轴心受压杆件的整体稳定
- 格式:ppt
- 大小:12.27 MB
- 文档页数:15
(4)一.选择题1.轴心压杆整体稳定公式f AN ≤ϕ的意义为 。
A 、截面平均应力不超过材料的强度设计值;B 、截面最大应力不超过材料的强度设计值;C 、截面平均应力不超过构件的欧拉临界应力值;D 、构件轴心压力设计值不超过构件稳定极限承载力设计值。
2.用Q235钢和Q345钢分别制造一轴心受压柱,其截面和长细比相同,前者的稳定系数 后者的稳定系数。
A.大于B.小于C.等于或接近D.无法比较3. a 类截面的轴心压杆,其整体稳定系数值最高是由于 。
A 、截面是轧制截面;B 、截面的刚度最大;C 、初弯曲的影响最小;D 、残余应力的影响最小。
4.轴心受压构件的整体稳定系数ϕ与 等因素有关。
A.构件截面类别、两端连接构造、长细比B 构件截面类别、钢号、长细比C.构件截面类别、计算长度系数、长细比D.构件截面类别、两个方向的长度、长细比5.为防止钢构件中的板件失稳采取加劲肋措施,这一做法是为了 。
A 、改变板件的宽厚比;B 、增大截面面积;C 、改变截面上的应力分布状态;D 、增加截面的惯性矩。
6.轴心受压格构式构件在验算其绕虚轴的整体稳定时采用换算长细比,这是因为 。
A.格构式构件的整体稳定承载力高于同截面的实腹构件B 考虑强度降低的影响C.考虑剪切变形的影响D.考虑单肢失稳对构件承载力的影响7. 计算格构式压杆对虚轴x 轴的整体稳定性时,其稳定系数应根据 查表确定。
A 、x λB 、ax λC 、y λD 、oy λ8.双肢缀条式轴心受压柱绕实轴和虚轴等稳定的要求是( ),x 轴为虚轴。
A 、12027A A x y +=λλB 、 1227A A x y +=λλ C 、y x 00λλ= D 、y x λλ=9. 实腹式轴心压杆绕x 、y 轴的长细比分别为x λ、y λ,其稳定系数分别为y x ϕϕ,,若y x λλ=,则 。
A 、y x ϕϕ>B 、y x ϕϕ=C 、y x ϕϕ<D 、需根据稳定性分类判别10. 实腹式轴心受压构件应进行 。
轴心受压构件稳定系数
(一)基本概念
轴心受压构件稳定系数是指当轴心受压构件受到压力时,其弯矩的稳定性的衡量标准
之一。
它的计算依据是轴心受压构件受到力的大小和作用点距构件中心轴的距离,按一定
规则加以计算,表示轴心受压构件受到压力时产生的构件弯曲稳定性如何,可以利用轴心
受压构件稳定系数来表达。
(二)计算方法
轴心受压构件稳定系数的计算公式为:γ=F/(π*Dy*E*I)1/2 ,其中: F表示力的
大小,Dy表示作用点距轴心的距离,E表示构件材料的弹性模量,I表示构件截面惯性矩。
对直线构件(有一定曲率的构件作用中可以通过几何简化),稳定系数γ可以通过公
式
:γ=P/πM (M=I/c)
来计算,其中P表示作用于构件上的外力,c表示半径弯曲切线和弧线的夹角比。
(三)稳定系数的意义
轴心受压构件稳定系数是衡量轴心受压构件的弯曲稳定性的重要参数,它可以反映轴
心受压构件承受压力作用时引起的变形,也可以反映构件的结构强度、稳定性等物理参数,并且可为构件的设计及制造提供便利。
轴心受压构件稳定系数越大,表明构件结构强度越高,稳定性越好,越能承受轴心受压荷载;而轴心受压构件稳定系数越小,表明构件结构
强度越低,稳定性越差,轴心受压荷载不能承受。
127第2章 受压构件的稳定2.1 轴心受压构件的稳定轴心压杆就其自身的截面形状和尺寸而言,有较长细的杆,也有较中短的杆,这可用长细比i l /0=λ来表达。
对于长细比大的长细压杆,可以认为是在弹性范围内失稳;对于长细比小的中短杆件,则可能是在弹塑性范围内失稳。
因此,应该分别按弹性范围和弹塑性范围来分析理想轴心压杆的临界荷载。
