数值分析(计算方法)实验一
- 格式:doc
- 大小:192.10 KB
- 文档页数:8
实验报告课程名称:数值分析课题名称:比较算法专业:勘查技术与工程姓名:韩鹏洋班级:061132班完成日期:2015 年10 月11 日实验报告一、实验名称比较两种算法收敛性及复杂度二、实验目的(1)培养编程与上机调试能力(2)观察不同算法的差异(3)评估各算法稳定性三、实验要求利用matlab计算算法,并绘图观察收敛性。
四、实验原理利用泰勒展开式逼近函数值五、实验题目求ln 2的近似值六、实验步骤(1)写出ln(1+x)展开式(2)利用Matlab编程计算(3)最后结果分析七、实验整体流程图或算法八、程序及其运行结果clear all;ticn=1:100;s=0;for i=1:100s1=(-1).^(i-1)/i;s=s+s1;y(i)=s;endplot(n,y,'ro');tocclear all;ticn=1:50;s=0;for i=1:50s1=2*(1/3).^(2*i-1)/(2*i-1);s=s+s1;y(i)=s;endhold on;plot(n,y,'b-');toc运行结果:方法1时间已过0.369496 秒。
方法2时间已过0.025252 秒。
九、实验结果分析方法一趋近速度慢,复杂度100+100+(1+2+…+99)=5150 方法二趋近快,复杂度150+3+5+7+…+99=2499选用第二种方法更好十、实验体会。
《数值分析》实验报告实验一方程求根一、实验目的:掌握二分法、Newton法、不动点迭代法、弦截法求方程的根的各种计算方法、并实施程序调试和运行,学习应用这些算法于实际问题。
二、实验内容:二分法、Newton法、不动点迭代法、弦截法求方程的根、程序的调试和运行,给出实例的计算结果。
观察初值对收敛性的影响。
三、实验步骤:①、二分法:定义:对于区间[a,b]上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫二分法。
实现方法:首先我们设一方程400*(x^4)-300*(x^3)+200*(x^2)-10*x-1=0,并求其在区间[0.1,1]上的根,误差限为e=10^-4。
PS:本方法应用的软件为matlab。
disp('二分法')a=0.1;b=1;tol=0.0001;n0=100;fa=400*(a.^4)-300*(a.^3)+200*(a.^2)-10*a-1;for i=1:n0 p=(a+b)/2;fp=400*(p.^4)-300*(p.^3)+200*(p.^2)-10*p-1;if fp==0||(abs((b-a)/2)<tol)disp('用二分法求得方程的根p=')disp(p)disp('二分迭代次数为:')disp(i)break;end;if fa*fp>0 a=p;else b=p;end;end;if i==n0&&~(fp==0||(abs((b-a)/2)<tol)) disp(n0) disp('次二分迭代后没有求出方程的根')end;程序调试:运行结果:用二分法求得方程的根p=0.1108二分迭代次数为:14②Newton法定义:取定初值x0,找到函数对应的点,然后通过该点作函数切线,交x轴,得到新的横坐标值,然后找函数对应的点,做切线,得到新的横坐标值,重复上述步骤,多次迭代,直到收敛到需要的精度。
数值分析实验报告模板篇一:数值分析实验报告(一)(完整)数值分析实验报告12345篇二:数值分析实验报告实验报告一题目:非线性方程求解摘要:非线性方程的解析解通常很难给出,因此线性方程的数值解法就尤为重要。
本实验采用两种常见的求解方法二分法和Newton法及改进的Newton法。
利用二分法求解给定非线性方程的根,在给定的范围内,假设f(x,y)在[a,b]上连续,f(a)xf(b) 直接影响迭代的次数甚至迭代的收敛与发散。
即若x0 偏离所求根较远,Newton法可能发散的结论。
并且本实验中还利用利用改进的Newton法求解同样的方程,且将结果与Newton法的结果比较分析。
前言:(目的和意义)掌握二分法与Newton法的基本原理和应用。
掌握二分法的原理,验证二分法,在选对有根区间的前提下,必是收敛,但精度不够。
熟悉Matlab语言编程,学习编程要点。
体会Newton使用时的优点,和局部收敛性,而在初值选取不当时,会发散。
数学原理:对于一个非线性方程的数值解法很多。
在此介绍两种最常见的方法:二分法和Newton法。
对于二分法,其数学实质就是说对于给定的待求解的方程f(x),其在[a,b]上连续,f(a)f(b) Newton法通常预先要给出一个猜测初值x0,然后根据其迭代公式xk?1?xk?f(xk) f'(xk)产生逼近解x*的迭代数列{xk},这就是Newton法的思想。
