正交实验设计原理
- 格式:doc
- 大小:587.50 KB
- 文档页数:34
正交设计的原理
正交设计是一种多因素试验设计方法,通过合理安排各个因素的水平组合,以尽可能少的试验次数获取全面准确的实验数据。
其原理基于以下几个方面:
1. 因素独立性原理:正交设计中的每个因素都是独立的,即一个因素的变化不会对其他因素产生影响。
这样可以保证每个因素的效应可以独立地被测量和估计。
2. 正交原理:正交设计中的水平组合是按照一定规则排列的,每个水平在每个因素上都出现且相等次数。
这样可以避免了因素之间的相互影响,使得试验结果更加可靠和准确。
3. 效率原理:正交设计考虑到了因素间的相互影响程度,通过选择合适的正交表,可以在较少的试验次数内获得准确的结果。
这样可以节省实验成本和时间,提高实验效率。
4. 平衡性原理:正交设计中的每个水平组合在每个因素上的重复次数相等,保证了各个因素水平的等权重性,消除了因素水平不平衡引起的偏差。
这样可以保证所得到的数据更加准确和可靠。
通过以上原理,正交设计能够系统地研究多个因素对试验结果的影响,并找出主要因素及其交互作用,为进一步优化实验提供科学依据。
正交试验设计法简介一、本文概述正交试验设计法是一种高效、系统的试验设计方法,广泛应用于科学研究、工程实践以及日常生产中的优化问题。
本文将对正交试验设计法的基本概念、原理、应用及其优势进行详细介绍,旨在帮助读者更好地理解和应用这一实用的试验设计方法。
正交试验设计法基于数理统计和正交表的理论,通过合理安排试验因素与水平,以较少的试验次数获得丰富的试验信息。
该方法的核心在于利用正交表的正交性,使得各试验因素之间互不干扰,从而能够准确地评估各因素对试验结果的影响程度。
本文将从正交试验设计法的基本原理出发,阐述其在实际应用中的操作步骤和方法。
通过具体案例的分析,展示正交试验设计法在解决实际问题中的优势和应用价值。
本文还将对正交试验设计法的局限性和改进方向进行探讨,以期为读者提供更为全面、深入的了解。
二、正交试验设计法的基本原理正交试验设计法是一种以数理统计和正交性原理为基础的高效试验设计方法。
其基本原理在于,通过选择一组具有代表性的试验点,即正交表中的行,来全面、均衡地考察多个因素在不同水平下的试验效果。
这种方法能够在保证试验全面性的大大减少试验次数,提高试验效率。
正交试验设计法主要基于两个核心原理:正交性原理和代表性原理。
正交性原理指的是在试验设计中,各因素之间应相互独立,互不影响,从而确保试验结果的准确性和可靠性。
代表性原理则是指在选择试验点时,应确保每个试验点都能代表一定的因素水平组合,以便全面考察各因素对试验结果的影响。
正交表是正交试验设计法的核心工具,它是一种具有特定结构的表格,用于安排试验因素和水平。
正交表具有均衡分散和整齐可比的特点,能够确保每个试验点都具有一定的代表性,并且各因素之间保持正交性。
通过正交表,可以方便地安排试验,并对试验结果进行分析和比较。
正交试验设计法的应用范围广泛,适用于多因素、多水平的试验场景。
它不仅可以用于新产品的开发和优化,还可以用于工艺改进、质量控制等领域。
通过正交试验设计法,可以更加高效地找出最优的参数组合,提高产品的性能和质量,降低生产成本,为企业带来更大的经济效益。
正交试验设计八因素三水平1. 介绍正交试验设计是一种用于研究多个因素对实验结果的影响的统计方法。
它通过设计一组合适的试验条件,以最小的资源和时间成本获取尽可能多的信息。
本文将介绍正交试验设计中的八因素三水平设计,并详细解释其原理和应用。
