土的压实性
- 格式:ppt
- 大小:286.00 KB
- 文档页数:7
土力学第十章土的动力性质和压实性第十章土的动力性质和压实性第一节土在动荷载作用下的变形和强度特性一、作用于土体的动荷载和土中波车辆的行驶、风力、波浪、地震、爆炸以及机器的振动,都可能是作用在土体的动力荷载。
这类荷载的特点,一是荷载施加的瞬时性,二是荷载施加的反复性(加卸荷或者荷载变化方向)。
一般将加荷时间在10s以上者都看做静力问题,10s以下者则应视作动力问题。
反复荷载作用的周期往往短至几秒、几分之一秒乃至几十分之一秒,反复次数从几次、几十次乃至千万次。
由于这两个特点,在动力条件下考虑土的变形和强度问题时,往往都要考虑速度效应和循环(振次)效应。
考虑速度效应时,需要将加荷时间的长短换算成加荷速度或相应的应变速度,加荷速度的不同,土的反应也不同。
如图10-1所示,慢速加荷时,土的强度虽然低于快速加荷,但承受的应变范围较大。
循环(振次)效应是指土的力学特性受荷载循环次数的影响情况。
图10-2是说明振次效应的一个实例,土中σf表示静力破坏强度,σd为动应力幅值,σs是在加动应力前对土样所施加的一个小于σf的竖向静偏应力。
由图可见,振次愈少,土的动强度愈高。
随着动荷载反复作用,土的强度逐渐降低,当反复作用10次时,土样的动强度(σd+σs)几乎与静强度σf相同,在加大作用次数,动强度就会低于静强度。
所以,对于动荷载,除了必须考虑其幅值大小以外,尚应考虑其说包含的频率成分和反复作用的次数。
当汽车通过路面或火车通过轨道时,将动荷传到路基上,它们荷载的周期不规则,可从0.1s到数分钟,其特点是反复多次加荷,而且循环次数很多,往往多达103次以上。
因此必须从防止土体反复应变产生疲劳的角度考虑其性质变化。
地震荷载也是随机作用的动荷载,一般为0.2~1.0s的周期作用,但次数不多。
位于土体表面、内部或者基岩的振源所引起的土单元体的动应力、动应变,将以波动的方式在土体中传播。
土中波的形式有以拉压应变为主的纵波、以剪应变为主的横波和主要发生在土体自由界面附近的表面波(瑞利波)。
测泥土压实度的方法测泥土的压实度是评价土壤物理性质的一个重要指标,通常用于土壤工程领域、农业领域以及土地开发和建设领域。
测泥土的压实度有多种方法,下面将介绍其中几种常见的方法。
1. 握实度法握实度法也称为土壤感觉压实法,是一种简便、常用的测定土壤压实度的方法。
该方法使用握实度计对土壤进行握压,通过对土壤的手感进行评估来判断其压实度。
通常,握实度计是一个带有刻度的圆环,用来握住土壤样品并测定握实度。
使用握实度法测定土壤压实度的步骤如下:1) 选择代表性的土壤样品。
2) 将土壤样品适当湿润,使其在握壁环的两面之间形成一个小球状。
3) 将握壁环轻轻放在土壤样品的两面之间。
4) 握住握壁环,用适当的力道压实土壤。
5) 根据压实土壤的感觉,判断土壤样品的压实度。
握实度法的优点是简便易行,不需要特殊设备,只需要一个握实度计和代表性的土壤样品即可进行测试。
然而,该方法的缺点是主观性较强,不够精确,容易受到操作者个人经验和感觉的影响。
2. 土壤容重法测定法土壤容重法是一种精确测定土壤压实度的方法,用来测定单位体积土壤的质量。
该方法通过测定一定体积的土壤质量来计算土壤容重,从而评估土壤的压实度。
常用的土壤容重测定方法有铁筒法和圆柱体法。
铁筒法测定土壤容重的步骤如下:1) 选择代表性的土壤样品。
2) 准备一个已知容积的铁筒,固定在一个支架上。
3) 将土壤样品填入铁筒中,并按照一定的规程压实土壤。
4) 移除多余的土壤,并用刮板将土壤表面平整。
5) 称量装有土壤的铁筒,得到土壤的质量。
6) 根据铁筒的容积和土壤的质量计算土壤容重。
土壤容重法的优点是比较精确可靠,可以提供相对准确的数据,适用于较为严谨的科学研究和土壤工程设计。
