余数与同余解析
- 格式:doc
- 大小:56.00 KB
- 文档页数:7
余数及同余
一、带余除法的定义:
一般地,如果a是整数,b是整数(b≠0),若有a÷b=q…r,也就是a =b×q+r,
0≤r<b;我们称上面的除法算式为一个带余除法算式.这里:
(1)当时:我们称a可以被b整除,记作b|a,q称为a除以b 的商或完全商
(2)当时:我们称a不可以被b整除,记作,q称为a除以b的商或不完全商
二、同余的概念
两个整数被同一个大于1的整数m除,所得的余数相同,就说这两个
整数对于除数m来说是同余的.也可以换句话来说这个概念,如果两个整数的差能被大于1的整数m整除,那么这两个整数对于除数m来说是同余的.
同余的概念和符号都是德国伟大数学家高斯引进的.一般地,两个整数a和b,除以大于1的正整数m,如果所得的余数相同,就说a、b对于模m 同余,记作a≡b(mod m).
由于一个整数被m除的余数只能是0、1、2、3、…、m-1这m个数,所以全体整数可按被m除的余数分类,凡是余数相同的归为一类,全体整
数就被划分成了m类,同一类中的任何两数被m除的余数都相等,即同一
类中任何两数的差都能被m整除,不同类的任何两数被m除的余数都不相等.
1
“华杯赛”官网()版权所有第页。
2017小升初数学余数、同余与周期知识点小升初数学是小升初综合素质评价考试的重头戏,在试卷中所占分值比重最大。
为了帮助学生们顺利备考,下面为大家分享小升初数学余数同余与周期知识点,供大家参考!余数、同余与周期一、同余的定义:①若两个整数a、b除以m的余数相同,则称a、b对于模m同余。
②已知三个整数a、b、m,如果m|a-b,就称a、b对于模m同余,记作a≡b(mod m),读作a同余于b模m。
二、同余的性质:①自身性:a≡a(m od m);②对称性:若a≡b(mod m),则b≡a(mod m);③传递性:若a≡b(mod m),b≡c(mod m),则a≡ c(mod m);④和差性:若a≡b(mod m),c≡d(mod m),则a+c≡b+d(mod m),a-c≡b-d(mod m);⑤相乘性:若a≡ b(mod m),c≡d(mod m),则a×c≡ b×d(mod m);⑥乘方性:若a≡b(mod m),则an≡bn(mod m);⑦同倍性:若a≡ b(mod m),整数c,则a×c≡ b×c(mod m×c);三、关于乘方的预备知识:①若A=a×b,则MA=Ma×b=(Ma)b②若B=c+d则MB=Mc+d=Mc×Md四、被3、9、11除后的余数特征:①一个自然数M,n表示M的各个数位上数字的和,则M≡n(mod 9)或(mod 3);②一个自然数M,X表示M的各个奇数位上数字的和,Y表示M的各个偶数数位上数字的和,则M≡Y-X或M≡11-(X-Y)(mod 11);五、费尔马小定理:如果p是质数(素数),a是自然数,且a不能被p整除,则ap-1≡1(mod p)。
要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。
以上是为大家分享的小升初数学余数同余与周期知识点,希望能够切实的帮助到大家!。
小升初数学复习知识点:余数、同余与周期余数、同余与周期一、同余的定义:①若两个整数a、b除以m的余数相同,则称a、b对于模m 同余。
②已知三个整数a、b、m,如果m|a-b,就称a、b对于模m 同余,记作a≡b(mod m),读作a同余于b模m。
二、同余的性质:①自身性:a≡a(mod m);②对称性:若a≡b(mod m),则b≡a(mod m);③传递性:若a≡b(mod m),b≡c(mod m),则a≡ c(mod m);④和差性:若a≡b(mod m),c≡d(mod m),则a+c≡b+d (mod m),a-c≡b-d(mod m);⑤相乘性:若a≡ b(mod m),c≡d(mod m),则a×c≡ b×d (mod m);⑥乘方性:若a≡b(mod m),则an≡bn(mod m);⑦同倍性:若a≡ b(mod m),整数c,则a×c≡ b×c(mod m×c);三、关于乘方的预备知识:①若A=a×b,则MA=Ma×b=(Ma)b②若B=c+d则MB=Mc+d=Mc×Md四、被3、9、11除后的余数特征:①一个自然数M,n表示M的各个数位上数字的和,则M≡n (mod 9)或(mod 3);②一个自然数M,X表示M的各个奇数位上数字的和,Y表示M的各个偶数数位上数字的和,则M≡Y-X或M≡11-(X-Y)(mod 11);五、费尔马小定理:如果p是质数(素数),a是自然数,且a不能被p整除,则ap-1≡1(mod p)。
以上是数学网为小升初的考生们整理的小升初数学总复习知识点,希望能够关注到同学们。
更多内容请关注数学网小升初频道。
余数知识点总结一、余数的定义在进行整数除法时,如果被除数不能被除数整除,我们就会得到一个余数。