当x0接近x*时收敛很快,但是当x0选择不好时,可能会发散,因此初值的选取很重要。
另外,若将该迭代公式改进为xk?1?xk?rf(xk) 'f(xk)其中r为要求的方程的根的重数,这就是改进的Newton 法,当求解已知重数的方程的根时,在同种条件下其收敛速度要比Newton法快的多。
程序设计:本实验采用Matlab的M文件编写。
其中待求解的方程写成function的方式,如下function y=f(x);y=-x*x-sin(x);写成如上形式即可,下面给出主程序。
《数值分析》实验报告姓 名: 学 号: 专 业:指导教师: 刘 建 生 教 授 日 期: 2015年12月25日实验一 Lagrange/newton 插值一:对于给定的一元函数)(x f y =的n+1个节点值(),0,1,,j j y f x j n ==L 。
试用Lagrange 公式求其插值多项式或分段二次Lagrange 插值多项式。
数据如下: 求计算(0.596)f ,(0.99)f 的值(提示:结果为(0.596)0.625732f ≈,(0.99) 1.05423f ≈ )试构造Lagrange 多项式6L ()x ,计算的(1.8)f ,(6.15)f 值。
(提示:结果为(1.8)0.164762f ≈, (6.15)0.001266f ≈ )二:实验程序及注释MATLAB 程序:function f=lagrange(x0,y0,x )n=length(x0); m=length(y0); format long s=0.0; for k=1:n p=1.0; for j=1:n if j~=kp=p*(x-x0(j))/(x0(k)-x0(j));endends=s+y0(k)*p;Endf=s;end结果运行:结果与提示值完全吻合,说明Lagrange插值多项式的精度是很高的;同时,若采用三点插值和两点插值的方法,用三点插值的精度更高。
若同时采用两点插值,选取的节点距离x越近,精度越高。
三:采用newton插值进行计算算法程序如下:format long;x0=[0.4 0.55 0.65 0.80 0.95 1.05 ];y0=[0.41075 0.57815 0.69675 0.90 1.00 1.25382 ];x=0.596;n=max(size(x0));y=y0(1);%disp(y);s=1;dx=y0;for i=1:n-1dx0=dx; for j=1:n-idx(j)=(dx0(j+1)-dx0(j))/(x0(i+j)-x0(j)); end df=dx(1); s=s*(x-x0(i));y=y+s*df; %计算 %%disp(y); end disp(y)运行结果:绘制出曲线图:与结果相吻合。
数值分析实验实验报告数值分析实验实验报告引言在现代科学与工程领域,数值分析是一项重要的技术手段。
通过数值方法,我们可以利用计算机模拟和解决各种实际问题,如物理、化学、生物、经济等领域中的方程求解、优化问题、数据拟合等。
本实验旨在通过实际案例,探讨数值分析的应用和效果。
实验一:方程求解首先,我们考虑一个简单的方程求解问题。
假设我们需要求解方程f(x) = 0的根,其中f(x)是一个在给定区间[a, b]上连续且单调的函数。
为了实现这个目标,我们可以采用二分法、牛顿法、弦截法等数值方法。
在本实验中,我们选择使用二分法来求解方程f(x) = 0。
这种方法的基本思想是通过不断缩小区间[a, b]的范围,直到找到一个近似的根。
我们首先选取一个中间点c,计算f(c)的值,然后根据f(c)与0的关系,将区间[a, b]分成两部分。
重复这个过程,直到找到满足精度要求的根。
实验二:数据拟合接下来,我们考虑一个数据拟合的问题。
假设我们有一组离散的数据点,我们希望找到一个函数,使得该函数与这些数据点的拟合误差最小。
为了实现这个目标,我们可以采用最小二乘法等数值方法。
在本实验中,我们选择使用最小二乘法来进行数据拟合。
这种方法的基本思想是通过最小化数据点与拟合函数之间的误差平方和,来确定拟合函数的参数。
我们首先选择一个拟合函数的形式,如线性函数、多项式函数等。
然后,通过最小化误差平方和的方法,计算出拟合函数的参数。
实验三:优化问题最后,我们考虑一个优化问题。
假设我们需要在给定的约束条件下,找到一个使得目标函数取得最大或最小值的变量。
为了实现这个目标,我们可以采用梯度下降法、遗传算法等数值方法。
在本实验中,我们选择使用梯度下降法来解决优化问题。
这种方法的基本思想是通过迭代的方式,不断调整变量的取值,直到找到一个满足约束条件的最优解。
我们首先计算目标函数关于变量的梯度,然后根据梯度的方向和大小,更新变量的取值。