然而,该方法需要较为复杂的设备和流程,操作较为繁琐,需要一定的技术要求。
3. 剪切强度法测定法剪切强度法是一种常用于土壤工程领域的测定土壤压实度的方法。
该方法通过测定土壤的抗剪强度来评估土壤的压实程度。
土的击实试验土的击实试验也称为土的压实性试验,是用来评估土壤在受到作用力的情况下的变形和抗力特性的试验。
土壤是建筑、基础设施和道路等建设工程的重要组成部分,因此了解其力学性质对于保证工程质量至关重要。
下面将介绍这一试验的步骤、设备和数据处理方法。
步骤:1. 准备深度10-15厘米的土样。
为了获得精确的测试结果,应在同一地点分别进行多次采样,并将所有样品混合在一起以获得具有代表性的土样。
2. 将土样倒入铸模中。
铸模可以是一个圆柱体或一个立方体,其尺寸通常为10厘米x20厘米或15厘米x30厘米。
3. 用手或专用的工具将土均匀地压实到铸模中,直到土壤的表面与模板顶部水平对齐。
轻轻敲打铸模四周,以确保土的均匀分布和无气孔。
4. 称重,并记录整个系统(铸模+土)的重量,即为初试重。
5. 将冲击头沿着铸模中心的轴线向下落。
落下高度通常为30厘米至60厘米之间。
这个过程被称为一个冲击。
6. 重复第5步,使其共冲击5次,并记录每次冲击后的土样高度。
7. 重复所有步骤,并使用不同的落下高度来获得多组试验数据。
设备:1. 冲击头和杆:用于在土样上施加力。
2. 铸模:一个可以容纳土样并允许垂直冲击落下的方形或圆形的金属或塑料容器。
3. 电子天平:用于称量整个系统的重量。
4. 支架:用于确保冲击头的落下高度和角度的一致性。
数据处理:1. 根据试验结果,绘制出土的应变-压实度曲线。
压实度是指土壤受到冲击后的压缩程度,通常表示为土的单位体积受到的压缩量。
应变是指土壤受到作用力产生的形变。
通过绘制这种曲线,可以评估土壤的压缩性。
2. 根据试验数据,计算每个冲击高度下的压实比例。
压实比例是指每个冲击所压实的土体积与未压实的土体积之比。
通过这项计算,可以明确不同压实高度的冲击力对土壤的影响。
3. 根据压实比例,将所获得的所有数据绘制成压实比例-落下高度曲线。
此曲线显示冲击高度与土壤的压实程度之间的关系,这也被称为曲线。
4. 使用曲线,评估土壤的压实度和压实性质。
土的压实系数土的压实系数是指土壤压实比,它是衡量土体力学性质的重要指标,在地质、岩土工程及其他工程上有重要意义。
土壤压实比可以反映土壤性质,反映该土壤是否经过合理的处理,因此,土的压实比是确定土体静力学性质最重要的参数。
土壤压实系数可以分为三类,即:压实系数、压缩系数和塑性系数。
压实系数反映了土体的压缩比例,通常采用的压实系数是土体在经过压缩后的单位体积的容重与未经压缩时的单位体积的容重之比。
当土体未经压实时,其压实系数约为1.4;经压实后压实系数可达到2.0~1.7之间。
压缩系数是指土体承受压力后变形量与原有形变量的比值,通常用来测试土体的弹性程度和抗压性能,它可以通过液体外加压力和土壤压实试验来测定。
液体外加压力时,土体压缩量较小,压缩系数也较高,常见的压缩系数约为3.0~2.7;而土壤压实试验时,土体压缩量较大,压缩系数较低,常见的压缩系数约为1.0~0.7。
塑性系数指土体承受压力后变形量与塑性法向变形量之比值,塑性系数一般较小,常见的塑性系数约为0.3~0.1,表明土体屈服前即出现塑性变形,而土壤压实试验和液体外加压力试验时,塑性系数均较大。
土的压实比受到土体本身的特性、加载方式和加载时间的影响很大。
土体自身的特性是土的压实比的重要因素,因此选择土种及其表现的压实比是土体静力学性质评定的重要依据。
加载的方式,如均匀加载、非均匀加载等,都会对土的压实比产生影响。
此外,加载的时间也会影响土的压实比,如果土体在经过一定时间后放松,则其压实系数要低于原来的压实系数。
土的压实比是衡量土体强度性质的重要指标,在工程上也有重要意义,如果土壤没有经过合理处理,会对工程质量产生负面影响。