例如,当我们用10除以3时,商是3,余数是1,因为10除以3得到3余1。
一般来说,对于任意的整数a和b(b不为0),都存在唯一的整数q和r,使得a=bq+r,其中q是商,r是余数。
二、余数的性质1. 余数的范围余数r的范围是0到b-1。
这是因为如果r=b-1,那么a=bq+r=bq+(b-1)=(q+1)b-1。
所以当r大于等于b时,我们可以用b来替换掉r,而商q则加1。
所以余数r必然小于b。
2. 余数的相等性如果两个整数a和b除以同一个整数m得到相同的余数,那么它们的差也一定能被m整除,即如果a%m=b%m,则(a-b)%m=0。
3. 余数的加法性两个整数a和b的余数之和等于它们的和的余数,即(a+b)%m=(a%m+b%m)%m。
4. 余数的乘法性两个整数a和b的余数之积等于它们的积的余数,即(a*b)%m=(a%m*b%m)%m。
5. 余数的幂运算如果要计算a的n次幂的余数,我们可以先计算a%m的n次幂的余数,然后再对m取余。
即a^n%m=(a%m)^n%m。
6. 余数的倒数两个整数a和b互素,即它们的最大公约数是1,那么a在模b意义下一定有倒数。
即对于方程ax≡1 mod b,一定存在整数x满足条件。
三、余数的应用1. 余数的运算余数在算术运算中有着广泛的应用,可以用于简化复杂的运算。
例如在大数运算中,我们往往会对结果取模,以减小结果的数值大小,提高运算效率。
2. 余数的模运算模运算是指对一个数除以另一个数后得到的余数。
在计算机科学中,模运算常常被用于实现循环、加密和散列等操作。
例如在密码学中,模运算可以用于加解密算法中的步骤之一。
3. 余数的逆元余数的逆元是指在模意义下存在的一个数,使得与它相乘后得到的余数是1。
余数的逆元在密码学和数论中有着重要的应用,例如在RSA算法中,逆元的存在性是保证算法有效性的关键。
数论之同余问题余数问题是数论知识板块中另一个内容丰富,题目难度较大的知识体系,也是各大杯赛小升初考试必考的奥数知识点,所以学好本讲对于学生来说非常重要。
许多孩子都接触过余数的有关问题,并有不少孩子说“遇到余数的问题就基本晕菜了!”余数问题主要包括了带余除法的定义,三大余数定理(加法余数定理,乘法余数定理,和同余定理),及中国剩余定理和有关弃九法原理的应用。
知识点拨:一、带余除法的定义及性质:一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r,也就是a=b×q+r,0≤r<b;我们称上面的除法算式为一个带余除法算式。
这里:r=时:我们称a可以被b整除,q称为a除以b的商或完全商(1)当0r≠时:我们称a不可以被b整除,q称为a除以b的商或不完全商(2)当0一个完美的带余除法讲解模型:如图,这是一堆书,共有a本,这个a就可以理解为被除数,现在要求按照b本一捆打包,那么b就是除数的角色,经过打包后共打包了c捆,那么这个c就是商,最后还剩余d本,这个d就是余数。
这个图能够让学生清晰的明白带余除法算式中4个量的关系。
并且可以看出余数一定要比除数小。
二、三大余数定理:1.【余数的加法定理】a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。
例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。
例如:23,19除以5的余数分别是3和4,故23+19=42除以5的余数等于3+4=7除以5的余数,即2.2.【余数的乘法定理】a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。
例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。
当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。
余数同余问题
被除数÷除数=商+余数,通过这个关系,我们可以总结如下余数问题结论:
①余数一定要小于除数,并且余数的个数和除数的个数相同。
比如除数是8,那么余数就是0~7八个数。
②余同取余、和同加和、差同减差
余同取余:比如一个数除2余1,除3余1,除5也余1。
我们发现每个条件的余数都相同,就可以知道满足这三个条件的最小的数是2、3、5的最小公倍数加1,即31,通项公式为30n+1。
和同加和:比如一个数满足除7余4,除8余3。
我们发现每个条件中除数加上余数的和都相同,就可以知道满足这两个条件的最小的数是7、8的最小公倍数加11,即67,通项公式为56n+11。
差同减差:比如一个数满足除7余5,除8余6。
我们发现每个条件中商和余数的差都相同,就可以知道满足这两个条件的最小的数是7、8的最小公倍数减2,即54,通项公式为56n-2。
【例】一个盒子里有乒乓球100多个,如果每次取5个出来最后剩下4个,如果每次取4个最后剩3个,如果每次取3个最后剩2个,那么如果每次取12个最后剩多少个?
