新课标高考物理重要二级结论
- 格式:doc
- 大小:583.00 KB
- 文档页数:22
高考物理 “二级结论”集一、静力学:1.几个力平衡,则一个力是与其它力合力平衡的力。
2.两个力的合力:F 大+F 小≥F 合≥F 大-F 小。
三个大小相等的共点力平衡,力之间的夹角为1200。
3.力的合成和分解是一种等效代换,分力与合力都不是真实的力,求合力和分力是处理力学问题时的一种方法、手段。
4.三力共点且平衡,则312123sin sin sin F F F ααα==(拉密定理)。
5.物体沿斜面匀速下滑,则tan μα=。
6.两个一起运动的物体“刚好脱离”时:貌合神离,弹力为零。
此时速度、加速度相等,此后不等。
7.轻绳不可伸长,其两端拉力大小相等,线上各点张力大小相等。
因其形变被忽略,其拉力可以发生突变,“没有记忆力”。
8.轻弹簧两端弹力大小相等,弹簧的弹力不能发生突变。
9.轻杆能承受纵向拉力、压力,还能承受横向力。
力可以发生突变,“没有记忆力”。
二、运动学:1.在描述运动时,在纯运动学问题中,可以任意选取参照物; 在处理动力学问题时,只能以地为参照物。
2.匀变速直线运动:用平均速度思考匀变速直线运动问题,总是带来方便:T S S V V V V t 2221212+=+==3.匀变速直线运动:时间等分时, S S aT n n -=-12,位移中点的即时速度V V V S 212222=+,V V S t22>纸带点痕求速度、加速度:TS S V t 2212+=,212T S S a -=,()a S S n T n =--121 4.匀变速直线运动,v0 = 0时:时间等分点:各时刻速度比:1:2:3:4:5 各时刻总位移比:1:4:9:16:25 各段时间内位移比:1:3:5:7:9 位移等分点:各时刻速度比:1∶2∶3∶…… 到达各分点时间比1∶2∶3∶…… 通过各段时间比1∶()12-∶(23-)∶……5.自由落体:n 秒末速度(m/s ): 10,20,30,40,50 n 秒末下落高度(m):5、20、45、80、125 第n 秒内下落高度(m):5、15、25、35、456.上抛运动:对称性:t t 下上=,v v =下上,202m v h g =7.相对运动:共同的分运动不产生相对位移。
[全]高中高考物理必考“二级结论”总结
一、力学
1. 平衡定律:物体在平面上平衡,则由一组互斥且合力为零的作用在物体身上。
2. 动量守恒定律:物体在受力过程中,它的动量总和保持不变(动量守恒定律)。
3. 能量守恒定律:物体在受力过程中,它的总能量总和保持不变(能量守恒定律)。
4. 运动定律:牛顿定律,重力作用时,物体受到的力与它的质量成正比,而且方向
和物体运动方向相反。
阻力守恒定律,只要恒定速度直线运动,则运动阻力与小量球的
质量} 运动量成正比,而且方向与小量球运动方向相同。
二、电学
1. 电荷守恒定律:任何系统中的电荷总和不变。
2. 欧拉定律:任何电路中,电位差的积分是电功的积分,而且绕线把开关改变电势
的变化,则欧拉定律的等号成立。
3. 高斯定律:当物体由完全不导体到完全导体时,电场强度在分隔处有跳变;当电
荷分布较为集中时,电场强度满足高斯定律。
三、热学
1. 热力学定律:能量守恒(热力学定律),任何物理系统的总的能量只是发生转换
不可消失。
2. 热放大定律:正温差扩大效应(热放大效应),表明热物质力学运动的正温差它
在高温处存在更强的力学运动速度。
3. 定压定容放热定律:恒定容狭放出的热量与容积有关,与压强无关。
4. 根-思定律:恒定压强放出的热量与压强有关,与容积无关。
18条超实用二级结论1. 匀变速直线运动的4个推论
2. 初速度为零的匀变速直线运动的6个比例关系
【活学巧用】
末速度为零的匀减速直线运动,可采用逆向思维法看成反方向的初速度为零、加速度等大的匀加速直线运动。
3. 0→v→0模型
4. 拉密定理
【临考必记】
如图所示,当θ1=θ2=θ3=120°时,则F1=F2=F3。
5. 等时圆模型
6. 内力公式秒解连接体的问题
【临考必记】
①两物体在光滑平面、光滑斜面、竖直方向上运动时均满足此公式;
②若接触面粗糙,两物体与接触面间的摩擦因数相同时也满足此公式。
7. 平抛运动速度的改变量
8. 平抛运动的2个推论
9. 开口法定性判断平抛运动的时间与速度大小
10. 竖直圆周运动的拉力差
11. 天体运动口诀
同一天体中心,“高轨、低速、大周期”。
12. “一动碰一静”弹性碰撞模型
13. 人船模型
【临考必记】类似人船模型
14. 口诀秒杀带电粒子在电场中的轨迹问题
15. 带电粒子在电场中偏转的2个推论
16. 闭合电路的动态分析口诀
17. 理想变压器中的2个“等效”
18. 楞次定律的3个推论。
高考物理必背二级结论65条,你必须掌握1.若三个力大小相等方向互成120°,则其合力为零。
2.几个互不平行的力作用在物体上,使物体处于平衡状态,则其中一部分力的合力必与其余部分力的合力等大反向。
3.在匀变速直线运动中,任意两个连续相等的时间内的位移之差都相等,即Δx=aT2(可判断物体是否做匀变速直线运动),推广:xm-xn=(m-n) aT2。
4.在匀变速直线运动中,任意过程的平均速度等于该过程中点时刻的瞬时速度。
即vt/2=v平均。
5.对于初速度为零的匀加速直线运动(1)T末、2T末、3T末、…的瞬时速度之比为:v1:v2:v3:…:vn=1:2:3:…:n。
