山东省聊城市2018届高考一模考试数学(理)试题含答案
- 格式:pdf
- 大小:224.49 KB
- 文档页数:10
2018年普通高等学校招生全国统一考试数学试题理(全国卷1)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 设,则A. B. C. D.【答案】C【解析】分析:首先根据复数的运算法则,将其化简得到,根据复数模的公式,得到,从而选出正确结果.详解:因为,所以,故选C.点睛:该题考查的是有关复数的运算以及复数模的概念及求解公式,利用复数的除法及加法运算法则求得结果,属于简单题目.2. 已知集合,则A. B.C. D.【答案】B【解析】分析:首先利用一元二次不等式的解法,求出的解集,从而求得集合A,之后根据集合补集中元素的特征,求得结果.详解:解不等式得,所以,所以可以求得,故选B.点睛:该题考查的是有关一元二次不等式的解法以及集合的补集的求解问题,在解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果.3. 某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半【答案】A【解析】分析:首先设出新农村建设前的经济收入为M,根据题意,得到新农村建设后的经济收入为2M,之后从图中各项收入所占的比例,得到其对应的收入是多少,从而可以比较其大小,并且得到其相应的关系,从而得出正确的选项.详解:设新农村建设前的收入为M,而新农村建设后的收入为2M,则新农村建设前种植收入为0.6M,而新农村建设后的种植收入为0.74M,所以种植收入增加了,所以A项不正确;新农村建设前其他收入我0.04M,新农村建设后其他收入为0.1M,故增加了一倍以上,所以B项正确;新农村建设前,养殖收入为0.3M,新农村建设后为0.6M,所以增加了一倍,所以C项正确;新农村建设后,养殖收入与第三产业收入的综合占经济收入的,所以超过了经济收入的一半,所以D正确;故选A.点睛:该题考查的是有关新农村建设前后的经济收入的构成比例的饼形图,要会从图中读出相应的信息即可得结果.4. 设为等差数列的前项和,若,,则A. B. C. D.【答案】B详解:设该等差数列的公差为,根据题中的条件可得,整理解得,所以,故选B.点睛:该题考查的是有关等差数列的求和公式和通项公式的应用,在解题的过程中,需要利用题中的条件,结合等差数列的求和公式,得到公差的值,之后利用等差数列的通项公式得到与的关系,从而求得结果.5. 设函数,若为奇函数,则曲线在点处的切线方程为A. B. C. D.【答案】D【解析】分析:利用奇函数偶此项系数为零求得,进而得到的解析式,再对求导得出切线的斜率,进而求得切线方程.详解:因为函数是奇函数,所以,解得,所以,,所以,所以曲线在点处的切线方程为,化简可得,故选D.点睛:该题考查的是有关曲线在某个点处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得,借助于导数的几何意义,结合直线方程的点斜式求得结果.6. 在△中,为边上的中线,为的中点,则A. B.C. D.【答案】A【解析】分析:首先将图画出来,接着应用三角形中线向量的特征,求得,之后应用向量的加法运算法则-------三角形法则,得到,之后将其合并,得到,下一步应用相反向量,求得,从而求得结果.详解:根据向量的运算法则,可得,所以,故选A.点睛:该题考查的是有关平面向量基本定理的有关问题,涉及到的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算.7. 某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为A. B.C. D. 2【答案】B【解析】分析:首先根据题中所给的三视图,得到点M和点N在圆柱上所处的位置,点M在上底面上,点N 在下底面上,并且将圆柱的侧面展开图平铺,点M、N在其四分之一的矩形的对角线的端点处,根据平面上两点间直线段最短,利用勾股定理,求得结果.详解:根据圆柱的三视图以及其本身的特征,可以确定点M和点N分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,所以所求的最短路径的长度为,故选B.点睛:该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平面图形的相关特征求得结果.8. 设抛物线C:y2=4x的焦点为F,过点(–2,0)且斜率为的直线与C交于M,N两点,则=A. 5B. 6C. 7D. 8【答案】D【解析】分析:首先根据题中的条件,利用点斜式写出直线的方程,涉及到直线与抛物线相交,联立方程组,消元化简,求得两点,再利用所给的抛物线的方程,写出其焦点坐标,之后应用向量坐标公式,求得,最后应用向量数量积坐标公式求得结果.详解:根据题意,过点(–2,0)且斜率为的直线方程为,与抛物线方程联立,消元整理得:,解得,又,所以,从而可以求得,故选D.点睛:该题考查的是有关直线与抛物线相交求有关交点坐标所满足的条件的问题,在求解的过程中,首先需要根据题意确定直线的方程,之后需要联立方程组,消元化简求解,从而确定出,之后借助于抛物线的方程求得,最后一步应用向量坐标公式求得向量的坐标,之后应用向量数量积坐标公式求得结果,也可以不求点M、N的坐标,应用韦达定理得到结果.9. 已知函数.若g(x)存在2个零点,则a的取值范围是A. [–1,0)B. [0,+∞)C. [–1,+∞)D. [1,+∞)【答案】C【解析】分析:首先根据g(x)存在2个零点,得到方程有两个解,将其转化为有两个解,即直线与曲线有两个交点,根据题中所给的函数解析式,画出函数的图像(将去掉),再画出直线,并将其上下移动,从图中可以发现,当时,满足与曲线有两个交点,从而求得结果.详解:画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果.10. 下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为II,其余部分记为III.在整个图形中随机取一点,此点取自I,II,III的概率分别记为p1,p2,p3,则A. p1=p2B. p1=p3C. p2=p3D. p1=p2+p3【答案】A详解:设,则有,从而可以求得的面积为,黑色部分的面积为,其余部分的面积为,所以有,根据面积型几何概型的概率公式,可以得到,故选A.