,表示开始已经计时。
单片机实验报告姓名学号时间 2013.1.9实验题目电子数字钟一、实验目的与要求1.电子数字钟必须具有显示年、月、日和显示时、分、秒的功能。
(用LCD显示)。
2.具有按键时间校正功能。
3.具备设定闹钟和定时闹钟功能。
二、实验环境(硬件环境、软件环境)1.硬件环境:单片机开发板一个,计算机一台,单片机主机电源线及与计算机的连接线各一条。
2.软件环境:软件Keil C51和软件Flash Magic。
三、实验电路(P2口输入、P1口输出实验原理图)本次实验主要使用了开发板的4个板块,分别是单片机STC89C52(如图2所示)、矩阵键盘(如图2所示)、1206LCD显示器和蜂鸣器(如图3所示)。
其中单片机芯片通过P0口把总线和矩阵键盘连接;通过P2.2和蜂鸣器间接相连,因为蜂鸣器所在的电路已经连芯片ULN2003,因此用一根杜邦线把P2.2和芯片ULN2003的第一个输入口IN1连起来。
而键盘显示这一块,由于内部已经把键盘显示的电路和单片机芯片连接起来了,所以不需要借助杜邦线了。
图1为实物连线图。
图1 实物连线图图2 单片机机座和矩阵键盘图3 蜂鸣器和1602液晶显示器四、程序流程图主要算法:主函数中先定时中断初始化,利用定时器中断实现走时,调用LCD显示程序和按键处理子函数,再调用显示时间函数显示初始时间值。
同时,在主函数中判断当前的小时和分钟值是否等于闹钟设定的时间,若等于则让蜂鸣器响。
主函数算法的框图如图4所示。
按键处理函数算法:通过键盘扫描函数得到确定哪个键盘按下,得到键盘值,如果键0按下则暂停时钟走时;键1按下则在当前的光标所在的时间单元加1;键2按下则开闹钟;键3按下则实现当前的时间单元左移一位的功能;键4按下则在当前的光标所在的时间单元减1。
时间的年月日算法:通过定时器实现时钟的走时,秒满60,分钟加1;分满60,小时加1;小时满24,日加1;至于每个月的天数根据闰年和非闰年的表格确定当月天数。
/****************************************************************************/ //头文件#include <AT89X52.h>#include <string.h>/*****************************************************************************/ //灯与蜂鸣器定义sbit led_b = P2^7;sbit led_r = P1^4;sbit led_g1 = P1^3;sbit led_g2 = P1^2;sbit led_g3 = P1^0;sbit led_g4 = P1^1;sbit beep = P3^1;/*****************************************************************************/ //温度传感器定义sbit DQ = P3 ^ 0;//ds18B20/*****************************************************************************/ //键盘引脚定义sbit KEY_1 = P2^3; //左上sbit KEY_2 = P2^4; //左下sbit KEY_3 = P2^6; //右上sbit KEY_4 = P2^5; //右下sbit KEY_I = P3^2; //常0/****************************************************************************/ //引脚定义sbit SID = P2^1; //数据sbit SCLK = P2^2; //时钟/*****************************************************************************/ //定义DS1302时钟接口sbit clock_clk = P3 ^ 5;//ds1302_clk(时钟线)sbit clock_dat = P3 ^ 4;//ds1302_dat(数据线)sbit clock_Rst = P3 ^ 3;//ds1302_Rst(复位线)/*****************************************************************************/ //定义累加器A中的各位sbit a0 = ACC ^ 0;sbit a1 = ACC ^ 1;sbit a2 = ACC ^ 2;sbit a3 = ACC ^ 3;sbit a4 = ACC ^ 4;sbit a5 = ACC ^ 5;sbit a6 = ACC ^ 6;sbit a7 = ACC ^ 7;/****************************************************************************/ //定义全局变量unsigned char yy,mo,dd,xq,hh,mm,ss;//定义时间映射全局变量(专用寄存器)bit w = 0; //调时标志位static unsigned char menu = 0;//定义静态小时更新用数据变量static unsigned char keys = 0;//定义静态小时更新用数据变量static unsigned char timecount = 0;//定义静态软件计数器变量/****************************************************************************/ void DelayM(unsigned int a){//延时函数1MS/次unsigned char i;while( --a != 0){for(i = 0; i < 125; i++); //一个; 表示空语句,CPU空转。