(2)T内、2T内、3T内、…的位移之比为:x1:x2:x3:…:xn=12:22:32:…:n2。
(3)第一个T内、第二个T内、第三个T内、…的位移之比为:xⅠ:xⅡ:xⅢ:…:xn=1:3:5:…:(2n-1)。
(4)通过连续相等的位移所用的时间之比:t1:t2:t3:…:tn=1:(21/2-1): (31/2-21/2):…:[n1/2-(n-1)1/2]。
6.物体做匀减速直线运动,末速度为零时,可以等效为初速度为零的反向的匀加速直线运动。
7.对于加速度恒定的匀减速直线运动对应的正向过程和反向过程的时间相等,对应的速度大小相等(如竖直上抛运动)8.质量是惯性大小的唯一量度。
惯性的大小与物体是否运动和怎样运动无关,与物体是否受力和怎样受力无关,惯性大小表现为改变物理运动状态的难易程度。
9.做平抛或类平抛运动的物体在任意相等的时间内速度的变化都相等,方向与加速度方向一致(即Δv =at)。
10.做平抛或类平抛运动的物体,末速度的反向延长线过水平位移的中点。
11.物体做匀速圆周运动的条件是合外力大小恒定且方向始终指向圆心,或与速度方向始终垂直。
12.做匀速圆周运动的物体,在所受到的合外力突然消失时,物体将沿圆周的切线方向飞出做匀速直线运动;在所提供的向心力大于所需要的向心力时,物体将做向心运动;在所提供的向心力小于所需要的向心力时,物体将做离心运动。
高中物理二级结论集温馨提示 1、“二级结论”是常见知识和经验的总结,都是可以推导的。
2、先想前提,后记结论,切勿盲目照搬、套用。
3、常用于解选择题,可以提高解题速度。
一般不要用于计算题中。
一、静力学:1.几个力平衡,则一个力是与其它力合力平衡的力。
2.两个力的合力:F 大+F 小≥F 合≥F 大-F 小。
三个大小相等的共面共点力平衡,力之间的夹角为1200。
3.力的合成和分解是一种等效代换,分力与合力都不是真实的力,求合力和分力是处理力学问题时的一种方法、手段。
4.三力共点且平衡,则312123sin sin sin F F F ααα==(拉密定理)。
5.物体沿斜面匀速下滑,则tan μα=。
6.两个一起运动的物体“刚好脱离”时:貌合神离,弹力为零。
此时速度、加速度相等,此后不等。
7.轻绳不可伸长,其两端拉力大小相等,线上各点张力大小相等。
因其形变被忽略,其拉力可以发生突变,“没有记忆力”。
8.轻弹簧两端弹力大小相等,弹簧的弹力不能发生突变。
9.轻杆能承受纵向拉力、压力,还能承受横向力。
力可以发生突变,“没有记忆力”。
10、轻杆一端连绞链,另一端受合力方向:沿杆方向。
10、若三个非平行的力作用在一个物体并使该物体保持平衡,则这三个力必相交于一点。
它们按比例可平移为一个封闭的矢量三角形。
(如图3所示)11、若F 1、F 2、F 3的合力为零,且夹角分别为θ1、θ2、θ3;则有F 1/sin θ1=F 2/sin θ2=F 3/sin θ3,如图4所示。
12、已知合力F 、分力F 1的大小,分力F 2于F 的夹角θ,则F 1>Fsin θ时,F 2有两个解:θθ22212s in c o s F F F F -±=;F 1=Fsin θ时,有一个解,F 2=Fcos θ;F 1<Fsin θ没有解,如图6所示。
13、在不同的三角形中,如果两个角的两条边互相垂直,则这两个角必相等。
高考物理常用的 “二级结论”一、静力学:1.几个力平衡,则一个力是与其它力合力平衡的力。
2.两个力的合力:F 大小≥F 合≥F 大-F 小。
三个大小相等的共点力平衡,力之间的夹角为1200。
3.力的合成和分解是一种等效代换,分力与合力都不是真实的力,求合力和分力是处理力学问题时的一种方法、手段。
4.三力共点且平衡,则312123sin sin sin F F F ααα==(拉密定理)。
5.物体沿斜面匀速下滑,则tan μα=。
6.两个一起运动的物体“刚好脱离”时:貌合神离,弹力为零。
此时速度、加速度相等,此后不等。
7.轻绳不可伸长,其两端拉力大小相等,线上各点张力大小相等。
因其形变被忽略,其拉力可以发生突变,“没有记忆力”。
8.轻弹簧两端弹力大小相等,弹簧的弹力不能发生突变。
9.轻杆能承受纵向拉力、压力,还能承受横向力。
力可以发生突变,“没有记忆力”。
二、运动学:1.在描述运动时,在纯运动学问题中,可以任意选取参照物;在处理动力学问题时,只能以地为参照物。
2.匀变速直线运动:用平均速度思考匀变速直线运动问题,总是带来方便: T S S V V V V t 2221212+=+== 3.匀变速直线运动:时间等分时, S S aT n n -=-12 ,位移中点的即时速度V V V S212222=+, V V S t 22> 纸带点痕求速度、加速度:T S S V t2212+= ,212T S S a -=,()a S S n T n =--121 4.匀变速直线运动,v 0 = 0时:时间等分点:各时刻速度比:1:2:3:4:5各时刻总位移比:1:4:9:16:25各段时间内位移比:1:3:5:7:9位移等分点:各时刻速度比:1∶2∶3∶……到达各分点时间比1∶2∶3∶……通过各段时间比1∶()12-∶(23-)∶…… 5.自由落体:n 秒末速度(): 10,20,30,40,50n 秒末下落高度(m):5、20、45、80、125第n 秒内下落高度(m):5、15、25、35、456.上抛运动:对称性:t t 下上=,v v =下上, 22m v h g= 7.相对运动:共同的分运动不产生相对位移。