A. 11 B .1
C. 9 D .8
【解析】本题考查余数问题。
根据我们刚刚讲的同余定理,我们发现每次取5个最后剩下4
个,5-4=1;如果每次取4个最后剩3个,4-3=1;如果每次取3个最后剩2个,3-2=1。
明显符合差同减差,直接套用结论最小公倍数做周期,故总数为60n-1,当n=2时,满足总数为119,则每次取12个时119÷12=9...11。
因此,选择A选项。
小学奥数精讲:带余除法(同余式和同余方程)一、基本性质的复习1、带余数除法算式:a÷b=q……r(a、b、q、r 均为整数) 从中我们应该得到:(1)b>r 除数大于余数(2)a-r=b×q 被除数减去余数则会出现整除关系,则带余数问题就可以转化为整数问题。
2、余数的性质:(1)可加性:和的余数等于余数的和。
即:两数和除以m 的余数等于这两个数分别除以m 的余数和。
例:7÷3=2……1 5÷3=1……2,则(7+5)÷3 的余数就等于(1+2)÷3 的余数0。
(2)可减性:差的余数等于余数的差。
即:两数差除以m 的余数等于这两个数分别除以m 的余数差。
例:17÷3=5……2 5÷3=1……2,则(17-5)÷3 的余数就等于(2-2)÷3 的余数0。
(3)可乘性:积的余数等于余数的积。
即:两数积除以m 的余数等于这两个数分别除以m 的余数积。
例:64÷7=9……1 45÷7=6……3,则(64×45)÷3 的余数就等于(1×3)÷7 的余数3。
二、同余式在生活中,若两个自然数 a 和 b 都除以同一个除数m 时,余数相同该如何表示呢?在代数中我们称之为同余。
即:a 与b 同余于模m。
意思就是自然数a 和b 关于m 来说是余数相同的。
用同余式表达为:a≡b(modm).注:若a 与b 同余于模m,则a 与b 的差一定被m 整除。
(余数的可减性)三、例题。
例1、当2011 被正整数N 除时,余数为16,请问N 的所有可能值有多少个?例2、(1)求多位数1234567891011…20102011除以9的余数?(2)将1开始到103的连续奇数依次写成一个多位数:a=135791113…9799101103,则数a共有多少位?数a除以9 的余数为几?(3)一个多位数1234567……979899,问除以11 的余数是多少?例3、(1)用一个数除200 余5,除300 余1,除400 余10,求这个数?(2)甲、乙、丙、丁四个旅行团分别有游客69 人,85 人、93 人、97 人。
第五讲余数与同余一、问题引入上一讲我们已经学习了如何判断一个数能否被另一个数整除(主要总结除数为20以内整数的情况),这一讲中我们将会在此基础上,继续探讨如果一个数不能被另一个数整除,那么余数是多少,这是本讲将要讨论的第一个问题——余数问题。
我们知道,自然数(0和所有正整数),按能否被2整除可以分为偶数和奇数两类,即能被2整除(除以2余0)的数为偶数,不被2整除(除以2余1)的数为奇数,奇数和偶数各自有其特征,它们之间又有相互联系。
同理,如果我们以除以3的余数为标准,就可以将自然数分成三类,余0、余1、余2;如果我们以除以4的余数为标准,就可以将自然数分成四类,余0、余1、余2、余3;以除以n为标准,就可以将自然数划分为n类。
那么除以n余数相同的一类数有何共同的性质呢?除以n余数不同的数之间又有何联系呢?这是本讲将要讨论的第二个问题——同余问题。
二、知识总结1、首先根据上一讲的整除特征,做简单推导,即可得到下列求余方法。
【注】下列方法大家以理解为主,不必死记。
着重掌握除以3、4、8、9、16的余数求法即可。