摘要本设计是定时闹钟的设计,由单片机AT89C51芯片和LED数码管为核心,辅以必要的电路,构成的一个单片机电子定时闹钟。
电子钟设计可采用数字电路实现,也可以采用单片机来完成。
数字电子钟是用数字集成电路构成的,用数码管显示“时”,“分”,“秒”的现代计时装置。
若用数字电路完成,所设计的电路相当复杂,大概需要十几片数字集成块,其功能也主要依赖于数字电路的各功能模块的组合来实现,焊接的过程比较复杂,成本也非常高。
若用单片机来设计制作完成,由于其功能的实现主要通过软件编程来完成,那么就降低了硬件电路的复杂性,而且其成本也有所降低,所以在该设计中采用单片机利用AT89C51,它是低功耗、高性能的CMOS型8位单片机。
片内带有4KB的Flash存储器,且允许在系统内改写或用编程器编程。
另外, AT89C51的指令系统和引脚与8051完全兼容,片内有128B 的RAM、32条I/O口线、2个16位定时计数器、5个中断源、一个全双工串行口等。
AT89C51单片机结合七段显示器设计的简易定时闹铃时钟,可以设置现在的时间及显示闹铃设置时间,若时间到则发出一阵声响,进—步可以扩充控制电器的启停。
设计内容包括了秒信号发生器、时间显示电路、按键电路、供电电源以及闹铃指示电路等几部分的设计。
采用四个开关来控制定时闹钟的工作状态,分别为:K1、设置时间和闹钟的小时;K2、设置小时以及设置闹钟的开关;K3、设置分钟和闹钟的分钟;K4、设置完成退出。
课设准备中我根据具体的要求,查找资料,然后按要求根据已学过的时钟程序编写定时闹钟的程序,依据程序利用proteus软件进行了仿真试验,对出现的问题进行分析和反复修改源程序,最终得到正确并符合要求的结果。
设计完成的定时闹钟达到课程设计的要求,在到达定时的时间便立即发出蜂鸣声音,持续一分钟。
显示采用的六位数码管电路,如果亮度感觉不够,可以通过提升电阻来调节,控制程序中延迟时间的长短,可以获得不同的效果。
#include<reg51.h> //包含单片机寄存器的头文件#include<intrins.h> //包含_nop_()函数定义的头文件//1602端口定义sbit RS=P2^0; //寄存器选择位,将RS位定义为P2.0引脚sbit RW=P2^1; //读写选择位,将RW位定义为P2.1引脚sbit E=P2^2; //使能信号位,将E位定义为P2.2引脚sbit BF=P1^7; //忙碌标志位,,将BF位定义为P0.7引脚//AD端口定义sbit CLK=P2^3;sbit start=P2^4;sbitoe=P2^5;sbiteoc=P2^7;sbitout_pulse=P2^6;//5us脉冲sbit p30=P3^0;#define uchar unsigned char#define uint unsigned intuchar n=0;uchar flag=0;//1s标志位/***************************************************** 函数功能:延时1ms***************************************************/ void delay1ms(){unsigned char i,j;for(i=0;i<10;i++)for(j=0;j<33;j++);}/***************************************************** 函数功能:延时若干毫秒入口参数:n***************************************************/ void delay(unsigned int n){unsignedinti;for(i=0;i<n;i++)delay1ms();}/***************************************************** 函数功能:判断液晶模块的忙碌状态返回值:result。
result=1,忙碌;result=0,不忙***************************************************/bitBusyTest(void){bit result;RS=0; //根据规定,RS为低电平,RW为高电平时,可以读状态RW=1;E=1; //E=1,才允许读写_nop_(); //空操作_nop_();_nop_();_nop_(); //空操作四个机器周期,给硬件反应时间result=BF; //将忙碌标志电平赋给resultE=0;return result;}/*****************************************************函数功能:将模式设置指令或显示地址写入液晶模块入口参数:dictate***************************************************/voidWrite_com (unsigned char dictate){while(BusyTest()==1); //如果忙就等待RS=0; //根据规定,RS和R/W同时为低电平时,可以写入指令RW=0;E=0; //E置低电平(写指令时,// 