2422切线长定理1
- 格式:ppt
- 大小:493.00 KB
- 文档页数:3
切线长定理一知识讲解(基础)责编:康红梅【学习目标】1. 了解切线长定义;理解三角形的内切圆及内心的定义;2. 掌握切线长定理;利用切线长定理解决相关的计算和证明【要点梳理】要点一、切线长定理1.切线长:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长要点诠释:切线长是指圆外一点和切点之间的线段的长,不是“切线的长”的简称•切线是直线,而非线段•2 .切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角要点诠释:切线长定理包含两个结论:线段相等和角相等3 •圆外切四边形的性质:圆外切四边形的两组对边之和相等•要点二、三角形的内切圆1.三角形的内切圆:与三角形各边都相切的圆叫做三角形的内切圆•这个三角形叫作圆的外切三角形•2 •三角形的内心:三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心•三角形的内心是这个三角形的三条角平分线的交点•要点诠释:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即;:- 1 I':(S 为三角形的面积,P为三角形的周长,r为内切圆的半径).2内心(三角形三角形三条角平分线X(1)到三角形三边距离相等;内切圆的圆的交点(2)OA、OB OC分别平分心)M BAG M ABG M ACB⑶内心在三角形内部.【典型例题】类型一、切线长定理1. (2015秋?湛江校级月考)已知PA PB分别切OO于A B, E为劣弧AB上一点,过E点的切线交PA于C、交PB于D.(1 )若PA=6,求厶PCD的周长.(2)若/ P=50°求/ DOC解:(1)连接OE••• PA PB与圆O相切,••• PA=PB=6同理可得:AC=CE BD=DE△ PCD的周长=PC+PD+CD=PC+PD+CE+DE=PA+P;=12(2)T PA PB与圆O相切,•••/ OAP M OBP=90 / P=50°,•••/ AOB=360 - 90°- 90°- 50° =130°,在Rt △ AOC和Rt △ EOC 中,r OA=OEOC=OC,L• Rt△AO Q Rt△EOC( HL),•••/ AOC H COE同理:/ DOE M BOD•••/ COD= M AOB=65 .2【总结升华】本题考查的是切线长定理和全等三角形的判定和性质,掌握切线长定理是解题的关键.2 . (2016秋?江阴市校级期中)如图,AB、AC、BD是O O的切线,P、C、D为切点,如果AB=5 ,AC=3,贝U BD的长为 _________【解析】解: •/ AC 、AP 为O O 的切线, 举一反三: 【变式】已知:如图,OO过点A 作AD _ BF 于点D .求证:DA 为OOAC 、BD 是O O 的切线,贝U AC=AP , BP=BD ,求出BP 的长即可求出 BD 的长.••• AC=AP ,•/ BP 、BD 为O O 的切线,• BP=BD , • BD=PB=AB - AP=5 - 3=2.故答案为:2.【总结升华】本题考查了切线长定理,两次运用切线长定理并利用等式的性质是解题的关键. 为.:ABC 的外接圆,BC 为OO 的直径,作射线 BF ,使得BA 平分三CBF , 的切线.AO = BO2 = . 3 .BA 平分.CBF ,• • 1 =. 2. • Z 3 Z 1 .DB // AO .AD _DB , • £BDA =90 . /.Z DAO =90 .AO 是O O半径,• DA 为O O 的切线. 3.如图,正方形 ABCD 边长为4cm ,以正方形的一边 BC 为直径在正方形 ABCD 内作半圆,过 A 作半圆的切线,与半圆相切于F 点,与DC 相交于E 点,则△ ADE 的面积( )【答案】2.【答案】 连接AO .A.12B.24C.8D.6【答案】D;【解析】••• AE与圆0切于点F,显然根据切线长定理有AF=AB=4cm , EF=EC ,设EF=EC=xcm ,则DE= (4 - x) cm, AE= (4+x) cm ,在三角形ADE中由勾股定理得:2 2 2(4 - x) +4 = (4+x),x=1cm,/• CE=1cm ,.DE=4 -仁3cm ,2--S^\DE=AD ?DE -=2=3 ^4^2=6cm -【总结升华】此题主要考查圆的切线长定理,正方形的性质和勾股定理等知识,解答本题关键是运用切线长定理得出AB=AF , EF=EC .类型二、三角形的内切圆4. (2015?青江市校级二模)如图,在△ABC中,I是内心,O是AB边上一点,00经过B点且与AI相切于I点.