通过不断迭代,我们可以逐步接近最优解。
数值分析实验报告实验一、解线性方程组的直接方法——梯形电阻电路问题利用追赶法求解三对角方程组的方法,解决梯形电阻电路问题:电路中的各个电流{1i ,2i ,…,8i }须满足下列线性方程组:R V i i =- 22 210 252321=-+-i i i 0 252 432=-+-i i i 0 252 543=-+-i i i 0 252 654=-+-i i i 0 252 765=-+-i i i 0 252 876=-+-i i i 052 87=+-i i设V 220=V ,Ω=27R ,运用追赶法,求各段电路的电流量。
问题分析:上述方程组可用矩阵表示为:⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡--------------00000001481.8522520000002520000002520000002520000002520000002520000002287654321i i i i i i i i问题转化为求解A x b =,8阶方阵A 满足顺序主子式(1,2...7)0i A i =≠,因此矩阵A存在唯一的Doolittle 分解,可以采用解三对角矩阵的追赶法!追赶法a=[0 -2 -2 -2 -2 -2 -2 -2]; b=[2 5 5 5 5 5 5 5];c=[-2 -2 -2 -2 -2 -2 -2 0]; d=[220/27 0 0 0 0 0 0 0];Matlab 程序function x= zhuiganfa( a,b,c,d )%追赶法实现要求:|b1|>|C1|>0,|bi|>=|ai|+|ci| n=length(b); u=ones(1,n); L=ones(1,n); y=ones(1,n); u(1)=b(1); y(1)=d(1); for i=2:nL(i)=a(i)/u(i-1);u(i)=b(i)-c(i-1)*L(i); y(i)=d(i)-y(i-1)*L(i); endx(n)=y(n)/u(n); for k=n-1:-1:1x(k)=(y(k)-c(k)*x(k+1))/u(k); end endMATLAB 命令窗口输入:a=[0 -2 -2 -2 -2 -2 -2 -2]; b=[2 5 5 5 5 5 5 5];c=[-2 -2 -2 -2 -2 -2 -2 0] d=[220/27 0 0 0 0 0 0 0];x= zhuiganfa(a,b,c,d )运行结果为:x =8.1478 4.0737 2.0365 1.0175 0.5073 0.2506 0.1194 0.0477存在问题根据电路分析中的所讲到的回路电流法,可以列出8个以回路电流为独立变量的方程,课本上给出的第八个回路电流方程存在问题,正确的应该是78240i i -+=;或者可以根据电路并联分流的知识,同样可以确定78240i i -+=。
贵州师范大学数学与计算机科学学院学生实验报告课程名称:数值分析班级数学与应用数学2班实验日期:年月日学号: 110701020060 姓名周明祥指导教师:杨一都实验成绩:一、实验名称实验一:递推法的稳定性,秦九韶算法二、实验目的及要求1. 熟悉数值稳定的概念, 通过上机计算,了解舍入误差所引起的数值不稳定性.2. 培养Matlab编程与上机调试能力.三、实验环境每人一台计算机,要求安装Windows XP操作系统,Microsoft office2003、MATLAB6.5(或7.0).四、实验内容1.教材例1.13中,取15位数字计算,并分析、比较计算结果.2.设100999832,用秦九韶算法编程计=+++++++f x x x x x x x()101100994321算()f x在1,2,3,4x=上的值.五、算法描述及实验步骤1、输入函数f(x)=1/(x+5);输出 I(14);步1 I(1)=int(f,0,1);步2 用for循环语句执行递推关系I(n+1)=1/n-5*I(n);步3 输出I(14);结束。
2、输入多项式系数a(0),a(2),...,a(n),给定点x。
(x)在x处的值y。
输出多项式Pn步1 v<==a(n)。
步2 对k=1,2,...,n执行v<==v*x+a(n-k)。
步3 y<==v。
步4 输出多项式的值y。
结束。