就是让E从0到1发生正跳变,所以应先置"0"_nop_();_nop_(); //空操作两个机器周期,给硬件反应时间P1=dictate; //将数据送入P0口,即写入指令或地址_nop_();_nop_();_nop_();_nop_(); //空操作四个机器周期,给硬件反应时间E=1; //E置高电平_nop_();_nop_();_nop_();_nop_(); //空操作四个机器周期,给硬件反应时间E=0; //当E由高电平跳变成低电平时,液晶模块开始执行命令}/*****************************************************函数功能:指定字符显示的实际地址入口参数:x***************************************************/voidWriteAddress(unsigned char x){Write_com(x|0x80); //显示位置的确定方法规定为"80H+地址码x"}/*****************************************************函数功能:将数据(字符的标准ASCII码)写入液晶模块入口参数:y(为字符常量)***************************************************/voidWriteData(unsigned char y){while(BusyTest()==1);RS=1; //RS为高电平,RW为低电平时,可以写入数据RW=0;E=0; //E置低电平(写指令时,,// 就是让E从0到1发生正跳变,所以应先置"0"P1=y; //将数据送入P0口,即将数据写入液晶模块_nop_();_nop_();_nop_();_nop_(); //空操作四个机器周期,给硬件反应时间E=1; //E置高电平_nop_();_nop_();_nop_();_nop_(); //空操作四个机器周期,给硬件反应时间E=0; //当E由高电平跳变成低电平时,液晶模块开始执行命令}/*****************************************************函数功能:对LCD的显示模式进行初始化设置***************************************************/voidLcdInt(void){delay(15); //延时15ms,首次写指令时应给LCD一段较长的反应时间Write_com(0x38); //显示模式设置:16×2显示,5×7点阵,8位数据接口delay(5); //延时5msWrite_com(0x0c); //显示模式设置:显示开,有光标,光标闪烁delay(5);Write_com(0x06);delay(5);Write_com(0x01); //清屏幕指令,将以前的显示内容清除delay(5);}/*********初始化***********/voidsysinit(){TMOD = 0x21; //设定定时器T1工作方式T0 工作方式1TH1=0xfd; //利用T1中断产生CLK信号TL1=0xfd;//50khzEA = 1; //开总中断ET1=1;TR1=1; //启动定时器T1TH0=0x45;TL0=0x00;//50MS定时ET0=1;TR0=1;start=0; // START:A/D转换启动信号,输入,高电平有效。
oe=0; //数据输出允许信号,输入,高电平有效。
当A/D转换结束时,此端输入一个高电平,才能打开输出三态门,输出数字量。
}/***********T0中断服务程序************/void t0(void) interrupt 1{ET0=0;TH0=0X45;//46TL0=0X00;//50MS定时n++;if(n==20) {flag=1;n=0;}ET0=1;}void t1(void) interrupt 3{ET1=0;CLK=~CLK;ET1=1;}//0808数据采集unsigned char adc(){unsigned char Temp;start=1;// delay(1);//do not delaystart=0; //启动信号while (!eoc);// A/D转换结束信号P0=0xff;// delay(1);oe=1;Temp=P0;//读取采集数据oe=0;// delay(4);return(Temp);//返回采集数据}void display(uint a)//显示子函数{uintbai,shi,ge;bai=a/100;shi=(a-bai*100)/10;ge=a%10;WriteAddress(2);WriteData(0x30+bai);//显示百位WriteData(0x30+shi);//显示十位WriteData(0x30+ge);//显示个位}void main(){uint temp1,temp2;uchar f=0;LcdInt();delay(5);sysinit();CLK=0;WriteAddress(0);//从第0行开始显示WriteData('f');//显示fWriteData(':');//显示:WriteAddress(5);//从第5行开始显示WriteData('H'); //显示HWriteData('z');//显示zwhile(1){temp2=temp1;temp1=adc();//ad采集if(((temp1>=128)&&(temp2<=128))||((temp1<=128)&&(temp2>=128))){f++;//out_pulse=1;_nop_();_nop_();_nop_();_nop_();_nop_();out_pulse=0;//产生5us的脉冲信号}if(flag==1)//到达1s后计算频率{flag=0;f=f/2;display(f);//显示频率f=0;}}}。