(1)求证:AB=AC(2)若BC=16 00的半径是5,求AI的长.【解题思路】(1)延长AI交BC于D,连结OI,如图,根据内心的性质得/ OBI=Z DBI,则可证明OI// BD 再根据切线的性质得OI 丄AI,贝U BDLAD加上AI平分/ BAC所以△ ABC为等腰三角形,得到AB=AC (2)由OI// BC得到△ AOI sA ABD 得到比例式,再根据勾股定理求得A D JA B2— BD2=贸,于是就可得. 【答案与解析】解:(1)延长AI交BC于D,连结OI,如图,• AI= ?AD= 'XBD 8二11 ~=~••T是厶ABC的内心,••• BI 平分/ ABC 即/ OBI=Z DBI, •/ OB=O|•••/ OBI=Z OIB,•••/ DBI=Z OIB,•01 // BD•/AI为OO的切线,•01 丄AI,•BDLAD•/ AI 平分/ BAC•△ ABC为等腰三角形,•AB=AC(2)T OI // BC•△AOI sA ABD•-y•l i. H i ii,•订:•/.=:,AB』• Ai2"32,【总结升华】本题考查了三角形的内切圆与内心,等腰三角形的判定和性质,相似三角形的判定和性质等,正确的作出辅助线是解题的关键.举一反三:【变式】已知如图,△ ABC中,/ C=90°, BC=4, AC=3求厶ABC的内切圆O O的半径r.【答案】连结OA OB OC•/△ ABC中,/ C=90°, BC=4, AC=3 • AB=5.1111贝U S\AO+S A CO+S^AO(=S^ABC即卩5r+ 4r+ 3r= 3 4 r=12 2 2 2,。
初中数学什么是切线长定理
初中数学中,切线长定理是与圆相关的一个重要概念。
下面我将详细介绍切线长定理的定义、性质和相关概念。
1. 切线长定理的定义:
-切线长定理:在一个圆上,一个角的顶点在切点上,另外两个顶点在圆上,这个角的两条边分别与切线相交,那么这两条切线的长度相等。
2. 切线长定理的性质:
-定理性质1:切线长度相等。
如果一个圆上的两条切线与同一个角相交,且角的顶点在切点上,那么这两条切线的长度相等。
3. 切线长定理的相关概念:
-切点:切线与圆相交的点称为切点。
-切线长度:切线的长度即为从切点到圆心的距离。
切线长定理是初中数学中的一个重要概念,它可以帮助我们理解和应用几何知识,解决与切线和圆相关的问题。
在应用切线长定理时,需要注意定理的定义和性质,并运用几何知识进行推理和分析。
例如,如果我们需要判断两条切线的长度是否相等,我们可以先找到这两条切线与同一个角相交,并且角的顶点在切点上。
然后根据切线长定理的性质,我们可以得出这两条切线的长度相等。
希望以上内容能够满足你对切线长定理的了解。
切线长定理—知识讲解责编:常春芳【学习目标】1.了解切线长定义,掌握切线长定理;2.了解圆外切四边形定义及性质;3. 利用切线长定理解决相关的计算和证明.【要点梳理】要点一、切线长定理1.切线长: 经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.要点诠释: 切线长是指圆外一点和切点之间的线段的长,不是“切线的长”的简称.切线是直线,而非线段. 2.切线长定理: 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.要点诠释: 切线长定理包含两个结论:线段相等和角相等.要点二、圆外切四边形的性质1.圆外切四边形四边形的四条边都与同一个圆相切,那这个四边形叫做圆的外切四边形.2.圆外切四边形性质圆外切四边形的两组对边之和相等.【典型例题】类型一、切线长定理1.(2015秋•湛江校级月考)已知PA、PB分别切⊙O于A、B,E为劣弧AB上一点,过E点的切线交PA于C、交PB于D.(1)若PA=6,求△PCD的周长.(2)若∠P=50°求∠DOC.【答案与解析】解:(1)连接OE,∵PA、PB与圆O相切,∴PA=PB=6,同理可得:AC=CE,BD=DE,△PCD的周长=PC+PD+CD=PC+PD+CE+DE=PA+PB=12;(2)∵PA PB与圆O相切,∴∠OAP=∠OBP=90°∠P=50°,∴∠AOB=360°﹣90°﹣90°﹣50°=130°,在Rt△AOC和Rt△EOC 中,,∴Rt△AOC≌Rt△EOC(HL),∴∠AOC=∠COE,同理:∠DOE=∠BOD,∴∠COD=∠AOB=65°.【总结升华】本题考查的是切线长定理和全等三角形的判定和性质,掌握切线长定理是解题的关键.2.如图,△ABC中,∠ACB=90°,以AC为直径的⊙O交AB于D,E为BC中点.求证:DE是⊙O切线.【答案与解析】连结OD、CD,AC是直径,∴OA=OC=OD,∴∠OCD=∠ODC,∠ADC=90°,∴△CDB是直角三角形.∵E是BC的中点,∴DE=EB=EC,∴∠ECD=∠EDC,∠ECD+∠OCD=90°,∴∠EDC+∠ODC=90°,即OD⊥ED,∴DE是⊙O切线.