①求除以2的余数:奇数余1,偶数余0;②求除以3的余数:等于该数的各位数字之和除以3的余数;③求除以4的余数:等于该数末两位组成的数除以4的余数;④求除以5的余数:等于该数个位数除以5的余数;⑤求除以6的余数:该数的各个数字之和除以3得余数a,若该余数与原数同奇同偶,则原数除以6的余数为a,若该余数与原数一奇一偶,则原数除以6的余数为a+3;⑥求除以7的余数:等于该数的末三位与末三位以前的数字组成的数之差除以7的余数,如果数字仍然太大不能直接观察出来,就重复此过程;⑦求除以8的余数:等于该数的末三位除以8的余数;⑧求除以9的余数:等于该数的各位数字之和除以9的余数;⑨求除以10的余数:等于该数的个位数;⑩求除以11的余数:(a)等于该数的奇数位上的数字之和与偶数的数字之和的差除以11的余数(b)等于该数的末三位与末三位之前的数字组成的数之差除以11的余数,如果数字仍然太大不能直接观察出来,就重复此过程;⑪求除以13的余数:等于该数的末三位与末三位之前的数字组成的数之差除以13的余数,如果数字仍然太大不能直接观察出来,就重复此过程;⑫求除以16的余数:等于该数的后四位除以16的余数;⑬求除以17的余数:等于把该数的个位数字去掉,再从余下的数中,减去个位数的5倍,所得到的数字除以17的余数,如果数字仍然太大不能直接观察出来,就重复此过程;⑭求除以18的余数:该数的各个数字之和除以9得余数a,若该余数与原数同奇同偶,则原数除以18的余数为a,若该余数与原数一奇一偶,则原数除以18的余数为a+3;⑮求除以19的余数:等于把该数的个位数字去掉,再从余下的数中,加上个位数的2倍,所得数字除以19的余数。
余数性质及同余定理知识框架一、余除法的定及性1.定:一般地,若是 a 是整数, b 是整数( b≠0) ,若有 a÷b=q⋯⋯ r ,也就是 a=b×q+ r ,0≤r< b;我称上面的除法算式一个余除法算式。
里:(1)当 r 0 :我称 a 可以被 b 整除, q 称 a 除以 b 的商或完好商(2)当 r 0 :我称 a 不可以被 b 整除, q 称 a 除以 b 的商或不完好商一个圆满的余除法解模型 : 如是一堆,共有 a 本,个 a 就可以理解被除数,在要求依照 b 本一捆打包,那么 b 就是除数的角色,打包后共打包了 c 捆,那么个 c 就是商,最后节余 d 本,个 d 就是余数。
个能学生清楚的理解余除法算式中 4 个量的关系。
并且可以看出余数必然要比除数小。
2.余数的性⑴ 被除数除数商余数;除数(被除数余数)商;商(被除数余数)除数;⑵ 余数小于除数.二、余数定理:1.余数的加法定理a 与b 的和除以c 的余数,等于a,b 分除以 c 的余数之和,或个和除以 c 的余数。
比方: 23,16 除以 5 的余数分是 3 和 1,所以 23+16= 39 除以 5 的余数等于4,即两个余数的和3+1.当余数的和比除数大,所求的余数等于余数之和再除以 c 的余数。
比方: 23,19 除以 5 的余数分是 3 和 4,所以 23+19= 42 除以 5 的余数等于3+4=7 除以 5 的余数22.余数的加法定理a 与b 的差除以c 的余数,等于a,b 分除以 c 的余数之差。
比方: 23, 16 除以 5 的余数分是 3 和 1,所以 23- 16=7 除以 5 的余数等于2,两个余数差3- 1=2.当余数的差不减,上除数再减。
比方: 23,14 除以 5 的余数分是 3 和 4, 23- 14= 9 除以 5 的余数等于4,两个余数差3+ 5-4= 43.余数的乘法定理a 与b 的乘除以c 的余数,等于a,b 分除以 c 的余数的,也许个除以 c 所得的余数。
六余数和同余1.有余数的除法各部分之间的关系:被除数=除数×商+余数被除数-余数﹦商×除法2.除法算式的特征:余数<除数3.有关余数问题的性质:性质1:如果两个整数a,b除以同一个数m,而余数相同,那么a和b的差能被m整除。
性质2:对于同一个除数,如果两个整数同余,那么他们的差就一定能被这个数整除。
性质3:对于同一个除数,如果两个整数同余,那么他们的乘方仍然同余。
解答同余类型题目的关键是灵活运用性质,把求一个比较大的数字除以某数的余数问题转化为求一个较小数除以这个数的余数,使复杂的问题变得简单化。
1.把题目转化为算式就是:□÷7﹦□……□余数要比除数7小,商和余数相同,题中商和余数可能是0、1、2、3、4、5、6,带入原式。
根据被除数﹦商×除法+余数,算得:0×7+0﹦0;1×7+1﹦8;2×7+2﹦16;3×7+3﹦24;4×7+4﹦32;5×7+5﹦40;6×7+6﹦48。
所求被除数可能是:0、8、16、24、32、40、48。
一个三位数被37除余17,被36除余3,那么这个三位数是多少?有啥好方法吗?这道题可采取经典的余数处理方法------凑。