点睛:该题考查的是面积型几何概型的有关问题,题中需要解决的是概率的大小,根据面积型几何概型的概率公式,将比较概率的大小问题转化为比较区域的面积的大小,利用相关图形的面积公式求得结果.11. 已知双曲线C:,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M、N.若OMN为直角三角形,则|MN|=A. B. 3 C. D. 4【答案】B【解析】分析:首先根据双曲线的方程求得其渐近线的斜率,并求得其右焦点的坐标,从而得到,根据直角三角形的条件,可以确定直线的倾斜角为或,根据相关图形的对称性,得知两种情况求得的结果是相等的,从而设其倾斜角为,利用点斜式写出直线的方程,之后分别与两条渐近线方程联立,求得,利用两点间距离同时求得的值.详解:根据题意,可知其渐近线的斜率为,且右焦点为,从而得到,所以直线的倾斜角为或,根据双曲线的对称性,设其倾斜角为,可以得出直线的方程为,分别与两条渐近线和联立,求得,所以,故选B.点睛:该题考查的是有关线段长度的问题,在解题的过程中,需要先确定哪两个点之间的距离,再分析点是怎么来的,从而得到是直线的交点,这样需要先求直线的方程,利用双曲线的方程,可以确定其渐近线方程,利用直角三角形的条件得到直线的斜率,结合过右焦点的条件,利用点斜式方程写出直线的方程,之后联立求得对应点的坐标,之后应用两点间距离公式求得结果.12. 已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为A. B. C. D.【答案】A【解析】分析:首先利用正方体的棱是3组每组有互相平行的4条棱,所以与12条棱所成角相等,只需与从同一个顶点出发的三条棱所成角相等即可,从而判断出面的位置,截正方体所得的截面为一个正六边形,且边长是面的对角线的一半,应用面积公式求得结果.详解:根据相互平行的直线与平面所成的角是相等的,所以在正方体中,平面与线所成的角是相等的,所以平面与正方体的每条棱所在的直线所成角都是相等的,同理平面也满足与正方体的每条棱所在的直线所成角都是相等,要求截面面积最大,则截面的位置为夹在两个面与中间的,且过棱的中点的正六边形,且边长为,所以其面积为,故选A.点睛:该题考查的是有关平面被正方体所截得的截面多边形的面积问题,首要任务是需要先确定截面的位置,之后需要从题的条件中找寻相关的字眼,从而得到其为过六条棱的中点的正六边形,利用六边形的面积的求法,应用相关的公式求得结果.二、填空题:本题共4小题,每小题5分,共20分。
2018年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设z=+2i,则|z|=()A.0B.C.1D.2.(5分)已知集合A={x|x2﹣x﹣2>0},则∁R A=()A.{x|﹣1<x<2}B.{x|﹣1≤x≤2}C.{x|x<﹣1}∪{x|x>2}D.{x|x≤﹣1}∪{x|x≥2}3.(5分)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.(5分)记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12B.﹣10C.10D.125.(5分)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x6.(5分)在△ABC中,AD为BC边上的中线,E为AD的中点,则=()A.﹣B.﹣C.+D.+7.(5分)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2C.3D.28.(5分)设抛物线C:y2=4x的焦点为F,过点(﹣2,0)且斜率为的直线与C交于M,N两点,则•=()A.5B.6C.7D.89.(5分)已知函数f(x)=,g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是()A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞)10.(5分)如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p3 11.(5分)已知双曲线C:﹣y2=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|=()A.B.3C.2D.412.(5分)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。
2018年普通高等学招生全国统一考试(全国一卷)理科数学参考答案与解析一、选择题:本题有12小题,每小题5分,共60分。
1、设z=,则|z|=A 、0B 、C 、1D 、【答案】C【解析】由题可得i z =+=2i )i -(,所以|z|=1【考点定位】复数2、已知集合A={x|x 2-x-2>0},则A =A 、{x|-1<x<2}B 、{x|-1x 2}C 、{x|x<-1}∪{x|x>2}D 、{x|x -1}∪{x|x 2} 【答案】B【解析】由题可得C R A={x|x 2-x-2≤0},所以{x|-1x 2}【考点定位】集合3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是:A 、新农村建设后,种植收入减少。
B 、新农村建设后,其他收入增加了一倍以上。
C 、新农村建设后,养殖收入增加了一倍。
D 、新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半。