高中物理二级结论汇总
高中物理二级结论汇总如下:
1. 竖直上抛运动:
1. 上升阶段:只受重力,加速度为g,做匀减速运动。
2. 下降阶段:只受重力,做加速运动,加速度仍为g。
3. 整个过程(往返运动):先减速后加速,整个过程时间比为1:1,
位移大小比为1:3。
2. 平抛运动:
1. 水平方向:匀速直线运动。
2. 竖直方向:自由落体运动,或初速度为零的匀加速直线运动(只考
虑重力的话)。
3. 合速度方向:抛出点正上方时,与水平方向成45度角;不断下落,角度越来越小,速度分解后,平行水平分量不变。
3. 万有引力:
1. 所有物体间引力大小与它们质量的乘积成正比,与它们距离的平方
成反比。
2. 在同一星球上不同高度(或不同纬度)的地方重力加速度不同(向
心加速度与半径成反比)。
3. 物体随倾斜轨道做匀速圆周运动时,受到的万有引力可以分为沿轨
道切线方向的分量和径向分量的力(也叫向心力)。
只有径向的力才
能使物体做匀速圆周运动。
这些只是一部分二级结论,详细的物理二级结论建议您查阅物理教辅
资料或咨询物理老师。
高考物理二级结论1. 光的折射定律:当光从一种介质进入另一种介质时,在界面上发生折射,入射角、折射角和两介质的折射率之间满足Sin(入射角)/Sin(折射角) = 折射率之比。
2. 能量守恒定律:在一个封闭系统内,能量不能被创造或销毁,只能从一种形式转化为另一种形式或从一处转移到另一处,总能量守恒。
3. 动量守恒定律:在碰撞过程中,系统的总动量在碰撞前后保持不变。
即总动量的初值等于总动量的末值。
4. 牛顿第二定律:物体的加速度与物体所受的合力成正比,与物体的质量成反比。
即 F = ma,其中 F 为作用力,m 为物体的质量,a 为物体的加速度。
5. 位移与力的关系:位移与物体所受合力的夹角、力的大小以及物体质量的乘积成正比。
即W = Fcosθs,其中 W 为做功,F 为力的大小,θ 为力和位移之间的夹角,s 为位移。
6. 简谐振动周期公式:对于简谐振动,周期 T 与弹簧的劲度系数 k 和物体的质量 m 成反比。
即T = 2π√(m/k)。
7. 相对论速度叠加原理:两个相对运动的物体的速度相加不是简单的代数和,而是通过相对论速度叠加原理来计算。
8. 热传导定律:在温度差的驱动下,热量会从热的物体传导到冷的物体,直到达到热平衡,热量传导的速率与温度差和物体的导热性质有关。
9. 流体压力定律:一个静止的流体中,任意一点受到的压力大小与深度成正比。
即P = ρgh,其中 P 为压力,ρ 为流体的密度,g 为重力加速度,h 为液体的深度。
10. 电阻与电流关系:电流是通过导体的电荷在单位时间内通过的量,其大小与电压成正比,与电阻成反比。
即 I = V/R,其中 I 为电流,V 为电压,R 为电阻。
11. 等离子态的特性:等离子态是高温下电子脱离原子核形成电离的状态,具有电导性、辐射性和容易受外场影响的特性。
12. 镜像成像规律:平面镜的成像规律是根据光的反射定律推导得出的,即入射角等于反射角,物距等于像距。
高中物理常用二级结论(基本)
高中物理常用二级结论(基本)是指在物理学的教学过程中,对物理性质或物理定律作出正确的判断,从而推出更多关于物理事实的推论。
例如:
1、牛顿三大定律: (1)物体在没有外力作用时保持匀速直线运动; (2)物体受到外力时,加速度与外力成正比; (3)任意两个物体之间存在着互相作用的引力。
2、动量守恒定律:动量是物体运动时发生变化的量,在任意一个物理系统中,动量的总和不会改变。
3、能量守恒定律:能量是指物体运动所消耗的能力,在任意一个物理系统中,能量的总和不会改变。
4、质量守恒定律:质量是指物体的质量,在任意一个物理系统中,质量的总和不会改变。
高三物理——结论性语句及二级结论一、力和牛顿运动定律1.静力学(1)绳上的张力一定沿着绳指向绳收缩的方向.(2)支持力(压力)一定垂直支持面指向被支持(被压)的物体,压力N 不一定等于重力G . (3)两个力的合力的大小范围:|F 1-F 2|≤F ≤F 1+F 2.(4)三个共点力平衡,则任意两个力的合力与第三个力大小相等,方向相反,多个共点力平衡时也有这样的特点.(5)两个分力F 1和F 2的合力为F ,若已知合力(或一个分力)的大小和方向,又知另一个分力(或合力)的方向,则第三个力与已知方向不知大小的那个力垂直时有最小值.图1(6)物体沿斜面匀速下滑,则tan μα=.2.运动和力(1)沿粗糙水平面滑行的物体:a =μg (2)沿光滑斜面下滑的物体:a =g sin α(3)沿粗糙斜面下滑的物体:a =g (sin α-μcos α) (4)沿如图2所示光滑斜面下滑的物体:(5)一起加速运动的物体系,若力是作用于m 1上,则m 1和m 2的相互作用力为N =m 2Fm 1+m 2,与有无摩擦无关,平面、斜面、竖直方向都一样.(6)下面几种物理模型,在临界情况下,a =g tan α.(7)如图5所示物理模型,刚好脱离时,弹力为零,此时速度相等,加速度相等,之前整体分析,之后隔离分析.(8)下列各模型中,速度最大时合力为零,速度为零时,加速度最大.(9)超重:a 方向竖直向上(匀加速上升,匀减速下降). 失重:a 方向竖直向下(匀减速上升,匀加速下降). (10)系统的牛顿第二定律 x x x x a m a m a m F 332211++=∑(整体法——求系统外力)y y y y a m a m a m F 332211++=∑二、直线运动和曲线运动一、直线运动1.