晶体界面的基础知识
- 格式:ppt
- 大小:35.92 MB
- 文档页数:182
《晶体的常识》教案最全版第一章:引言1.1 教学目标让学生了解晶体的基本概念和特点。
激发学生对晶体研究的兴趣。
1.2 教学内容晶体的定义与分类晶体的基本特点晶体的重要性1.3 教学方法讲授法:介绍晶体的基本概念和特点。
互动法:引导学生讨论晶体的实际应用。
1.4 教学资源课件:展示晶体的图片和实例。
视频:播放晶体生长的实验过程。
1.5 教学步骤1. 导入:通过展示晶体图片,引发学生的好奇心。
2. 讲解:介绍晶体的定义、分类和基本特点。
3. 实例分析:分析晶体的实际应用。
4. 讨论:引导学生探讨晶体的重要性。
5. 总结:强调本节课的重点内容。
第二章:晶体的定义与分类让学生了解晶体的定义和分类。
2.2 教学内容晶体的定义晶体的分类:原子晶体、离子晶体、分子晶体和金属晶体2.3 教学方法讲授法:讲解晶体的定义和分类。
2.4 教学资源课件:展示晶体的定义和分类。
2.5 教学步骤1. 复习:回顾上一节课的内容。
2. 讲解:讲解晶体的定义和分类。
3. 示例:展示不同类型的晶体实例。
4. 练习:让学生区分不同类型的晶体。
5. 总结:强调本节课的重点内容。
第三章:晶体的基本特点3.1 教学目标让学生了解晶体的基本特点。
3.2 教学内容晶体的周期性结构晶体的点阵参数晶体的对称性讲授法:讲解晶体的基本特点。
互动法:引导学生探讨晶体的对称性。
3.4 教学资源课件:展示晶体的基本特点。
3.5 教学步骤1. 复习:回顾上一节课的内容。
2. 讲解:讲解晶体的周期性结构、点阵参数和对称性。
3. 示例:展示晶体的对称性实例。
4. 练习:让学生分析晶体的对称性。
5. 总结:强调本节课的重点内容。
第四章:晶体的重要性4.1 教学目标让学生了解晶体的重要性。
4.2 教学内容晶体在材料科学中的应用晶体在自然界中的分布晶体在现代科技领域中的应用4.3 教学方法讲授法:讲解晶体的重要性。
互动法:引导学生探讨晶体在实际应用中的重要性。
4.4 教学资源课件:展示晶体的重要性和应用实例。
第3讲教学要求:1. 复习明确晶体和非晶体的概念2. 明确格子构造的概念以及与实际晶体构造之间的关系3. 大致了解晶体的分类知识4. 详细讲解并要求学生掌握记熟空间格子构造,熟练掌握14种布拉维格子的构造特点及晶格参数的特点5.熟练掌握晶面指数的标定步骤教学重点:晶体的概念、布拉维格子构造、晶面指数的标定教学难点:晶体学基础比较抽象,备课中需多准备形象立体感强的图形,讲解速度控制较慢,尽量引导学生课堂中记忆布拉维格子构造,通过例子联系晶面指数标定过程教学拓展:介绍《物相分析》、《材料研究方法》、《材料结构表征及应用》书中相应的部分以便学生课后参看讨论:课堂上提问学生所掌握的晶体学基础知识的内容,比较选修有关结晶学课程的学生和未选修结晶学课程学生掌握晶体学知识的范围差异,抽10分钟左右的时间讨论,以便掌握讲课难度和速度。
作业:1. 晶体和非晶体的概念?2. 熟练写出布7种拉维格子的名称和相应的晶格参数?晶体学基础知识一.晶体的定义与特征晶体的概念:人类对晶体的认识,是从石英开始的。
古代人们把外形上具有规则的几何多面体形态的石英(水晶)称为晶体。
后来,人们把凡是天然的具有几何多面体的固体,例如:石盐、方解石、磁石等都成为晶体。
本世纪初(1912),X射线衍射分析方法的应用研究了晶体内部结构后,发现:一切晶体不论其外形如何,它的内部质点(原子、离子、、分子)都是有规则排列的,即:晶体内部相同质点在三维空间均呈周期性重复,构成了格子构造。
因此,对晶体做出如下定义:晶体是内部质点在三维空间成周期性重复排列的固体。
或者:晶体是具有格子构造的固体。
∙晶体是原子或者分子规则排列的固体;∙晶体是微观结构具有周期性和一定对称性的固体;∙晶体是可以抽象出点阵结构的固体;∙在准晶出现以后,国际晶体学联合会在 1992年将晶体的定义改为:“晶体是能够给出明锐衍射的固体。
”非晶质体:晶体内部质点在三维空间不做规律排列,不具格子构造,称为非晶质体或非晶质。