六、调试过程及实验结果1、 y=ditui(14)ans =[ .18232155679396, .8839221603023e-1, .580389198489e-1, .43138734088e-1, .3430632956e-1, .2846835222e-1, .243249055e-1, .21232615e-1, .18836925e-1, .1692649e-1, .153675e-1, .140713e-1,.12978e-1, .1204e-1, .1123e-1]2、 a=[101:-1:1];x=[1,2,3,4];Qinjiu(a,100,x)ans =1.0e+062 *0.0000 0.0000 0.0000 2.1569vpa(ans,8)ans =[ 5151., .25353012e33, .77693161e50, .21568680e63]七、总结八、附录(源程序清单)1、 function y=ditui(n)syms xf=1./(x+5);I(1)=int(f,0,1);for i=1:nI(i+1)=1/i-5*I(i);endvpa(I,15)2、 function y=Qinjiu(a,n,x) v=a(1);for k=1:nv=v.*x+a(k+1);endy=v;。
《数值分析》实验报告学院:计算机科学与软件学院姓名:XXX班级:计算机XX班学号:XXXXXX实验一:舍入误差与数值稳定性实验目的:1、 通过上机编程,复习巩固以前所学程序设计语言;2、 通过上机计算,了解舍入误差所引起的数值不稳定性。
3、 通过上机计算,了解运算次序对计算结果的影响,从而尽量避免大数吃小数的现象。
实验内容:用两种不同的顺序计算644834.11000012≈∑=-n n ,分析其误差的变化。
实验流程图:实验源程序:#include <stdio.h>#include <math.h>void main(){ int i;float s1=0,s2=0,d1,d2;for (i=1;i<=10000;i++)s1=s1+1.0f/(i*i);for (i=10000;i>=1;i--)s2=s2+1.0f/(i*i);d1=(float)(fabs(1.644834-s1));d2=(float)(fabs(1.644834-s2));printf("正向求和结果为%f\n 误差为%f\n\n",s1,d1);printf("反向求和结果为%f\n 误差为%f\n\n",s2,d2);if(d1<d2)printf("正向求和误差小于负向求和误差\n");else if(d1==d2)printf("正向求和误差等于负向求和误差\n"); elseprintf("正向求和误差大于负向求和误差\n");}实验结果:实验分析:第一次做数值实验,又一次使用C语言编程,没有了刚学习C语言的艰难,能够将实验步骤转换成流程图并编写出完整的实验代码,在经过多次调试、改正后得到正确的程序和结果。
这个实验较简单,计算误差时如果输入数据有误差,而在计算过程中舍入误差不增长,则称此算法是稳定的,否则称此算法是数值不稳定的,减少运算次数可以减小舍入误差。
实验一 算法设计及误差分析1.1 实验目的○1根据给定的问题,给出稳定的算法,并分析误差的控制。
○2了解舍入误差所引起的数值不稳定性 1.2 实验内容 1、递推计算的稳定性 实验题目,1dx xa xI nn ⎰+=n=0,1, (10)其中a 为参数,分别对a=0.05及a=15按下列两种方法计算,列出结果,并对其可靠性进行分析比较,说明原因。
方案1:用递推公式,11n aII n n +-=- n=1,2,…,10递推初值可由积分直接得.1ln0aa I +=方案2:用递推公式),1(11nI aI n n +-=- n=1,...1,-N N根据估计式,)1(1)1)(1(1+<<++n a I n a n 当1+≥n n a或,1)1)(1(1n I n a n ≤<++ 当10+<≤n n a取递推初值])1(1)1)(1(1[21++++≈N a N a I N=,)1)(1(212_NIN a a a ∆+++ 当1+≥N N a或,]1)1)(1(1[21_NN INN a I ∆+++=当10+≤≤N N a2、不同方案收敛速度的比较实验题目三种求ln2的算法比较。
构造逼近ln2的数列,求出ln2的近似值,要求精度51021-⨯=ε,观察比较3种计算方案的收敛速度。
方案1:利用级数∑∞=--=+-+-=11)1( (4)1312112ln k k k设∑=--=nk k n kS 11)1(,则n S ≈2ln .方案2:对上述∑=--=nk k n kS 11)1(,按21212)(ˆ---+---=n n n n n nn S S S S S S S ,...,4,3=n 生成新数列n S ˆ,则n S ˆ2ln ≈方案3 利用级数∑∞==+⨯+⨯+⨯+⨯=143221 (2)412312212112ln k kk设∑==nk kn k S 121,则nS ≈2ln .实验二 插值方法2.1 实验目的① 掌握牛顿插值法的基本思路和步骤; ② 培养编程与上机调试能力。