【答案】A【解析】由题可得新农村建设后,种植收入37%*200%=74%>60%,【考点定位】简单统计4、记S n为等差数列{a n}的前n项和,若3S3=S2+S4,a1=2,则a5=A、-12B、-10C、10D、12【答案】B【解析】3*(a1+a1+d+a1+2d)=(a1+a1+d) (a1+a1+d+a1+2d+a1+3d),整理得:2d+3a1=0; d=-3 ∴a5=2+(5-1)*(-3)=-10【考点定位】等差数列求和5、设函数f(x)=x3+(a-1)x2+ax,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为:A、y=-2xB、y=-xC、y=2xD、y=x【答案】D【解析】f(x)为奇函数,有f(x)+f(-x)=0整理得:f(x)+f(-x)=2*(a-1)x2=0 ∴a=1f(x)=x3+x求导f‘(x)=3x2+1f‘(0)=1 所以选D【考点定位】函数性质:奇偶性;函数的导数6、在ABC中,AD为BC边上的中线,E为AD的中点,则=A、--B、--C、-+D、-【答案】A【解析】AD 为BC 边∴上的中线 AD=AC 21AB 21+ E 为AD 的中点∴AE=AC 41AB 41AD 21+= EB=AB-AE=AC 41AB 43)AC 41AB 41(-AB -=+= 【考点定位】向量的加减法、线段的中点7、某圆柱的高为2,底面周长为16,其三视图如右图,圆柱表面上的点M 在正视图上的对应点为11A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A 、B 、C 、3D 、2 【答案】B【解析】将圆柱体的侧面从A 点展开:注意到B 点在41圆周处。
2018年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)(2018•新课标Ⅰ)设z=+2i,则|z|=()A.0 B.C.1 D.2.(5分)(2018•新课标Ⅰ)已知集合A={x|x2﹣x﹣2>0},则∁R A=()A.{x|﹣1<x<2}B.{x|﹣1≤x≤2}C.{x|x<﹣1}∪{x|x>2}D.{x|x≤﹣1}∪{x|x≥2}3.(5分)(2018•新课标Ⅰ)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.(5分)(2018•新课标Ⅰ)记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12 B.﹣10 C.10 D.125.(5分)(2018•新课标Ⅰ)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x6.(5分)(2018•新课标Ⅰ)在△ABC中,AD为BC边上的中线,E为AD的中点,则=()A.﹣B.﹣C.+D.+7.(5分)(2018•新课标Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2 C.3 D.28.(5分)(2018•新课标Ⅰ)设抛物线C:y2=4x的焦点为F,过点(﹣2,0)且斜率为的直线与C交于M,N两点,则•=()A.5 B.6 C.7 D.89.(5分)(2018•新课标Ⅰ)已知函数f(x)=,g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是()A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞)10.(5分)(2018•新课标Ⅰ)如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p311.(5分)(2018•新课标Ⅰ)已知双曲线C:﹣y2=1,O为坐标原点,F为C 的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|=()A.B.3 C.2 D.412.(5分)(2018•新课标Ⅰ)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。
山东省聊城市2018届高三第一次模拟考试数学试题(理科)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
1. 已知集合,,则()A. B. C. D.【答案】A【解析】.故选A.2. 设复数,则()A. 4B. 2C.D. 1【答案】C【解析】,故选C.3. 设等差数列的前项和为,若,,则数列的公差为()A. 2B. 3C. 4D. 5【答案】B【解析】,故公差.故选B.4. 我国三国时期的数学家赵爽为了证明勾股定理创制了一幅“勾股圆方图”,该图是由四个全等的直角三角形组成,它们共同围成了一个如图所示的大正方形和一个小正方形.设直角三角形中一个锐角的正切值为3.在大正方形内随机取一点,则此点取自小正方形内的概率是()A. B. C. D.【答案】D【解析】不妨设两条直角边为,故斜边,即大正方形的边长为,小正方形边长为,故概率为.5. 设等比数列的各项均为正数,其前项和为,则“”是“数列是递增数列”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】C【解析】由得,故是递增数列,反之也成立,所以为充要条件.选C.6. 已知直线与抛物线:相交于,两点,若线段的中点为,则直线的方程为()A. B. C. D.【答案】D【解析】设,代入抛物线得,两式相减得,即,即直线的斜率为,由点斜式得,化简得,故选D. 7. 已知函数,不等式的解集为()A. B. C. D.【答案】A【解析】由于,所以函数为奇函数,且为单调递增函数,故,所以,故选A.8. 已知双曲线:的右焦点到渐近线的距离为4,且在双曲线上到的距离为2的点有且仅有1个,则这个点到双曲线的左焦点的距离为()A. 2B. 4C. 6D. 8【答案】D【解析】双曲线焦点到渐近线的距离为,所以.双曲线上到的距离为2的点有且仅有1个,即双曲线右顶点到右焦点的距离为,故,由于,解得,右顶点到左焦点的距离为,故选D.9. 执行如图所示的程序框图,若输出的结果为1.5,则输入的值应为()A. 4.5B. 6C. 7.5D. 9【答案】B【解析】,判断是,,判断是,,判断是, ,判断否,输出,故选B.10. 在中,边上的中线的长为2,点是所在平面上的任意一点,则的最小值为()A. 1B. 2C. -2D. -1【答案】C【解析】建立如图所示的平面直角坐标系,使得点D在原点处,点A在y轴上,则.设点P的坐标为,则,故,当且仅当时等号成立.所以的最小值为.选C.11. 如图是某几何体的三视图,其中俯视图为等边三角形,正视图为等腰直角三角形,若该几何体的各个顶点都在同一个球面上,则这个球的体积与该几何体的体积的比为()A. B. C. D.【答案】C【解析】设底边长和高为,则三棱锥的体积为.底面外接圆半径,故几何体外接球的半径为,体积为.故比值为.故选C.12. 已知函数恰有3个零点,则实数的取值范围为()A. B. C. D.