初速度为零的匀加速直线运动(或末速度为零的匀减速直线运动)的常用比例时间等分(T ):①1T 末、2T 末、3T 末、…、nT 末的速度比:v 1∶v 2∶v 3∶…∶v n =1∶2∶3∶…∶n . ②第1个T 内、第2个T 内、第3个T 内、…、第n 个T 内的位移之比:x 1∶x 2∶x 3∶…∶x n =1∶3∶5∶…∶(2n -1).③连续相等时间内的位移差Δx =aT 2,进一步有x m -x n =(m -n )aT 2,此结论常用于求加速度a =ΔxT 2=x m -x nm -n T 2.位移等分(x ):通过第1个x 、第2个x 、第3个x 、…、第n 个x 所用时间比: t 1∶t 2∶t 3∶…∶t n =1∶(2-1)∶(3-2)∶…∶(n -n -1). 2.匀变速直线运动的平均速度①v =v t 2=v 0+v 2=x 1+x 22T.②前一半时间的平均速度为v 1,后一半时间的平均速度为v 2,则全程的平均速度:v =v 1+v 22.③前一半路程的平均速度为v 1,后一半路程的平均速度为v 2,则全程的平均速度:v =2v 1v 2v 1+v 2.3.匀变速直线运动中间时刻、中间位置的速度v t2=v =v 0+v 2,v x 2=v 20+v 22. 4.如果物体位移的表达式为x =At 2+Bt ,则物体做匀变速直线运动,初速度v 0=B (m/s),加速度a =2A (m/s 2). 5.自由落体运动的时间t =2hg. 6.竖直上抛运动的时间t 上=t 下=v 0g =2H g ,同一位置的速率v 上=v 下.上升最大高度202m v h g= 7.追及相遇问题匀减速追匀速:恰能追上或追不上的关键:v 匀=v 匀减. v 0=0的匀加速追匀速:v 匀=v 匀加时,两物体的间距最大. 同时同地出发两物体相遇:时间相等,位移相等.A 与B 相距Δs ,A 追上B :s A =s B +Δs ;如果A 、B 相向运动,相遇时:s A +s B =Δs .8.“刹车陷阱”,应先求滑行至速度为零即停止的时间t 0,如果题干中的时间t 大于t 0,用v 20=2ax 或x =v 0t 02求滑行距离;若t 小于t 0时,x =v 0t +12at 2.9.逐差法:若是连续6段位移,则有: 21234569)()(T x x x x x x a ++-++=二、运动的合成与分解 1.小船过河(1)当船速大于水速时①船头的方向垂直于水流的方向则小船过河所用时间最短,t =dv 船.②合速度垂直于河岸时,航程s 最短,s =d . (2)当船速小于水速时①船头的方向垂直于水流的方向时,所用时间最短,t =dv 船.②合速度不可能垂直于河岸,最短航程s =d ×v 水v 船.2.绳端物体速度分解: 分解不沿绳那个速度为沿绳和垂直于绳三、圆周运动1.水平面内的圆周运动,F =mg tan θ,方向水平,指向圆心.图142.竖直面内的圆周运动图15(1)绳,内轨,水流星最高点最小速度为gR ,最低点最小速度为5gR ,上下两点拉压力之差为6mg . (2)离心轨道,小球在圆轨道过最高点v min =gR ,如图16所示,小球要通过最高点,小球最小下滑高度为2.5R .图16(3)竖直轨道圆周运动的两种基本模型绳端系小球,从水平位置无初速度释放下摆到最低点:绳上拉力F T =3mg ,向心加速度a =2g ,与绳长无关.小球在“杆”模型最高点v min =0,v 临=gR ,v >v 临,杆对小球有向下的拉力. v =v 临,杆对小球的作用力为零. v <v 临,杆对小球有向上的支持力.图17四、万有引力与航天1.重力加速度:某星球表面处(即距球心R ): g =GMR2.距离该星球表面h 处(即距球心R +h 处):g ′=GM r 2=2)(h R GM +. 2.人造卫星:G Mm r 2=m v 2r =mω2r =m 4π2T2r =ma =mg ′.速度 GM v r32rT GM =,加速度2GMar =<g第一宇宙速度v1=gR=GM R=7.9 km/s,211.2km/sv=,316.7km/sv=地表附近的人造卫星:r=R=6.4×106 m,v运=v1,T=2πRg=84.6分钟.3.同步卫星T=24小时,h=5.6R=36 000 km,v=3.1 km/s.4.重要变换式:GM=gR2(R为地球半径)5.行星密度:ρ=3πGT2,式中T为绕行星表面运转的卫星的周期.6. 卫星变轨:2143v v v v>>>7.恒星质量:2324rMGTπ=或GgR2=8.引力势能:PGMmEr=-,卫星动能2kGMmEr=,卫星机械能2GMmEr=-同一卫星在半长轴为a=R的椭圆轨道上运动的机械能,等于半径为R圆周轨道上的机械能。
高考物理 “二级结论”一、静力学:1.几个力平衡,则一个力是与其它力合力平衡的力。
2.两个力的合力:F 大+F 小≥F 合≥F 大-F 小。
三个大小相等的共点力平衡,力之间的夹角为1200。
3.力的合成和分解是一种等效代换,分力与合力都不是真实的力,求合力和分力是处理力学问题时的一种方法、手段。
4.三力共点且平衡,则312123sin sin sin F F F ααα==(拉密定理)。
5.物体沿斜面匀速下滑,则tan μα=。
6.两个一起运动的物体“刚好脱离”时:貌合神离,弹力为零。
此时速度、加速度相等,此后不等。
7.轻绳不可伸长,其两端拉力大小相等,线上各点张力大小相等。