数值分析实验报告1数值分析上机实验报告(注:本实验报告中所有程序均为MATLAB语⾔程序)班级:姓名:学号:⼀章1、利⽤数值积分计算n I =21n x ex e -?dx (n=0,1,2,……). ⽬的:定积分数值求解原理:梯形公式法程序:clearformat long ;k=input('k=');m=input('m=');for n=1:kh=1/m;x=0:h:1;f=x.^n.*exp(x.^2);for i=1:ms(i)=(f(i)+f(i+1))*h/2;ends=sum(s);I(n)=exp(-1)*s;endI 运⾏结果:k=9m=1000I =Columns 1 through 60.3160604988 0.2309605799 0.1839401373 0.1535601302 0.1321211422 0.1161015912Columns 7 through 90.1036390735 0.0936475974 0.08544762262、利⽤秦九韶算法计算当0a =5,n a =21n a -+3;n=100,x=0.5;n=150,x=13多项式n p (x )=n a n x +…11n n a x --…1a x +0a 的值。
⽬的:通过调整程序以简化计算步骤,减少运算次数原理:秦久韶算法程序:n=input('n=');x=input('x=');a(1)=5;for k=1:n;a(k+1)=2.*a(k)+3;ends(n+1)=a(n+1);for i=n:-1:1s(i)=x.*s(i+1)+a(i);endPnx=s(1)运⾏结果:n=100x=0.5Pnx =802.0000000n=150x=13Pnx =1.4659714820e+2133、设0Y =28,按递推公式n Y = 1n Y -100Y ,500Y ≈27.982(五位有效数字),试问计算100Y 、500Y 将有多⼤的误差。
《数值分析》 课程实验指导书
实验一 函数插值方法
一、问题提出
对于给定的一元函数)(x f y =的n+1个节点值(),0,1,
,j j y f x j n ==。
试用
Lagrange 公式求其插值多项式或分段二次Lagrange 插值多项式。
数据如下:
(1)
求五次Lagrange 多项式5L ()x ,和分段三次插值多项式,计算(0.596)f ,(0.99)f 的值。
(提示:结果为(0.596)0.625732f ≈, (0.99) 1.05423f ≈ )
(2)
试构造Lagrange 多项式6L ()x ,计算的(1.8)f ,(6.15)f 值。
(提示:结果为(1.8)0.164762f ≈, (6.15)0.001266f ≈ )
二、要求
1、 利用Lagrange 插值公式
00,()n n
i n k k i i k k i x x L x y x x ==≠⎛⎫-= ⎪-⎝⎭∑∏编写出插值多项式程序; 2、 给出插值多项式或分段三次插值多项式的表达式;
3、 根据节点选取原则,对问题(2)用三点插值或二点插值,其结果如何;
4、 对此插值问题用Newton 插值多项式其结果如何。
四、实验分析:
Lagrange 插值多项式的表达式:
1,,2,1,)()()(,
)()(1111+=--==∏∑+≠=+=n i x x x x x l x l y x L n i j j j i j i n i i i 。
其中)(x l i 被称为插值基函数,实际上是一个n 次多项式。
)(x l i 的这种表示具有较好的对称性。
公式具有两大优点:(1)求插值多项式,不需要求解线性方程组,当已知数据点较多时,此公式更能显示出优越性。
(2)函数值可以用符号形式表示,数据点未确定的纵坐标可用多项式表示。
Newton 插值多项式如下:
1
0010,()()[,,]()k n n j k k j j k N x f x f x x x x -==≠=+•-∑∏ 其中: 00,0()()[,,]k i k i i j j j i k f x x x f x x ==≠-=∑∏
Newton 插值多项式的优点是:当每增加一个节点时,只增加一项多项式。
三、实验程序及注释
1、m 程序:
function [c,l]=lagran(x,y)
% x 为n 个节点的横坐标组成的向量,y 为纵坐标所组成的向量
% c 为所得插值函数的系数所组成的向量
w=length(x);
n=w-1;
l=zeros(w,w);
for k=1:n+1
v=1;
for j=1:n+1
if k~=j