【总结升华】自然连接OD,可证OD⊥DE.举一反三:【变式】已知:如图,⊙O为ABC∆的外接圆,BC为⊙O的直径,作射线BF,使得BA平分CBF∠,过点A作AD BF⊥于点D.求证:DA为⊙O的切线.FCFC【答案】连接AO.∵AO BO=,∴23∠=∠.∵ BA CBF ∠平分,∴ 12∠=∠. ∴ 31∠=∠ .∴ DB ∥AO .∵ AD DB ⊥,∴ 90BDA ∠=︒.∴ 90DAO ∠=︒.∵ AO 是⊙O 半径,∴ DA 为⊙O 的切线. 3.如图,正方形ABCD 边长为4cm ,以正方形的一边BC 为直径在正方形ABCD 内作半圆,过A 作半圆的切线,与半圆相切于F 点,与DC 相交于E 点,则△ADE 的面积( )A.12B.24C.8D.6【答案】D ;【解析】∵AE 与圆O 切于点F ,显然根据切线长定理有AF=AB=4cm ,EF=EC ,设EF=EC=xcm ,则DE=(4﹣x)cm ,AE=(4+x )cm ,在三角形ADE 中由勾股定理得:(4﹣x)2+42=(4+x )2,∴x=1cm,∴CE=1cm,∴DE=4﹣1=3cm,∴S △ADE =AD•DE÷2=3×4÷2=6cm 2.【总结升华】此题主要考查圆的切线长定理,正方形的性质和勾股定理等知识,解答本题关键是运用切线长定理得出AB=AF ,EF=EC .类型二、圆外切四边形 4.(2015•西青区二模)已知四边形ABCD 中,AB∥CD,⊙O 为内切圆,E 为切点.(Ⅰ)如图1,求∠AOD 的度数;(Ⅱ)如图1,若AO=8cm ,DO=6cm ,求AD 、OE 的长;(Ⅲ)如图2,若F 是AD 的中点,在(Ⅱ)中条件下,求FO 的长.【答案与解析】解:(Ⅰ)∵⊙O为四边形ABCD的内切圆,∴AD、AB、CD为⊙O的切线,∴OD平分∠ADC,OA平分∠BAD,即∠ODA=∠ADC,∠OAD=∠BAC,∵AB∥CD,∴∠ADC+∠BAC=180°,∴∠ODA+∠OAD=90°,∴∠AOD=90°;(Ⅱ)在Rt△AOD中,∵AO=8cm,DO=6cm,∴AD==10(cm),∵AD切⊙O于E,∴OE⊥AD,∴OE•AD=OD•OA,∴OE==(cm);(Ⅲ)∵F是AD的中点,∴FO=AD=×10=5(cm).【总结升华】本题考查了三角形的内切圆与内心,也考查了切线长定理.举一反三:【变式】在圆外切四边形ABCD中,AB:BC:CD:AD只可能是().A.2:3:4:5B.3:4:6:5C.5:4:1:3D.3:4:2:5【答案】B.。
切线长定理几何语言
切线长定理是一个数学定理,它定义了某个特定几何图形的特定部分。
它可以定义圆的外切矩形或者椭圆的外切矩形等。
1. 定义:
切线长定理是指,在几何图形中,曲线上任意一点到图形对称轴(如
椭圆的长轴和短轴)所形成的距离,乘以它到两个焦点之间的距离,
始终等于一定值。
2. 应用:
(1)圆的外切矩形:任意一点到圆心的距离乘以它到两个圆心之间的
距离,始终都等于圆的半径的平方,这就是切线长定理。
(2)椭圆的外切矩形:任意点到椭圆的长轴的距离乘以它到椭圆的两
个焦点之间的距离,始终都等于椭圆的短轴的平方,这也是切线长定理。
3. 证明:
切线长定理可以用几何证明来得到,比如用三角函数证明,则可以把
椭圆看作一个具有参数的曲线,利用曲线两点间的切线的中点的距离
的一定等式,来证明切线长定理。
4. 结论:
根据以上证明,可以得出:在一定特定的几何形状中,曲线上任意一点到图形的对称轴的距离,乘以它到两个焦点之间的距离,始终等于一定值,这就是切线长定理。
No.39 课题: 24.2.2 切线长(1)课型:新授主编:李芹审核:杨艳芳验收负责人:赵翠英授课时间:学习目标:1.理解切线长定义;
2.掌握切线长定理并能运用切线长定理解决问题.
重点:切线长定理
难点:切线长定理与其它定理的综合运用
学习过程:
一、预习导学
如图,点A是⊙O外一点,AC切⊙O 于点C,OA交⊙O于点B,
且∠A=30°,BC=1.求⊙O的半径.
二、学习研讨
1.如图,经过平面内一点,画出⊙O的切线.
切线长定义:
. 2.如图,点P 为⊙O 外一点,PA、PB为⊙O的切线,A、B为切点. 连接OP,则线段PA与PB,∠APO与∠BPO分别有什么关系?为什么?
由此我们得到切线长定理:
.
推理形式:简记
o
A
B P
O _B
_O _C
_A
例题 如图,PA 、PB 、DE 分别切⊙O 于点A 、B 、C ,DE 交PA 、PB 于点D 、E , 简 记
已知点P 到⊙O 的切线长是8cm .求△PDE 的周长.
三、巩固提高
如图,已知AB 、BC 、CD 分别与⊙O 切于点E 、F 、G ,且AB //CD ,
BO=6cm ,CO=8cm . 求BC 的长.
四、学后反思
C
D。