XRD,以及晶体结构的相关基础知识(ZZ)Theory 2009-10-25 17:55:42 阅读355 评论0 字号:大中小做XRD有什么用途啊,能看出其纯度?还是能看出其中含有某种官能团?X射线照射到物质上将产生散射。
晶态物质对X射线产生的相干散射表现为衍射现象,即入射光束出射时光束没有被发散但方向被改变了而其波长保持不变的现象,这是晶态物质特有的现象。
绝大多数固态物质都是晶态或微晶态或准晶态物质,都能产生X射线衍射。
晶体微观结构的特征是具有周期性的长程的有序结构。
晶体的X射线衍射图是晶体微观结构立体场景的一种物理变换,包含了晶体结构的全部信息。
用少量固体粉末或小块样品便可得到其X射线衍射图。
XRD(X射线衍射)是目前研究晶体结构(如原子或离子及其基团的种类和位置分布,晶胞形状和大小等)最有力的方法。
XRD 特别适用于晶态物质的物相分析。
晶态物质组成元素或基团如不相同或其结构有差异,它们的衍射谱图在衍射峰数目、角度位置、相对强度次序以至衍射峰的形状上就显现出差异。
因此,通过样品的X射线衍射图与已知的晶态物质的X射线衍射谱图的对比分析便可以完成样品物相组成和结构的定性鉴定;通过对样品衍射强度数据的分析计算,可以完成样品物相组成的定量分析;XRD还可以测定材料中晶粒的大小或其排布取向(材料的织构)...等等,应用面十分普遍、广泛。
目前XRD主要适用于无机物,对于有机物应用较少。
关于XRD的应用,在[技术资料]栏目下有介绍更详细的文章,不妨再深入看看。
如何由XRD图谱确定所做的样品是准晶结构?XRD图谱中非晶、准晶和晶体的结构怎么严格区分?三者并无严格明晰的分界。
在衍射仪获得的XRD图谱上,如果样品是较好的"晶态"物质,图谱的特征是有若干或许多个一般是彼此独立的很窄的"尖峰"(其半高度处的2θ宽度在0.1°~0.2°左右,这一宽度可以视为由实验条件决定的晶体衍射峰的"最小宽度")。
晶体的常识分子晶体与原子晶体【学习目标】1、初步了解晶体的知识,知道晶体与非晶体的本质差异,学会识别晶体与非晶体的结构示意图;2、知道晶胞的概念,了解晶胞与晶体的关系,学会通过分析晶胞得出晶体的组成;3、了解分子晶体和原子晶体的特征,能以典型的物质为例描述分子晶体和原子晶体的结构与性质的关系;4、知道分子晶体与原子晶体的结构粒子、粒子间作用力的区别。
【要点梳理】要点一、晶体与非晶体【分子晶体与原子晶体#晶体与非晶体】1、概念:①晶体:质点(分子、离子、原子)在空间有规则地排列成的、具有整齐外型、以多面体出现的固体物质。
晶体具有的规则的几何外形源于组成晶体的微粒按一定规律周期性的重复排列。
②非晶体:非晶态物质内部结构没有周期性特点,而是杂乱无章地排列,如:玻璃、松香、明胶等。
非晶体不具有晶体物质的共性,某些非晶态物质具有优良的性质要点诠释:晶体与非晶体的区分:晶体是由原子或分子在空间按一定规律周期性地重复排列构成的固体物质。
周期性是晶体结构最基本的特征。
许多固体的粉末用肉眼是看不见晶体的,但我们可以借助于显微镜观察,这也证明固体粉末仍是晶体,只不过晶粒太小了。
晶体的熔点较固定,而非晶体则没有固定的熔点。
区分晶体和非晶体最可靠的科学方法是对固体,进行X—射线衍射实验,X射线透过晶体时发生衍射现象。
特别注意:一种物质是否晶体,是由其内部结构决定的,而非由外观判断。
2、分类:说明:①自范性:晶体能自发性地呈现多面体外形的性质。
所谓自范性即“自发”进行,但这里要注意,“自发”过程的实现仍需一定的条件。
例如:水能自发地从高处流向低处,但若不打开拦截水流的闸门,水库里的水不能下泻;②晶体自范性的条件之一:生长速率适当;③晶体自范性的本质:是晶体中粒子微观空间里呈现周期性的有序排列的宏观表象。
4、晶体形成的途径:①熔融态物质凝固,例:熔融态的二氧化硅,快速冷却得到玛瑙,而缓慢冷却得到水晶。
②气态物质冷却不经液态直接凝固(凝华);③溶质从溶液中析出。