【答案】A【解析】,在上单调递减.若,则在上递增,那么零点个数至多有一个,不符合题意,故.故需当时,且,使得第一段有一个零点,故.对于第二段,,故需在区间有两个零点,,故在上递增,在上递减,所以,解得.综上所述,【点睛】本小题主要考查函数的图象与性质,考查含有参数的分段函数零点问题的求解策略,考查了利用导数研究函数的单调区间,极值,最值等基本问题.其中用到了多种方法,首先对于第一段函数的分析利用了分离常数法,且直接看出函数的单调性.第二段函数利用的是导数来研究图像与性质.13. 设,满足约束条件,则的最大值为__________.【答案】4【解析】,画出可行域如下图所示,由图可知,目标函数在点处取得最大值为.[点睛]本小题主要考查线性规划的基本问题,考查了指数的运算. 画二元一次不等式或表示的平面区域的基本步骤:①画出直线(有等号画实线,无等号画虚线);②当时,取原点作为特殊点,判断原点所在的平面区域;当时,另取一特殊点判断;③确定要画不等式所表示的平面区域.14. 某工厂从生产的一批产品中随机抽出一部分,对这些产品的一项质量指标进行了检测,整理检测结果得到如下频率分布表:据此可估计这批产品的此项质量指标的方差为__________.【答案】144【解析】由题意得这批产品的此项质量指标的平均数为,故方差为.答案:点睛:在频率分布直方图中平均数的估计值等于每个小矩形的面积乘以矩形底边中点横坐标之和,在频率分布表中平均数的估计值等于每个分组的中点值乘以该组频率之和.利用类似的方法也可根据频率分布直方图或频率分布表求得方差.15. 的展开式中常数项为__________.【答案】672【解析】表示9个相乘,从这9个中选取6个且只取其中的,从剩余的3个中只取,相乘后即可得到常数项,故常数项为.答案:16. 若函数在开区间内,既有最大值又有最小值,则正实数的取值范围为__________.【答案】【解析】,其中,,故,解得,故,解得.17. 已知数列满足,.(Ⅰ)证明:是等比数列;(Ⅱ)求数列的前项和.【答案】(Ⅰ)证明见解析;(Ⅱ).【解析】(Ⅰ)递推公式是型时,通常等式两边同时加,构成新的等比数列,(Ⅱ)求和时采用分组求和的方法,其中是差比数列,采用错位想减法。
2018年聊城市高考模拟试题理科数学(一)第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合2{|1}A x x =<,{|lg(1)0}B x x =+≥,则A B =I ( ) A .[0,1) B .(1,)-+∞ C .(0,1) D .(1,0]-2.设复数2(1)1i z i-=+,则z =( )A .4B .2C .2D .13.设等差数列{}n a 的前n 项和为n S ,若13104S =,65a =,则数列{}n a 的公差为( ) A .2 B .3 C .4 D .54.我国三国时期的数学家赵爽为了证明勾股定理创制了一幅“勾股圆方图”,该图是由四个全等的直角三角形组成,它们共同围成了一个如图所示的大正方形和一个小正方形.设直角三角形中一个锐角的正切值为3.在大正方形内随机取一点,则此点取自小正方形内的概率是( )A .110 B .15 C .310 D .255.设等比数列{}n a 的各项均为正数,其n 前项和为n S ,则“1921202S S S +>”是“数列{}n a 是递增数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.已知直线l 与抛物线C :24y x =相交于A ,B 两点,若线段AB 的中点为(2,1),则直线l 的方程为( )A .1y x =-B .25y x =-+C .3y x =-+D .23y x =- 7.已知函数()(1010)xxf x x -=-,不等式(12)(3)0f x f -+>的解集为( ) A .(,2)-∞ B .(2,)+∞ C .(,1)-∞ D .(1,)+∞8.已知双曲线C :22221(0,0)x y a b a b-=>>的右焦点2F 到渐近线的距离为4,且在双曲线C 上到2F 的距离为2的点有且仅有1个,则这个点到双曲线C 的左焦点1F 的距离为( ) A .2 B .4 C .6 D .8 9.执行如图所示的程序框图,若输出的结果为1.5,则输入k 的值应为( )A .4.5B .6C .7.5D .910.在ABC ∆中,BC 边上的中线AD 的长为2,点P 是ABC ∆所在平面上的任意一点,则PA PB PA PC ⋅+⋅u u u r u u u r u u u r u u u r的最小值为( )A .1B .2C .-2D .-111.如图是某几何体的三视图,其中俯视图为等边三角形,正视图为等腰直角三角形,若该几何体的各个顶点都在同一个球面上,则这个球的体积与该几何体的体积的比为( )A .73π B .289π C 147π.43π12.已知函数3,21(),20x xa x x f x a e x x ⎧--≤-⎪⎪+=⎨⎪--<<⎪⎩恰有3个零点,则实数a 的取值范围为( )A .11,3e ⎛⎫-- ⎪⎝⎭ B .211,e e ⎛⎫--⎪⎝⎭ C .221,3e ⎡⎫--⎪⎢⎣⎭ D .21,33⎡⎫--⎪⎢⎣⎭第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分)13.设x ,y 满足约束条件102020x y x y x y -+≥⎧⎪-≤⎨⎪+≤⎩,则12()16x y z =的最大值为 .14.某工厂从生产的一批产品中随机抽出一部分,对这些产品的一项质量指标进行了检测,整理检测结果得到如下频率分布表:质量指标分组[10,30)[30,50)[50,70]频率0.10.60.3据此可估计这批产品的此项质量指标的方差为 . 15.2922()y x x ++的展开式中常数项为 . 16.若函数()sin()4f x m x π=+2x -在开区间7(0,)6π内,既有最大值又有最小值,则正实数m 的取值范围为 .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分17.已知数列{}n a 满足12a =-,124n n a a +=+. (Ⅰ)证明:{4}n a +是等比数列; (Ⅱ)求数列{}n a 的前n 项和n S .18.某教育培训中心共有25名教师,他们全部在校外住宿.为完全起见,学校派专车接送教师们上下班.