因其形变被忽略,其拉力可以发生突变,“没有记忆力”。
8.轻弹簧两端弹力大小相等,弹簧的弹力不能发生突变。
9.轻杆能承受纵向拉力、压力,还能承受横向力。
力可以发生突变,“没有记忆力”。
二、运动学:1.在描述运动时,在纯运动学问题中,可以任意选取参照物; 在处理动力学问题时,只能以地为参照物。
2.匀变速直线运动:用平均速度思考匀变速直线运动问题,总是带来方便: T S S V V V V t2221212+=+==3.匀变速直线运动:时间等分时, S S aT n n -=-12, 位移中点的即时速度V V V S212222=+, V V S t 22>纸带点痕求速度、加速度:T S S V t2212+= ,212T SS a -=,()a S S n T n =--1214.匀变速直线运动,v 0 = 0时:时间等分点:各时刻速度比:1:2:3:4:5 各时刻总位移比:1:4:9:16:25 各段时间内位移比:1:3:5:7:9位移等分点:各时刻速度比:1∶2∶3∶…… 到达各分点时间比1∶2∶3∶…… 通过各段时间比1∶()12-∶(23-)∶……5.自由落体:n 秒末速度(m/s ): 10,20,30,40,506.上抛运动:对称性:t t 下上=,v v =下上, 202m v h g=7.相对运动:共同的分运动不产生相对位移。
最全的60个高考物理二级结论目录必修一(10个)1. 知三求二2. 中时速度等于平均速度3. 平大竖小4. 弹簧弹力不能突变5. 等时圆6. 等底斜面7. μ与tanθ8. 内力公式9. 斜拉力什么时候最小10. a 与gtanθ必修二(12个)1. 知二求所有2. 斜面上平抛的特点3. 速度反向延长线过水平位移的中点4. 圆锥摆运动周期由高决定5. 大半径、大周期、小“速度”6. 同步卫星的特点7. 黄金代换8. 近地卫星的周期求中心天体的密度9. 双星模型的特点10. 竖直圆的临界条件、恒定结果11. 相对位移等于对地位移12. 斜面上摩擦力做功的特点选修3-1(14个)1. 三个自由点电荷的平衡2. 电场一般思维顺序3. 平行等长线段电势差相等4. 两极板间的场强与板间距离无关5. 偏转位移与q、m 无关6. 串并联电路的电阻7. 串反并同8. 输出功率的最大值9. 大内小外10. 中值电阻等于欧姆表内阻11. 通电导线间的相互作用12. 等效长度13. 知三定心14. 有界磁场选修3-2(11个)1. 左力右电2. 增反减同3. 来拒去留4. 增缩减扩5. 同心圆导线的电磁感应问题6. 电荷量的结论式7. 安培力的结论式8. 线圈穿越磁场的i-t 图问题9. 导体棒转动切割磁感线10. 线圈旋转切割磁感线11. 变压器的等效电阻选修3-5(4 个)1. 弹性碰撞的解2. 碰撞三原则3. 什么情况下共速4. 氢原子跃迁选修3-3(2个)1. 内能看温度,做功看体积2. 液柱问题选修3-4(7个)1. 大风吹2. 质点振动的路程3. 两个质点的振动关系4. 平行玻璃砖5. 等时圆6. 单色光对比的七个量(n、v、f、λ、C、∆x、E)7. 圆形玻璃砖正文。
高中物理高分必备二级结论[实用]
一、关于物理
1、熟悉物理学习的基础知识和定律:无论是量子力学、电磁学、力学和热学,或者是电动力学、光学和声学等,都必须熟悉其基础理论和定律。
物理学这门学科涉及的内容极为广泛,特别是包括物质的本质和结构。
熟悉了物理学的基础知识,才能熟练地运用物理学的相关定律来解决实际问题。
2、熟悉物理学的实验方法:掌握物理学的实验方法,就好比把手上的木刀要会磨成一把斧头一样,才能切花长株出美丽的花朵,只有正确有效地应用起来才能准确地解决问题。
实验方法能够更好地帮助我们了解物理学,特别是在进行实验之前要观察、探究、思考问题,以此来检验、验证理论以及拓展新的理论。
3、培养解决问题的能力:物理解决问题的能力是物理学高分者必不可少的素质。
首先,要能够准确地把握问题的实质,分析问题的关键要素,依据解题思路进行顺序推理,而不是胡乱猜测和急于求成。
其次,还要细心,力求确保仔细检验和查验每一步的计算和准确性,以确保这一路走来没有脱离正轨。
最后,在完成背景知识学习和实践运用的基础上,还要具备一定的创新能力,用新的分析方法来深入到抽象的概念中去,在未知的领域追寻和发现更多的新的物理知识。
二、总结
1、物理学是一门十分繁杂的学科,无论是力学、热学还是电磁学等等,都需要深刻理解基本定律和知识,并熟练掌握实验方法。
2、在解决理论问题时,需要针对性地把握问题实质、紧贴解题思路及实践经验,具备解决问题的能力和创新思维。
3、高分者不仅要依靠注重实验来加深对物理学的理解,而且要培养正确有效的学习思路、积极主动地发掘新的物理学知识。
高考物理“二级结论”及常见模型三轮冲刺抢分必备,掌握得越多,答题越快。
一般情况下,二级结论都是在一定的前提下才成立的,因此建议你先确立前提,再研究结论。
一、静力学:1.物体受几个力平衡,则其中任意一个力都是与其它几个力的合力平衡的力,或者说“其中任意一个力总与其它力的合力等大反向”。
2.两个力的合力:F 大+F 小≥F 合≥F 大-F 小。
三个大小相等的共点力平衡,力之间的夹角为120°。
3.力的合成和分解是一种等效代换,分力或合力都不是真实的力,对物体进行受力分析时只分析实际“受”到的力。
4.①物体在三个非平行力作用下而平衡,则表示这三个力的矢量线段必组成闭合矢量三角形;且有312123sin sin sin F F F ααα==(拉密定理)。