石英晶体基础知识目录一、石英晶体的基本知识 (2)1、化学物理特性 (2)2、石英晶体的振动模式 (3)3、石英晶片的切型 (5)二、AT 石英谐振器的特性 (8)1、频率方程 (8)2、AT 切石英谐振器的频率温度特性 (8)三、AT 切石英谐振器的加工制造 (15)1、X 光定向粘板 (15)2、石英晶片切割 (16)3、X 光测角 (17)4、粘砣,切籽晶及改圆 (17)5、研磨 (18)6、滚筒倒边 (18)7、石英片的腐蚀 (19)8、镀基膜 (19)9、石英晶体的装架 (20)10、微调 (22)11、真空烘烤和封装 (22)12、密封性能检查 (23)13、石英谐振器的老化 (23)14、石英谐振器的测试 (23)一、石英晶体的基本知识1、化学物理特性①水晶的成份SiO2,在常压下不同温度时,石英晶体的结构不同,温度T<573 ℃时α石英晶体,当573℃<T<870℃时β石英晶体,熔点是1750℃,我们通常说的压电石英晶体指α石英晶体。
②具有压电特性:发现压电效应:某些介质由于外界机械作用(如压缩,拉伸等等)而在其内部发生极化,产生表面电荷的现象叫压电效应。
逆压电效应:某些介质置于外电场中,由于电场的作用,会引起介质内部正负电荷中心的位移,导致介质发生形变,这种效应称为逆压电效应。
石英晶体在沿X 轴(或Y 轴)方向的力的作用时,在X 方向产生压电效应,而Y 和Z 方向不产生压电效应,X 轴称为电轴,Y 轴称为机械轴。
③具有各向异性:石英晶体是一种良好的绝缘材料,导热系数在室温附近,沿Z轴方向是垂直于Z 轴方向的2 倍左右,沿Z 轴方向的线性膨胀系数a3 约为沿垂直于Z 轴方向线性膨胀系数a1 的1/2,其介电系数ε,压电系数d 等随方向的不同其数值也不同,在不同温度,导热系数K 与膨胀系数a 的数值也不同。
④是外形高度对称的单晶体,其特征是原子和分子有规则的排列发育良好的石英晶体,外形最显著的特点是晶面有规则的配置,石英晶体的晶面共30 个,六个m 面(柱面),六个R 面(大棱面)六个r 面(小棱面)六个s 面(三方偏锥面),六个X 面(三方偏面),相邻M 面的夹角度为60°,相邻M 面和R面的夹角与相邻M 面和r 面的夹角都等于38°13′,相邻s 面与X 面的夹角为25°57′。
一、基本知识点 1.结合键与晶体学基础(1)化学键包括离子键:静电吸引作用共价键金属键:金属正离子与自由电子之间的相互作用构成的金属原子间的结合力。
没有方向性和饱和性。
(理论包括自由电子模型和能带理论)物理键包括范德华键:包括3种,静电力、诱导力、色散力。
特点有:1、存在于分子或原子间的一种较弱的吸引力 2、作用能约为几十个kj/mol,比化学键小1-2数量级 3、一般没有方向性和饱和性。
氢键:存在于含氢的物质,与范德华健不同的是,氢键是有方向性和饱和性的较强的分子间力。
(2)晶体:是内部质点(原子、分子或离子)在三维空间以周期性重复方式作有规则的排列的固体,即晶体是具有格子构造的固体(1、有确定的熔点2、各向异性,即不同方向性能不同)。
非晶体:原子散乱分布或仅有局部区域的短程规则排列。
玻璃相:相:材料中均匀而具有物理特性的部分,并和体系的其他部分有明显界面的称为“相”(3)空间点阵:把由一系列在三维空间周期性排列的几何点阵成为一个空间点阵晶胞:组成各种晶体构造的最小体积单位晶面:在晶体结构内部中,由物质质点所组成的平面晶向:穿过物质的质点所组成的直线方向晶格:晶系:晶向族晶面族:在晶体中有些晶面上原子排列和分布规律是完全相同的,晶面间距相同,而晶面在空间的位向不同,这样一组等同晶面称为一个晶面族同素异构(4)八面体间隙四面体间隙配位数:指在晶体结构中,该原子或离子的周围与其直接相邻结合的原子个数或所有异号离子的个数致密度:一个晶胞中原子所占体积与晶胞体积的比值晶胞中的原子数 2、材料的结构固溶体:将外来组元引入晶体结构,占据主晶相质点位置一部分或间隙位置一部分,仍保持一个晶相,这种晶体称为固溶体(即溶质溶解在溶剂中形成固溶体)。
根据外来组元在主晶相中所处位置,可分为置换固溶体和间隙固溶体。
按外来组元在主晶相中的固溶度,可分为有限固溶体和无限固溶体。
置换固溶体:溶质取代了溶剂中原子或离子所形成的固溶体聚合度(等规度):在聚合物中的有规立构聚合的百分含量 3、晶体结构缺陷肖脱基缺陷:离位原子迁移到外表面或内界面处,这种空位称肖脱基空位弗兰克尔缺陷(空位):离位原子迁移到晶体点阵的间隙中,则称为弗兰克尔空位间隙原子:形成弗兰克尔空位的同时将形成等量的间隙原子,间隙原子可以是晶体本身固有的同类原子(称自间隙原子),也可以是外来的异类间隙原子。