2.1.1 理想轴心压杆的弹性稳定用理想轴心压杆的欧拉荷载E P 除以杆件的截面积A ,可得轴心压杆欧拉临界应力22202)/(λππσE i l E A P E cr===,式中i 为回转半径,AIi =。
由此可计算出应力值为材料比例极限p σ时的长细比p λ,并以此作为长细杆和中短杆的分界;压杆的长细比大于p λ时称为长细杆或大柔度杆,长细比小于p λ时称为中短杆或小柔度杆。
对于理想轴心压杆来说,长细杆是在弹性范围内工作的,所以压杆的稳定分析为弹性稳定问题。
通过弹性压杆的静力平衡条件,可以建立理想轴心压杆的平衡微分方程式,解平衡微分方程则可求得轴心压杆的临界荷载。
下面来看几个边界条件不同的理想轴心压杆的弹性稳定分析。
1)一端固定一端铰接的压杆 (1)用静力法求解如图2-1所示一端固定一端铰接的等截面轴心受压弹性直杆,设其已处于新的曲线平衡形式,则取任意截面的弯矩为)(x l Q Py M -+-=式中Q 为上端支座反力。
由y EI M ''-=,压杆挠曲线的平衡微分方程为:)(x l Q Py y EI -+-='' 图2-1一端固定一端铰接压杆128即 )(x l EIQ y EI P y -=+'' (2.1) 令EIPk =2,则有 )(22x l PQk y k y -=+'' (2.2) 此微分方程的通解为)(sin cos x l PQkx B kx A y -++= (2.3) 式中A 、B 为积分常数,Q /P 也是未知的。
轴心受力构件设计轴心受拉构件时需进行强度和刚度的验算,设计轴心受压构件时需进行强度、整体稳定、局部稳定和刚度的验算。
一、轴心受力构件的强度和刚度1.轴心受力构件的强度计算轴心受力构件的强度是以截面的平均应力达到钢材的屈服点为承载力极限状态f A N n ≤=σ (1) 式中 N ——构件的轴心拉力或压力设计值;n A ——构件的净截面面积;f ——钢材的抗拉强度设计值。
采用高强度螺栓摩擦型连接的构件,验算最外列螺栓处危险截面的强度时,按下式计算:f A N n≤='σ (2) 'N =)5.01(1n n N - (3)式中 n ——连接一侧的高强度螺栓总数;1n ——计算截面(最外列螺栓处)上的高强度螺栓数;0.5——孔前传力系数。
采用高强度螺栓摩擦型连接的拉杆,除按式(2)验算净截面强度外,还应按下式验算毛截面强度f A N ≤=σ (4)2.轴心受力构件的刚度计算轴心受力构件的刚度是以限制其长细比保证][λλ≤ (5) 式中 λ——构件的最大长细比;[λ]——构件的容许长细比。
二、 轴心受压构件的整体稳定1.理想轴心受压构件的屈曲形式理想轴心受压构件可能以三种屈曲形式丧失稳定:①弯曲屈曲 双轴对称截面构件最常见的屈曲形式。
②扭转屈曲 长度较小的十字形截面构件可能发生的扭转屈曲。
③弯扭屈曲 单轴对称截面杆件绕对称轴屈曲时发生弯扭屈曲。
2.理想轴心受压构件的弯曲屈曲临界力若只考虑弯曲变形,临界力公式即为著名的欧拉临界力公式,表达式为N E =22l EI π=22λπEA (6) 3.初始缺陷对轴心受压构件承载力的影响实际工程中的构件不可避免地存在初弯曲、荷载初偏心和残余应力等初始缺陷,这些缺陷会降低轴心受压构件的稳定承载力。
1)残余应力的影响当轴心受压构件截面的平均应力p f >σ时,杆件截面内将出现部分塑性区和部分弹性区。
由于截面塑性区应力不可能再增加,能够产生抵抗力矩的只是截面的弹性区,此时的临界力和临界应力应为:N cr =22l EI e π=22lEI π·I I e (7) cr σ=22λπE ·I I e (8) 式中 I e ——弹性区的截面惯性矩(或有效惯性矩);I ——全截面的惯性矩。