这个凑,可不是漫无目的的凑。
而是有理有据才行。
1、找一个最小的自然数,满足除以37余17,当然17即可满足。
2、很显然,这个数除以36并不余3,作适当调整。
3、为了不改变37的那个余数,每次可加上一个37.4、每加一次37,除以36的那个余数就增加1(记住,不要计算被除数是多少,而采取的是余数的性质。
被除数扩大一倍,余数也扩大一倍,被除数增加几,余数也会增加几(或者除以除数的余数))5、因为我们要求的数除以36要余3,现在只是余17,即达到36后再多出3,即余39(注意,这里用的是扩展余数),还差39-17=22.所以要增加22个37.6、结果是17+22×37即为答案。
在作除法运算时,我们有这样的经验:(1)一些不同的数除以一个相同的数可能会得到相同的余数.如,除以5余3的数有5×1+3=8,5×2+3=13,5×3+3=18,5×4+3=23,(2)一个相同的数除以一些不同的数,可能会有相同的余数.如,389分别除以5、7和11会得到相同的余数4.389÷5=77......余4,389÷7=55......余4,389÷11=55 (4)由此,我们可以来讨论下面的两个问题.某数被5除余4,被7除也余4,被11除还余4.要求某数和某数最小是多少?读者一定会想到有:5×7×11+4=389,5×7×11×2+4=774,5×7×11×3+4=1159,答案有无数多个,但最小的只能是389.于是,我们也可以提这样的问题:某数被5除余2,被7除余4,被11除余8.问某数是多少和某数最小是多少?读者一定会想到是5×7×11×1-3=382,5×7×11×2-3=767,5×7×11×3-3=1152,答案有无数多个,但最小只能是382.【规律】某数分别除以a、b、c、……,都得到相同的余数k.求某数最小是多少?答案是[a,b,c,……]+k.某数分别除以a、b、c、……,得到相应的余数A、B、C、……,并且这些余数跟相应的除数都相差同样多(设为k),即a-A=b-B=c-C=……=k.求某数最小是多少?答案是[a,b,c,……]-k.例2:小张在计算有余数的除法时,把被除数113错写成131,结果商比原来多3,但余数恰巧相同。
那么该题的余数是多少?问题1、474除以一个两位数的余数是6,求符合条件的所有两位数。
想:因为被除数=商×除数+余数,所以商×除数=被除数-余数。
因此,所求两位数与商的积是474-6=468,把468分解质因数是468=2×2×3×3×13,又因为要求的除数是两位数,只要将468的质因数进行配对试算就行。
解:468=2×2×3×3×13,2×13=26,3×13=39,2×2×3=12,2×3×3=18,2×2×13=52,2×3×13=78,2×2×3×3=36.答:符合条件的两位数有:13,26,39,12,18,52,78和36共8个。
试一试:1、1309除以一个质数,余数是21,求这个质数。
2、389除以一个两位数,余数是5,求符合条件的所有两位数。
问题3、一个大于1的整数,它除967,1000,2001得到相同的余数,那么这个整数是多少?想:因为967,1000,2001除以这个整数的余数相同,967,1000,2001这三个数两两相减的差,都是所求整数的因数。
解:1000-967=33=3×11,2001-1000=1001=7×11×13,2001-967=1034=2×11×47,这些差的公因数就是所求的整数。
答:这个整数是11。
试一试:1、有一个大于1的整数,用它除1000,1975,2001都得到相同的余数,这个整数是多少?2、1989,901和306被同一个自然数除,得到相同的余数,求这个自然数。
问题4、两个自然数相除,商15,余3。
已知被除数、除数、商、余数的和是853,求被除数和除数。
想:因为853是被除数、除数、商和余数相加的和,从853里减去余数3,减去商15的差,就是被除数、除数的和;又因为被除数=除数×商+余数即被除数=除数×15+3,再从850里减去余数3,就是除数的(15+1)倍。
解:853-3×2-15=832,832÷(15+1)=52,52×15+3=783.答:被除数是783,除数是52。