这个接送任务承包给了司机王师傅,正常情况下王师傅用34座的大客车接送教师.由于每次乘车人数不尽相同,为了解教师们的乘车情况,王师傅连续记录了100次的乘车人数,统计结果如下: 乘车人数 1516171819202122232425频数2441016201612862以这100次记录的各乘车人数的频率作为各乘车人数的概率.(Ⅰ)若随机抽查两次教师们的乘车情况,求这两次中至少有一次乘车人数超过18的概率; (Ⅱ)有一次,王师傅的大客车出现了故障,于是王师傅准备租一辆小客车来临时送一次需要乘车的教师.可供选择的小客车只有20座的A 型车和22座的B 型车两种,A 型车一次租金为80元,B 型车一次租金为90元.若本次乘车教师的人数超过了所租小客车的座位数,王师傅还要付给多出的人每人20元钱供他们乘出租车.以王师傅本次付出的总费用的期望值为依据,判断王师傅租哪种车较合算?19.如图,四棱锥P ABCD -中,PAD ∆为等边三角形,且平面PAD ⊥平面ABCD ,22AD BC ==,AB AD ⊥,AB BC ⊥.(Ⅰ)证明:PC BC ⊥;(Ⅱ)若直线PC 与平面ABCD 所成角为60o,求二面角B PC D --的余弦值.20.已知圆224x y +=经过椭圆C :22221(0)x y a b a b+=>>的两个焦点和两个顶点,点(0,4)A ,M ,N 是椭圆C 上的两点,它们在y 轴两侧,且MAN ∠的平分线在y 轴上,AM AN ≠.(Ⅰ)求椭圆C 的方程; (Ⅱ)证明:直线MN 过定点. 21.已知函数()22xf x e kx =--.(Ⅰ)讨论函数()f x 在(0,)+∞内的单调性;(Ⅱ)若存在正数m ,对于任意的(0,)x m ∈,不等式()2f x x >恒成立,求正实数k 的取值范围.(二)选考题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,圆C 的普通方程为2246120x y x y +--+=.在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,直线l 的极坐标方程为sin()4πρθ+=(Ⅰ)写出圆C 的参数方程和直线l 的直角坐标方程;(Ⅱ)设直线l 与x 轴和y 轴的交点分别为A 、B ,P 为圆C 上的任意一点,求PA PB ⋅u u u r u u u r的取值范围.23.选修4-5:不等式选讲已知函数()22f x x a a =++,a R ∈.(Ⅰ)若对于任意x R ∈,()f x 都满足()(3)f x f x =-,求a 的值; (Ⅱ)若存在x R ∈,使得()21f x x a ≤--+成立,求实数a 的取值范围.2018年聊城市高考模拟 理科数学(一)答案一、选择题1-5: ACBDC 6-10: DADBC 11、12:CA二、填空题13. 4 14. 144 15. 672 16. 23m <<+三、解答题17.解:(Ⅰ)∵12a =-,∴142a +=,∵124n n a a +=+,∴1428n n a a ++=+2(4)n a =+, ∴1424n n a a ++=+,∴{4}n a +是以2为首项,2为公比的等比数列.(Ⅱ)由(Ⅰ),可知42n n a +=,∴24nn a =-.∴12n n S a a a =++⋅⋅⋅+2(24)(24)=-+-(24)n+⋅⋅⋅+-2(222)4nn =++⋅⋅⋅+-2(12)412n n -=--1224n n +=--.∴1242n n S n +=--.18.解:(Ⅰ)由题意得,在一次接送中,乘车人数超过18的概率为0.8. 记“抽查的两次中至少有一次乘车人数超过18”为事件A ,则()1(10.8)P A =--(10.8)0.96-=.即抽查的两次中至少有一次乘车人数超过18的概率为0.96.(Ⅱ)设X 表示租用A 型车的总费用(单位:元),则X 的分布列为800.561000.16EX =⨯+⨯1200.121400.08+⨯+⨯1600.061800.0299.6+⨯+⨯=.设Y 表示租用B 型车的总费用(单位:元),则Y 的分布列为900.841100.08EX =⨯+⨯1300.061500.0295.2+⨯+⨯=.因此以王师傅本次付出的总费用的期望值为依据,租B 型车较合算. 19.证明:(Ⅰ)取AD 的中点为O ,连接PO ,CO , ∵PAD ∆为等边三角形,∴PO AD ⊥.底面ABCD 中,可得四边形ABCO 为矩形,∴CO AD ⊥, ∵PO CO O =I ,∴AD ⊥平面POC , ∵PC ⊂平面POC,∴AD PC ⊥. 又//AD BC ,所以BC PC ⊥.(Ⅱ)由面PAD ⊥面ABCD ,PO AD ⊥,∴PO ⊥平面ABCD ,可得OP ,OD ,OC 两两垂直,又直线PC 与平面ABCD 所成角为60o ,即60PCO ∠=o , 由2AD =,知PO =,得1CO =.建立如图所示的空间直角坐标系O xyz -,则P ,(0,1,0)D ,(1,0,0)C ,(1,1,0)B -,(0,1,0)BC =u u u r ,(1,0,PC =u u u r ,(1,1,0)CD =-u u u r, 设平面PBC 的一个法向量为(,,)n x y z =r . ∴00y x =⎧⎪⎨=⎪⎩,令1z =,则n=r ,设平面PDC 的一个法向量为(',',')m x y z =u r, ∴''0''0x y x -=⎧⎪⎨=⎪⎩,令'1z =,则m =u r , cos ,m n<>u r r m n m n ⋅=u r ru r r 7==, ∵二面角B PC D --为钝角,∴二面角B PC D --的余弦值为7-.20.解:(Ⅰ)圆224x y +=与x 轴交点(2,0)±即为椭圆的焦点,圆224x y +=与y 轴交点(0,2)±即为椭圆的上下两顶点,所以2c =,2b =.从而22a =因此椭圆C 的方程为:22184x y +=. (Ⅱ)设直线MN 的方程为y kx m =+.由22184y kx mx y =+⎧⎪⎨+=⎪⎩,消去y 得222(21)4280k x kmx m +++-=.设11(,)M x y ,22(,)N x y ,则122421kmx x k +=-+,21222821m x x k -=+. 直线AM 的斜率1114y k x -=14m k x -=+; 直线AN 的斜率2224y k x -=24m k x -=+. 