因此,对土的压实系数进行恰当的测定和控制,是保证工程质量的重要途径之一。
土的压实性名词解释土的压实性是指土壤在受到外力作用后,减小孔隙度,提高颗粒间接触并增强颗粒之间的相互作用力的能力。
这种能力决定了土壤的稳定性、承载力和抗液化能力等重要土壤工程性质。
本文将从土的压实性的定义、影响因素及其应用等方面展开论述。
一、土的压实性的定义土的压实性是土壤经受外力作用后,颗粒之间的相互作用力增强,孔隙度减小的能力。
压实是指土的颗粒间接触增多,由原本较松散的状态转变为较紧密的状态。
而压实性则是指土壤的受力表现,即土壤在受到外力作用后,其受力特性发生变化。
通常可以通过测定土壤的密实度或孔隙度来评价土的压实性。
二、土的压实性的影响因素1.土壤含水量:土壤含水量的增加可以增加土壤颗粒之间的摩擦力,使土壤更容易压实。
适量的含水量可以促进土体颗粒接触和变形,进而增强土壤的压实性。
但过高的含水量会使土壤颗粒间势能降低,相互排斥减小,导致土壤的压实性下降。
2.土壤颗粒粒径分布:颗粒粒径分布的不均匀性对土体的压实性有较大影响。
当土壤颗粒粒径分布范围较大时,较小颗粒可以填充较大颗粒间的空隙,从而增强土壤的压实性。
3.孔隙度和孔隙结构:孔隙度和孔隙结构是决定土壤压实性的重要因素。
充实和合理分布的孔隙结构有利于土壤的压实性,而孔隙度过高则会降低土壤的压实性。
4.土壤粘粒含量:土壤中的粘粒含量越高,其颗粒间的相互作用力越强,压实性也就越好。
因此,在土壤工程中,有时会采取增加粘粒含量的方法来增强土壤的压实性。
三、土的压实性的应用土的压实性在土壤工程中具有重要的应用价值,主要体现在以下几个方面:1.土壤的稳定性:土壤在受到外力作用时,较好的压实性可以使土体的颗粒间接触增多,相互作用力增强,从而提高土壤的稳定性。
这对于需要保证土壤不发生塌方或滑移等问题的工程非常重要。
2.承载力与抗液化能力:土的压实性与土壤的承载力密切相关。
良好的压实性使得土壤的颗粒更加紧密排列,颗粒间的摩擦力增大,因此土壤的承载力也随之增强。
土工压实度计算公式 土工压实度是指土壤在压实过程中密度的增加程度,是评价土壤压实性质的重要指标。
通过计算土工压实度可以了解土壤的压实特性及工程性质,指导土工工程设计和施工。
本文将介绍土工压实度的计算公式及其应用。
一、土工压实度的定义: 土工压实度(R)是指土壤由松散状态变为固结状态时松散状态下体积的变化量与固结状态体积之比。
二、土工压实度的计算公式:根据土工压实度的定义,可以得出如下计算公式:R = (V2 - V1) / V1 其中,R为土工压实度,V1为松散状态下土壤的体积,V2为固结状态下土壤的体积。
三、土工压实度计算公式的应用:1. 工程设计中的应用: 通过计算土工压实度可以评估土壤的固结特性,为土工工程设计提供参考。
例如,在道路工程设计中,土工压实度可以用来确定路基土的压实程度,以保证路基的稳定性和承载力。
2. 施工监测中的应用: 在土工工程施工过程中,通过监测土工压实度的变化可以评估施工质量,提早发现问题并采取相应的措施。
例如,在填土加固工程中,监测土工压实度可以判断填土的压实程度,进而调整施工参数,保证填土的质量。
假设在某一道路工程中,需要对路基土进行压实处理。
首先进行松压实测试,测得松散状态下路基土的体积为V1,然后进行固结压实测试,测得固结状态下路基土的体积为V2。
代入土工压实度计算公式,即可得到土工压实度R的值。
通过对R值的分析,可以判断出路基土的压实程度是否满足设计要求。
土工压实度是评价土壤压实特性的重要指标,通过计算土工压实度可以了解土壤的工程性质,并指导土工工程的设计和施工。
本文介绍了土工压实度的定义、计算公式和应用,并举例说明了如何利用土工压实度评估路基土的压实程度。
通过合理运用土工压实度计算公式,可以提高土工工程的安全性和可靠性。