v=conv(v,poly(x(j)))/(x(k)-x(j));
end
end
l(k,:)=v;
end
c=y*l;
function fi=Lagran_(x,f,xi)
fi=zeros(size(xi));
n=length(f);
for i=1:n
z=ones(size(xi));
for j=1:n
if i~=j,z=z.*(xi-x(j))/(x(i)-x(j));
end
end
fi=fi+z*f(i);
end
Return
2、主程序:
对于数据(1),在主窗口输入:
x=[0.4 0.55 0.65 0.80 0.95 1.05]; y=[0.41075 0.57815 0.68675 0.90 1.00 1.25382];
lagran (x,y)
ans =
143.8486 -506.0836 694.2890 -463.5132 151.5174 -18.9859
format long
xi=[0.596,0.990]; yi=Lagran_(x,y,xi)
yi =
0.61916350788547 1.05159915747938
xx=0.3:0.01:1.1
[c,l]=lagran(x,y)
yy= polyval(c,xx)
plot(xx,yy, x,y,'o');
得出在拉格朗日的插值多项式曲线图,如图1-1所示:
图1-1
由此得到所求的lagrange 多项式为:
9859.185174.1515132.4632890.6940836.5068486.143L 23455
-+-+-=x x x x x x )( 对于数据(2),在主窗口输入:
x=[1 2 3 4 5 6 7];
y=[0.368 0.135 0.050 0.018 0.007 0.002 0.001];
lagran (x,y)
ans =
0.0001 -0.0016 0.0186 -0.1175 0.4419 -0.9683 0.9950
xi=[1.8,6.15]; yi=Lagran_(x,y,xi)
yi =
0.16476 0.0012658
xx=0:7
[c,l]=lagran(x,y)
yy= polyval(c,xx)
plot(xx,yy, x,y,'o');
得出在拉格朗日的插值多项式曲线图,如图1-2所示:
图1-2
所以得到所求的lagrange 多项式为:
9950.09683.04419.01175.00186.00016.0001.0L 234566--+-+-=x x x x x x x )
(对于要求(3),在主窗口输入:
x=[0.4,0.65,0.95];
y=[0.41075,0.69675,1.00];
[c,l]=lagran(x,y)
c =
-0.24212121212121 1.39822727272727 -0.10980151515152
xx=04:0.01:1.0
yy= polyval(c,xx)
plot(xx,yy, x,y,'o');
得出在拉格朗日的插值多项式曲线图,如图1-3所示:
图1-3
xi=[0.596,0.990]; yi=Lagran_(x,y,xi)
yi =
0.63753661090909 1.03714048484848
4.1基于Newton插值多项式对插值问题的分析。
function[c,d]=newploy(x,y)
% 这里x为n个节点的横坐标所组成的向量,y为纵坐标所组成的向量% c为所求的Newton插值多项式的系数构成的向量
n=length(x);
d=zeros(n,n);
d(:,1)=y';
for j=2:n
for k=j:n
d(k,j)=(d(k,j-1)-d(k-1,j-1))/(x(k)-x(k-j+1));
end
end
c=d(n,n);
for k=(n-1):-1:1
c=conv(c,poly(x(k)));
m=length(c);
c(m)=c(m)+d(k,k);
end
x=[0.4 0.55 0.65 0.80 0.95 1.05];
y=[0.41075 0.57815 0.68675 0.90 1.00 1.25382];
>> newploy(x,y)
ans =
143.8486 -506.0836 694.2890 -463.5132 151.5174 -18.9859
三、目的和意义
1、学会常用的插值方法,求函数的近似表达式,以解决其它实际问题;
2、明确插值多项式和分段插值多项式各自的优缺点;
3、熟悉插值方法的程序编制;
4、如果绘出插值函数的曲线,观察其光滑性。
五、实验步骤:
1.进入C或matlab开发环境;
2.根据实验内容和要求编写程序;
3.调试程序;
4.运行程序;
5.撰写报告,讨论分析实验结果.。