12k k +=1212(4)()2m x x k x x -++2(4)(4)228m km k m --=+-216(1)28k m m -=-. 由MAN ∠的平分线在y 轴上,得120k k +=.又因为AM AN ≠,所以0k ≠, 所以1m =.因此,直线MN 过定点(0,1).21.解:(Ⅰ)'()2xf x e k =-,(0,)x ∈+∞,当2k ≤时,因为22xe >,所以'()0f x >,这时()f x 在(0,)+∞内单调递增.当2k >时,令'()0f x >得ln2k x >;令'()0f x <得0ln 2k x <<. 这时()f x 在(0,ln )2k 内单调递减,在(ln ,)2k+∞内单调递增.综上,当2k ≤时,()f x 在(0,)+∞内单调递增, 当2k >时,()f x 在(0,ln )2k内单调递减,在(ln,)2k+∞内单调递增. (Ⅱ)①当02k <≤时,因为()f x 在(0,)+∞内单调递增,且(0)0f =,所以对于任意的(0,)x m ∈,()0f x >.这时()2f x x >可化为()2f x x >,即2(2)20x e k x -+->.设()2(2)2xg x e k x =-+-,则'()2(2)xg x e k =-+,令'()0g x =,得2ln2k x +=,因为2ln 02k +>,所以()g x 在2(0,ln )2k +单调递减.又因为(0)0g =,所以当2(0,ln )2k x +∈时,()0g x <,不符合题意.②当2k >时,因为()f x 在(0,ln )2k内单调递减,且(0)0f =,所以存在00x >,使得对于任意的0(0,)x x ∈都有()0f x <.这时()2f x x >可化为()2f x x ->,即2(2)20xe k x -+-+>.设()2(2)2xh x e k x =-+-+,则'()2(2)xh x e k =-+-.(i )若24k <≤,则'()0h x <在(0,)+∞上恒成立,这时()h x 在(0,)+∞内单调递减, 又因为(0)0h =,所以对于任意的0(0,)x x ∈都有()0h x <,不符合题意. (ii )若4k >,令'()0h x >,得2ln 2k x -<,这时()h x 在2(0,ln )2k -内单调递增,又因为(0)0h =,所以对于任意的2(0,ln)2k x -∈,都有()0h x >, 此时取02min{,ln }2k m x -=,对于任意的(0,)x m ∈,不等式()2f x x >恒成立.综上,k 的取值范围为(4,)+∞.22.解:(Ⅰ)圆C 的参数方程为2cos 3sin x y θθ=+⎧⎨=+⎩(θ为参数).直线l 的直角坐标方程为20x y +-=.(Ⅱ)由直线l 的方程20x y +-=可得点(2,0)A ,点(0,2)B .设点(,)P x y ,则PA PB ⋅u u u r u u u r(2,)(,2)x y x y =--⋅--.2222x y x y =+--2412x y =+-.由(Ⅰ)知2cos 3sin x y θθ=+⎧⎨=+⎩,则PA PB ⋅u u u r u u u r 4sin 2cos 4θθ=++)4θϕ=++.因为R θ∈,所以44PA PB -≤⋅≤+u u u r u u u r23.解:(Ⅰ)因为()(3)f x f x =-,x R ∈,所以()f x 的图象关于32x =对称. 又()2||22a f x x a =++的图象关于2a x =-对称,所以322a -=,所以3a =-. (Ⅱ)()21f x x a ≤--+等价于2210x a x a ++-+≤. 设()g x =221x a x a ++-+,则min ()(2)(21)g x x a x a =+--+1a a =++. 由题意min ()0g x ≤,即10a a ++≤. 当1a ≥-时,10a a ++≤,12a ≤-,所以112a -≤≤-; 当1a <-时,(1)0a a -++≤,10-≤,所以1a <-, 综上12a ≤-.。
2018年普通高等学校招生全国统一考试新课标1卷理科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设z=1-i1+i +2i ,则|z|=A .0B .12 C .1 D .2 解析:选C z=1-i1+i +2i=-i+2i=i 2.已知集合A={x|x 2-x-2>0},则∁R A =A .{x|-1<x<2}B .{x|-1≤x ≤2}C .{x|x<-1}∪{x|x>2}D .{x|x ≤-1}∪{x|x ≥2} 解析:选B A={x|x<-1或x>2}3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例 建设后经济收入构成比例则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半解析:选A4.设S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5= A .-12B .-10C .10D .12解析:选 ∵3(3a 1+3d)=(2a 1+d )+(4a 1+6d) a 1=2 ∴d=-3 a 5=-105.设函数f(x)=x 3+(a-1)x 2+ax ,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为 A .y=-2xB .y=-xC .y=2xD .y=x解析:选D ∵f(x)为奇函数 ∴a=1 ∴f(x)=x 3+x f′(x)=3x 2+1 f′(0)=1 故选D 6.在ΔABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB →= A .34AB → - 14AC →B . 14AB → - 34AC →C .34AB → + 14AC →D . 14AB → + 34AC →解析:选A 结合图形,EB →=- 12(BA →+BD →)=- 12BA →-14BC →=- 12BA →-14(AC →-AB →)=34AB → - 14AC → 7.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .217B .2 5C .3D .2解析:选B 所求最短路径即四份之一圆柱侧面展开图对角线的长8.