试一试:1、两数相除,商16,余数是4,已知被除数、除数、商和余数的和是313,求除数和被除数。
2、两数相除,商40余7,已知被除数、除数、余数和商的和是710,求被除数。
问题5、求111……11被13除的余数。
2007个1解析:用2007个1所组成的2007位整数去除以13,再求出余数,显然太麻烦。
我们可以先写出若干1所组成的数来除以13,容易发现111111是13的倍数,即每6个1所组成的六位数是13的倍数,再看2007个1组成的数中有多少个6个1组成的六位数,最后看还余下多少个1来确定余数。
由于2007÷6=334……3,即111……11可按6个1一节分成334节余3个1,2007个1而111÷13=8……7,所以所求的余数为7。
试一试:1、777……7除以13,余数是几?商的各位数字之和是多少?100个72、333……3除以7,余数是几?2007个3问题6、(1)一个数除以3余2,除以5余3,除以7余2,适合这些条件的最小的数是几?(2)有一个数,除以3余1,除以4余2,问这个数除以12余数是几?解析:我们可以用枚举来解答。
(1)除以3余2的数有:2,5,8,11,14,17,20,23,26,29……除以5余3的数有:3,8,13,18,23,28,33,38……除以7余2的数有:2,9,16,23,30,37,44……从上面所列的数可知,第一个公有的数是23,所以适合这些条件的最小数是23.(2)除以3余1的数有:1,4,7,10,13,16,19,22,25,28,31……它们除以12的余数是:1,4,7,10,1,4,7,10,1,4,7……除以4余2的数有:2,6,10,14,18,22,26,30,34……它们除以12的余数是:2,6,10,2,6,10,2,6,10……上面两行只有数10是共同的。
所以符合条件的数是10.试一试:1、一个数除以5余1,除以6余3,除以7余6,这个数最小是多少?2、一个数除以3余2,除以4余1,问这个数除以12余几?综合练习1、570被一个两位数除,余数是15,这个两位数是多少?2、一个非零自然数除以11所得的商和余数(余数不为0)相等,写出所有符合条件的数。
3、求2001×2002×2003除以9的余数。
4、求2002×2002-2001除以7的余数。
5、两个数相除,商8余16,已知被除数、除数、商和余数的和为265,求除数和被除数。
6、有一个数除以3余数是1,除以4余数是3,这个数除以12,余数是几?7、一个数除以17的余数是5,被除数扩大2倍,余数是多少?8、333……33除以13的余数是几?2007个39、一个大于1的整数,它除324,919,2007所得的余数相同。
求这个整数。
10、如果一个一百零一位数:33……3N55……5,这个数是7的倍数,那么N是多少? 50个3 50个511、有一个数用它去除100,余数是1,用它去除50,余数是6,求这个数。
12、有一个整数,用它去除45,53,143得到的3个余数的和是20,这个数是多少?13、苹果362个,梨234个,等分给若干个小朋友,最后多了5个苹果和3个梨,每人分到的苹果和梨的总数不超过30个,那么小朋友有多少人?在整数除法运算中,除了“能整除”的情形外,更多的是“不能整除”情形,如95÷3,48÷5……,不能整除就产生了非零余数问题。
95÷3=31......2,,48÷5=9 (3)它们的另一种表示法为:95=3×31+2,48=5×9+3一般地,a是整数,b是自然数,那么一定有两个整数q和r,使得a=b×q+r(0≤r<b)。
当r=0时,a能被b整除;当r≠0时,r叫做a除以b的余数,q叫做a除以b的不完全商,a、b仍分别叫做被除数和除数。
式子a=b×q+r叫做带余数除法,也就是:a÷b= q……r。
用同一个自然数去除两个或更多整数,余数可能不同,也可能相同。
如,53÷6=8 (5)82÷6=13 (4)94÷6=15 (4)其中,82,94被6除的余数相同,是同余除法。
例2:求2001的2003次方除以13的余数。
根据性质4来解决。
2001除以13的余数等于12,12除以13的余数也是12,可以说2001的2003次方与12的2003次方对于除数13同余。