②物体在三个非平行力作用下而平衡,则表示这三个力的矢量线段或线段延长线必相交于一点。
5.物体沿斜面不受其它力而自由匀速下滑,则tan μα=。
6.两个原来一起运动的物体“刚好脱离”瞬间:力学条件:貌合神离,相互作用的弹力为零。
运动学条件:此时两物体的速度、加速度相等,此后不等。
7.轻绳不可伸长,其两端拉力大小相等,线上各点张力大小相等。
因其形变被忽略,其拉力可以发生突变,“没有记忆力”。
8.轻弹簧两端弹力大小相等,弹簧发生形变需要时间,因此弹簧的弹力不能发生突变。
9.轻杆能承受拉、压、挑、扭等作用力。
力可以发生突变,“没有记忆力”。
10.两个物体的接触面间的相互作用力可以是:()⎧⎪⎨⎪⎩无一个,一定是弹力二个最多,弹力和摩擦力11.在平面上运动的物体,无论其它受力情况如何,所受平面支持力和滑动摩擦力的合力方向总与平面成N f 1tan tan F ==F αμ。
二、运动学:1.在描述运动时,在纯运动学问题中,可以任意选取参照物;在处理动力学问题时,只能以地为参照物。
2.匀变速直线运动:用平均速度思考匀变速直线运动问题,总是带来方便,思路是:位移→时间→平均速度,且1212222t/s s T++===v v v v3.匀变速直线运动:时间等分时, 21n n s s aT --= ,这是唯一能判断所有匀变速直线运动的方法;位移中点的即时速度2s/=v , 且无论是加速还是减速运动,总有22s/t/>v v纸带点痕求速度、加速度: 1222t/s s T +=v ,212s s a T -=,()121n s s a n T -=-4.匀变速直线运动,0v = 0时:时间等分点:各时刻速度之比:1:2:3:4:5各时刻总位移之比:1:4:9:16:25 各段时间内位移之比:1:3:5:7:9位移等分点:各时刻速度之比:1……到达各分点时间之比1∶……通过各段时间之比1∶)1-……5.自由落体(取210m/s g=):n 秒末速度(m/s ): 10,20,30,40,50 =gt n 秒末下落高度(m):5、20、45、80、125 212=gt 第n 秒内下落高度(m):5、15、25、35、452211122n n-=at -at6.上抛运动:对称性:t t 下上=,=v v 下上, 2m 2h g=v7.相对运动:①共同的分运动不产生相对位移。
高中物理高分必备二级结论(总20页)一、基本物理量和单位1. 物理量是对物理现象的描述,物理量的种类有很多,但必须由“数值”和“单位”两个部分组成。
2. 国际单位制(SI)是国际通用的物理量单位的体系,它规定了物理量的基本单位以及由基本单位导出的各个单位。
基本单位有7个:米、千克、秒、安培、开尔文、摩尔和坎德拉。
3. 物理量可分为标量和矢量两种。
标量(只有大小)如温度、密度、电阻等;矢量(有大小和方向)如位移、速度、加速度等。
4. 矢量的加法有顺序可变、交换律和结合律等三个特征。
二、力1. 力是物体作用于物体的相互作用,这个过程始终遵循牛顿第三定律:作用力与反作用力大小相等,方向相反,作用在不同的物体上。
2. 牛顿第一定律,也称作惯性原理,指物体在没有外力作用下,会保持自身的匀速直线运动状态或静止状态。
3. 牛顿第二定律,指物体在受到一个外力作用下,产生加速度,且加速度大小与作用力成正比,与物体质量成反比。
5. 弹力是一种常见的力,它是指当物体被压缩或拉伸时,产生的一种恢复力。
弹簧是一个典型的例子。
三、运动规律3. 牛顿第三定律,指任何两个物体之间都有一对大小相等、方向相反的相互作用力。
4. 等速直线运动是物体在相等时间内经过相等位移的运动。
加速度为零。
5. 运动状态变化的快慢程度称为变化率,变化率最常见的两种是速度和加速度。
6. 加速度的大小等于(speed2-speed1)/t,方向为速度变化的方向。
7. 特殊相对运动包括在匀速直线运动中观察的运动仍然是匀速直线运动,而在匀速直线运动中相互追赶的两个物体的相对运动是匀速直线且速度大小相等的物体之间距离的变化。
四、机械能1. 动能是物体由于运动而具有的能量,E_k = (1/2)mv^2。
3. 力学能守恒定律是指在孤立系统中,力学能的总和在运动过程中保持不变。
在不同的形式间互相转化,但总和始终等于初始时的总和。
初始能的总和,包括动能和重力势能。
高中物理重要二级结论(全)1.力学原理:(1) 首先,运动定律,它指出了物体的外力关于物体的运动的总的反作用关系,既包括平衡态及非平衡态下物体的做功量,其中,动量定理、速率定理和能量定理是非常重要的原理;(2) 其次,万有引力定律,它指出了物体之间引力的规律,其中,万有引力定律由施特劳斯提出,随后被贝瑟尔用数学公式描述出来;(3) 最后,粒子的相对论,它指出了物体所产生的力是由粒子之间的相互作用来决定的,它为物理学提供了一种新的、深刻的思路。
2.物质质量与能量关系:(1) 物质质量与能量关系,它可以用泰勒-弗拉克定律来描述,即E=mc2,其中E表示能量,m表示物质的质量,c表示光速;(2) 此外,物质质量与能量关系还可以通过伦理考证电磁力学思想来解释,即物质能够从一种形式转换到另一种形式,物质的质量可以转换成能量,能量可以转化成物质;(3) 最后,物质与能量关系也可以从热力学角度理解,比如热能可以转化成动能,电能可以转换为化学能,而化学能又可以转换成电能,这就是典型的物质与能量的相互转换。