设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为23的直线与C 交于M ,N 两点,则FM →·FN →= A .5B .6C .7D .8解析:选D F(1,0),MN 方程为y=23 (x+2),代入抛物线方程解得交点M(1,2),N(4,4),则FM →=(0,2),FN →=(3,4) ∴FM→·FN →=8 9.已知函数f(x)= ⎩⎪⎨⎪⎧e x , x ≤0lnx ,x>0,g(x)=f(x)+x+a .若g (x )存在2个零点,则a 的取值范围是A .[–1,0)B .[0,+∞)C .[–1,+∞)D .[1,+∞)解析:选C g(x)=0即f(x)=-x-a ,即y=f(x)图象与直线y=-x-a 有2个交点,结合y=f(x)图象可知-a<110.下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .△ABC 的三边所围成的区域记为I ,黑色部分记为II ,其余部分记为III .在整个图形中随机取一点,此点取自I ,II ,III 的概率分别记为p1,p2,p3,则A .p1=p2B .p1=p3C .p2=p3D .p1=p2+p3解析:选A ∵AC=3,AB=4,∴BC=5,∴12AC=32,12AB=2 , 12BC=52∴以AC 和AB 为直径的两个半圆面积之和为12×π×(32)2+12×π×22=258π∴以BC 为直径的半圆面积与三角形ABC 的面积之差为12×π×(52)2- 12×3×4=258π-6; ∴两个月牙形(图中阴影部分)的面积之和等于258π-(258π-6)=6=ΔABC 面积 ∴p1=p211.已知双曲线C :x 23 - y 2 =1,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N.若ΔOMN 为直角三角形,则|MN|= A .32B .3C .2 3D .4解析:选B 依题F(2,0),曲线C 的渐近线为y=±33x,MN 的斜率为3,方程为y=3(x-2),联立方程组解得M(32,- 32),N(3,3),∴|MN|=312.已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为 A .334B .233C .324D .32解析:选A 如图正六边形与正方体每条棱缩成角相等。
聊城一中2018届高考适应性考试数学(理科)测试一第I 卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.把正确答案涂在答题卡上.1.若复数z 满足45iz i =-(i 为虚数单位),则z 的共轭复数z 为 A. 54i - B. 54i -+ C. 54i + D. 54i --2.已知集合203x M xx -⎧⎫=<⎨⎬+⎩⎭,集合{}23N x x =-≤<,则M N ⋂为 A. ()2,3- B. (]3,2-- C. [)2,2- D. (]3,3-3.已知a ,b ,c ,d 为实数,且d c >,则“a b >”是“a c b d +>+”的 A.充分而不必要条件 B.必要而不充分条件C.充要条件D.既不充分也不必要条件4.某工厂对一批产品进行了抽样检测,右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分散直方图,其中产品净重的范围是[]96,106,样本数据分组为[)[)[)[)[)96,98,98,100,100,102,102,104104,106.已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于102克的产品的个数是A.90B.75C.60D.455.已知平行四边形ABCD 中,AC 为一条对角线,若()()2,4,1,3,AB AC AD BD ==⋅= 则A. 8-B. 6-C.6D.86.某算法的程序框图如图所示,如果输出的结果是26,则判断框内应为中学联盟网A. 1K >B. 2K >C. 3K >D. 4K >7. 一个多面体的直观图和三视图所示,M 是AB 的中点,一只蝴蝶在几何体ADF-BCE 内自由飞翔,由它飞入几何体F-AMCD 内的概率为A. 34B. 23C. 13D. 128.函数()[)cos 0f x x =+∞在,内 A.没有零点 B.有且仅有一个零点 C.有且仅有两个零点 D.有无穷多个零点9.已知双曲线()22122:100y x C a b a b-=>>,的离心率为2,若抛物线()22:20C y px p =>的焦点到双曲线1C 的渐近线的距离是2,则抛物线2C 的方程是A. 28y x =B. 2y x =C. 2y x =D. 216y x =10.将9个相同的小球放入3个不同的盒子,要求每个盒子中至少有一个小球,且每个盒子里的小球个数都不相同,则不同的放法有( )种A.15B.18C.19D.21二、填空题:本大题共5小题,每小题5分,共25分.把正确答案填在答题卡相应的位置上. 11.设()0sin cos a x x dx π=+⎰,则二项式6⎛⎝的展开式的常数项是_________.12. 设曲线()()1*11n y x n N +=∈在点,处的切线与x 轴的交点的横坐标为12399,lg n n n x a x a a a a =+++⋅⋅⋅+令,则的值为_________.13.若将函数sin 2y x =的图象向右平移()0ϕϕ>个单位,得到的图象关于直线6x π=对称,则ϕ的最小值为_________.14. 设,x y 满足约束条件()36020,0,00,0x y x y a b x y --≤⎧⎪-+≥>>⎨⎪≥≥⎩若z=ax+by 的最大值为12,则1123a b+的最小值为________. 15.若对任意(),,x A y B A B R ∈∈⊆、有唯一确定的(),f x y 与之对应,称(),f x y 为关于x 、y 的二元函数.现定义满足下列性质的二元函数(),f x y 为关于实数x 、y 的广义“距离”:(1)非负性:(),0f x y ≥,当且仅当0x y ==时取等号; (2)对称性:()(),,f x y f y x =;(3)三角形不等式:()()(),,,f x y f x z f z y ≤+对任意的实数z 均成立. 今给出四个二元函数:①()22,;f x y x y =+②()()2,f x y x y =-③(),f x y =()(),sin f x y x y =-.能够成为关于的x 、y 的广义“距离”的函数的所有序号是___________. 三、解答题:本大题共6小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤.16.在ABC ∆中,角,,A B C 的对边分别为a ,b ,c 。
绝密★启用前2018年普通高等学校招生全国统一考试(全国卷Ⅰ)理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设1i2i 1iz -=++,则||z = A .0 B .12 C .1 D .22.已知集合2{|20}A x x x =-->,则A =R ðA .{|12}x x -<<B .{|12}x x -≤≤C {|1}{|2}x x x x <->UD .{|1}{|2}x x x x -U ≤≥3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番. 为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记n S 为等差数列{}n a 的前n 项和. 若3243S S S =+,12a =,则5a = A .12- B .10- C .10 D .125.设函数32()(1)f x x a x ax =+-+. 若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为A .2y x =-B .y x =-C .2y x =D .y x = 6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =uu rA .3144AB AC -uu u r uuu r B .1344AB AC -uuu r uuu rC .3144AB AC +uu u r uuu rD .1344AB AC +uuu r uuu r7.某圆柱的高为2,底面周长为16,其三视图如右图. 圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .217B .25C .3D .28.设抛物线24C y x =:的焦点为F ,过点(2,0)-且斜率为23的直线与C 交于M ,N 两点,则FM FN?uuu r uuu r A .5B .6C .7D .89.已知函数e ,0,()ln ,0,x x f x x x ⎧=⎨>⎩≤ ()()g x f x x a =++. 若()g x 存在2个零点,则a 的取值范围是 A .[1,0)-B .[0,)+∞C .[1,)-+∞D .[1,)+∞10.下图来自古希腊数学家希波克拉底所研究的几何图形. 此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ. 在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为1p ,2p ,3p ,则A .12p p =B .13p p =C .23p p =D .123p p p =+11.已知双曲线2213x C y :-=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N . 若OMN △为直角三角形,则||MN = A .32B .3C .23D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为 A .33B .23C .32D .3二、填空题:本题共4小题,每小题5分,共20分。
2018年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)(2018•新课标Ⅰ)设z=+2i,则|z|=()A.0 B.C.1 D.2.(5分)(2018•新课标Ⅰ)已知集合A={x|x2﹣x﹣2>0},则∁R A=()A.{x|﹣1<x<2} B.{x|﹣1≤x≤2}C.{x|x<﹣1}∪{x|x>2} D.{x|x≤﹣1}∪{x|x≥2}3.(5分)(2018•新课标Ⅰ)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.(5分)(2018•新课标Ⅰ)记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12 B.﹣10 C.10 D.125.(5分)(2018•新课标Ⅰ)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x6.(5分)(2018•新课标Ⅰ)在△ABC中,AD为BC边上的中线,E为AD的中点,则=()A.﹣B.﹣C.+D.+7.(5分)(2018•新课标Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2 C.3 D.28.(5分)(2018•新课标Ⅰ)设抛物线C:y2=4x的焦点为F,过点(﹣2,0)且斜率为的直线与C交于M,N两点,则•=()A.5 B.6 C.7 D.89.(5分)(2018•新课标Ⅰ)已知函数f(x)=,g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是()A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞)10.(5分)(2018•新课标Ⅰ)如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p311.(5分)(2018•新课标Ⅰ)已知双曲线C:﹣y2=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|=()A.B.3 C.2 D.412.(5分)(2018•新课标Ⅰ)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为() A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。