3.光的电磁理论:(1) 在光的电磁理论方面,先由Maxwell提出电磁场的旋转性质,即无穷小的电磁场可以相互展开,变换,并以一个正弦波的方式传播,这就是光的电磁理论;(2) 其次,光的电磁理论还包括光的真空中传播及物质间的传播,其中真空中传播通过电場、场强及波长等概念来描述,而物质间传播则包含反射、折射、衍射等性质;(3) 最后,光的传播可以经由干涉和衍射来描述,其中衍射是一种特殊的干涉效应,它的特征在于小的粒子可以产生明显的衍射现象。
4.电磁场原理:(1) 首先,山斯坦·佩尔定律,它指出了电场与磁场之间存在着对应关系,即当电场发生变化,就会对磁场产生影响,反之,当磁场发生变化,就会对电场产生影响;(2) 其次,电场电位定律,又称梅森·纳什现象,它指出了电位与电场之间存在着对应关系,即当电场发生变化时,电位也会发生变化;(3) 最后,电位及电场的相互作用,指的是在电位的剧烈变化处,极对对应的电场也会发生巨大的集中。
新课标高考物理重要二级结论————————————————————————————————作者:————————————————————————————————日期:1物理重要二级结论(全)熟记 “二级结论”,在做填空题或选择题时,就可直接使用。
在做计算题时,虽必须一步步列方程,一般不能直接引用“二级结论”,但只要记得“二级结论”,就能预知结果,可以简化计算和提高思维起点,也是有用的。
细心的学生,只要做的题多了,并注意总结和整理,就能熟悉和记住某些“二级结论”,做到“心中有数”,提高做题的效率和准确度。
运用“二级结论”,谨防“张冠李戴”,因此要特别注意熟悉每个“二级结论”的推导过程,记清楚它的适用条件,避免由于错用而造成不应有的损失。
下面列出一些“二级结论”,供做题时参考,并在自己做题的实践中,注意补充和修正。
一、静力学1.几个力平衡,则任一力是与其他所有力的合力平衡的力。
三个共点力平衡,任意两个力的合力与第三个力大小相等,方向相反。
2.两个力的合力:2121F F F F F +≤≤- 方向与大力相同3.拉密定理:三个力作用于物体上达到平衡时,则三个力应在同一平面内,其作用线必交于一点,且每一个力必和其它两力间夹角之正弦成正比,即γβαsin sin sin 321F FF == 4.两个分力F 1和F 2的合力为F ,若已知合力(或一个分力)的大小和方向,又知另一个分力(或合力)的方向,则第三个力与已知方向不知大小的那个力垂直时有最小值。
F F 1已知F 2的最mF 1F 2的最FF 1 F 2的最5.物体沿倾角为α的斜面匀速下滑时,μ= tanα6.“二力杆”(轻质硬杆)平衡时二力必沿杆方向。
7.绳上的张力一定沿着绳子指向绳子收缩的方向。
8.支持力(压力)一定垂直支持面指向被支持(被压)的物体,压力N不一定等于重力G。
9.已知合力不变,其中一分力F1大小不变,分析其大小,以及另一分力F2。
用“三角形”或“平行四边形”法则二、运动学1.初速度为零的匀加速直线运动(或末速度为零的匀减速直线运动)时间等分(T):① 1T内、2T内、3T内······位移比:S1:S2:S3=12:22:32② 1T末、2T末、3T末······速度比:V1:V2:V3=1:2:3③第一个T内、第二个T内、第三个T内···的位移之比:SⅠ:SⅡ:SⅢ=1:3:5④ΔS=aT2 S n-S n-k= k aT2a=ΔS/T2 a =(S n-S n-k)/k T2位移等分(S0):① 1S0处、2 S0处、3 S0处···速度比:V1:V2:V3:···V n=②经过1S0时、2 S0时、3 S0时···时间比:③经过第一个1S0、第二个2 S0、第三个3 S0···时间比2.匀变速直线运动中的平均速度)1(::)23(:)12(:1::::321----=nnttttn)::3:2:1nn::3:2:1TSSvvvv tt22212/+=+==-FF1F3.匀变速直线运动中的中间时刻的速度中间位置的速度4.变速直线运动中的平均速度前一半时间v 1,后一半时间v 2。
则全程的平均速度:前一半路程v 1,后一半路程v 2。
则全程的平均速度:5.自由落体6.竖直上抛运动同一位置 v 上=v 下 7.绳端物体速度分解8.“刹车陷阱”,应先求滑行至速度为零即停止的时间t 0 ,确定了滑行时间t 大于t 0时,用as v t 22= 或S=v o t/2,求滑行距离;若t 小于t 0时2021at t v s += 9.匀加速直线运动位移公式:S = A t + B t 2 式中a=2B (m/s 2) V 0=A (m/s )202/tt v v v v +==-22202/t t v v v +=221v v v +=-21212v v v v v +=-g h t 2=gH gv t t o2===下上vvθ2ω 平点10.追赶、相遇问题匀减速追匀速:恰能追上或恰好追不上 V 匀=V 匀减V 0=0的匀加速追匀速:V 匀=V 匀加 时,两物体的间距最大S max = 同时同地出发两物体相遇:位移相等,时间相等。
A 与B 相距 △S ,A 追上B :S A =S B +△S ,相向运动相遇时:S A =S B +△S 。
11.小船过河:⑴ 当船速大于水速时 ①船头的方向垂直于水流的方向时,所用时间最短,船v d t /= ②合速度垂直于河岸时,航程s 最短 s=d d 为河宽 ⑵当船速小于水速时 ①船头的方向垂直于水流的方向时,所用时间最短,船v d t /= ②合速度不可能垂直于河岸,最短航程船水v v d s ⨯=三、运动和力1.沿粗糙水平面滑行的物体: a=μg 2.沿光滑斜面下滑的物体: a=gsinα3.沿粗糙斜面下滑的物体 a =g(sinα-μcosα) 4.沿如图光滑斜面下滑的物体:dVV V5. 一起加速运动的物体系,若力是作用于1m 上,则1m 和2m 的相互作用力为212m m FmN +⋅=与有无摩擦无关,平面,斜面,竖直方向都一样6.下面几种物理模型,在临界情况下,a =gtgα光滑,相对静止 弹力为零 相对静止 光滑,弹力为零7.如图示物理模型,刚好脱离时。
弹力为零,此时速度相等,加速度相等,之前整体分析,之后隔离分析aa αaa aaa α增大,当α=45°时沿角平分小球下落时小球下落时 2m αF 1m 2m α F m 1α1m 2m F1m 2m α FF简谐振动至最高点 在力F 作用下匀加速运动 在力F 作用下匀加速运动 8.下列各模型中,速度最大时合力为零,速度为零时,加速度最大9.超重:a 方向竖直向上;(匀加速上升,匀减速下降) 失重:a 方向竖直向下;(匀减速上升,匀加速下降)四、圆周运动,万有引力:1.水平面内的圆周运动:F=mg tg α方向水平,指向圆心gaFaFFBBN mmgN2.飞机在水平面内做匀速圆周盘旋 飞车走壁3.竖直面内的圆周运动:1) 绳,内轨,水流星最高点最小速度gR ,最低点最小速度gR 5,上下两点拉压力之差6mg 2)离心轨道,小球在圆轨道过最高点 v min =要通过最高点,小球最小下滑高度为2.5R 。
gRHRθmgT 火车R、V、mθv绳L .m vm vL.m3)竖直轨道圆运动的两种基本模型绳端系小球,从水平位置无初速度释放下摆到最低点:T=3mg ,a =2g ,与绳长无关。
“杆”最高点v min =0,v 临 = ,v > v 临,杆对小球为拉力 v = v 临,杆对小球的作用力为零 v < v 临,杆对小球为支持力4)重力加速度, 某星球表面处(即距球心R ):g=GM/R 2距离该星球表面h 处(即距球心R+h 处) :22)('h R GMr GM g +==5)人造卫星:'422222mg ma r Tm r m r v m r Mm G =====πω 推导卫星的线速度 ;卫星的运行周期 。
卫星由近地点到远地点,万有引力做负功。
第一宇宙速度 V Ⅰ= = =地表附近的人造卫星:r = R = m ,V 运 = V Ⅰ ,T= =84.6分钟6)同步卫星T=24小时,h=5.6R=36000km ,v = 3.1km/s 7)重要变换式:GM = GR 2 (R 为地球半径)8)行星密度:ρ = 3 /GT 2 式中T 为绕行星运转的卫星的周期,即可测。
三、机械能gR61046⨯⋅gR RGM /s km /97⋅g R /2ππrGMv =GM r T 324π=1.判断某力是否作功,做正功还是负功① F与S的夹角(恒力)② F与V的夹角(曲线运动的情况)③能量变化(两个相联系的物体作曲线运动的情况)2.求功的六种方法① W = F S cosa (恒力)定义式② W = P t (变力,恒力)③ W = △E K(变力,恒力)④ W = △E (除重力做功的变力,恒力)功能原理⑤图象法(变力,恒力)⑥气体做功: W = P △V (P——气体的压强;△V——气体的体积变化)3.恒力做功的大小与路面粗糙程度无关,与物体的运动状态无关。
4.摩擦生热:Q = f·S相对。
Q常不等于功的大小(功能关系)S S动摩擦因数处处相同,克服摩擦力做功W = µ mg S四、动量1.反弹:△p = m(v1+v2)2.弹开:速度,动能都与质量成反比。
3.一维弹性碰撞:V1'= [(m1—m2)V1 + 2 m2V2]/(m1 + m2)V2'= [(m2—m1)V2 + 2 m1V2]/(m1 + m2)当V2 = 0时,V1'= (m1—m2)V1 /(m1 + m2)V2'= 2 m1V1/(m1 + m2)特点:大碰小,一起跑;小碰大,向后转;质量相等,速度交换。
4.1球(V1)追2球(V2)相碰,可能发生的情况:①P1 + P2= P'1 + P'2 ;m1V1'+ m2 V2'= m1V1 + m2V2动量守恒。
②E'K1 +E'K2≤ E K1 +E K2动能不增加③V1'≤ V2'1球不穿过2球④当V2 = 0时,(m1V1)2/ 2(m1 + m2)≤ E'K ≤(m1V1)2/ 2m1E K=(mV)2/ 2m= P2 / 2m = I2 / 2m5.三把力学金钥匙研究对象研究角度物理概念物理规律适用条件质点力的瞬时作用效果F、m、a F=m·a 低速运动的宏观物体质点力作用一段位移(空间累积)的效果W = F S cosaP = W/ tP =FV cosaE K = mv2/2E P = mghW =E K2— E K1低速运动的宏观物体系统E1 = E2低速运动的宏观物体,只有重力和弹力做功质点力作用一段时间(时间累积)的效果P = mvI = F tFt = mV2—mV1低速运动的宏观物体,普遍适用系统m1V1'+ m2 V2'=m1V1 + m2V2∑F外=0∑F外>>∑F内某一方向∑F外=0 △p x=0五、振动和波1.平衡位置:振动物体静止时,∑F 外=0 ;振动过程中沿振动方向∑F=0。
2.由波的图象讨论波的传播距离、时间和波速:注意“双向”和“多解”。
3.振动图上,振动质点的运动方向:看下一时刻,“上坡上”,“下坡下”。