2. 正交试验设计原理正交试验设计的核心原理是通过合理的因素选择和水平设置,将多个因素的影响分离开来,使得实验结果能够准确地反映每个因素的作用。
八因素三水平设计是其中一种常用的设计方式。
3. 八因素三水平设计八因素三水平设计是指在实验中选择八个影响因素,并且每个因素有三个水平。
这样的设计可以通过正交表来实现。
正交表是一种特殊的表格,可以有效地组织实验条件和记录实验结果。
4. 正交表的构建正交表的构建是八因素三水平设计的关键步骤之一。
构建正交表的目的是使得每个因素的每个水平在不同的试验条件下均匀分布。
常用的构建方法包括拉丁方和田口方法。
5. 实验的设计与执行在进行八因素三水平设计的实验之前,需要明确实验的目的和要求,并确定好每个因素的水平。
然后,根据构建好的正交表,安排实验条件和记录实验结果。
在实验执行过程中,需要严格按照设计要求进行操作,保证实验的可靠性和有效性。
6. 数据的分析与解读实验数据的分析与解读是八因素三水平设计的重要环节。
通过统计分析,可以得出每个因素的主效应和交互效应,从而评估它们对实验结果的影响程度。
同时,还可以通过分析方差和回归分析等方法,进一步探究因素之间的关系和优化方案。
7. 应用案例八因素三水平设计在许多领域都有广泛的应用。
例如,在制造业中,可以利用这种设计方法来优化生产工艺和提高产品质量;在医药领域,可以通过这种设计方法来优化药物配方和疗效评估等。
8. 总结正交试验设计八因素三水平是一种有效的实验设计方法,可以在最小的资源和时间成本下获取尽可能多的信息。
通过合理的因素选择和水平设置,能够准确地分析每个因素对实验结果的影响,并优化实验方案。
正交试验设计1. 什么是正交试验设计?正交试验设计(Orthogonal Experimental Design)是一种实验设计方法,旨在通过少量试验点,充分收集实验数据,从而减少实验变量的数量,提高实验效率。
正交试验设计适用于产品工艺改进、优化设计、参数选择以及产品性能分析等场景。
正交试验设计的核心思想是通过合理的设计选择,通过改变实验因素的组合,以及试验点数的把握,实现大量试验数据的获取。
在正交试验设计中,通过选择一组适当的实验因素、水平和试验点数,保证实验结果具有可靠性和有效性。
2. 正交试验设计的原理正交试验设计的原理是通过合理选取试验因素的水平,使得因素之间的影响相互独立,避免因素之间的干扰,以确保实验结果的可靠性和有效性。
正交试验设计使用正交表作为设计工具,正交表是由一组正交矩阵构成的,每个矩阵的行数代表试验因素的水平数,列数代表试验点数。
正交表的特点是每一列中任意两个数字之间都正交,即两个数字的乘积等于零。
这种正交性保证了试验因素之间的独立性,减小了因素之间的相互影响,提高了试验效率。
正交试验设计的步骤如下:1.确定试验目标和要素:明确需要优化的目标和相关的要素。
2.选择正交表和水平数:根据要素和水平数选择合适的正交表。
3.确定试验因素和水平:根据试验目标和要素,确定需要进行试验的因素和每个因素的水平。
4.填写正交表:根据选择的正交表和确定的试验因素水平,将试验因素填写到正交表中。
5.进行试验和收集数据:按照正交表中的设计进行试验,记录实验数据。
6.数据分析和优化:通过对实验数据的分析,得出结论并优化设计。
3. 正交试验设计的优势正交试验设计具有以下几个优势:•提高实验效率:通过合理选择试验因素和水平数,正交试验设计可以通过少量的试验点获取大量的实验数据,提高了实验效率。
•确保实验结果可靠性:正交试验设计通过合理的设计选择,避免了因素之间的干扰,保证了实验结果的可靠性。
•降低实验成本:正交试验设计可以在保证实验效果的前提下,减少试验点的数量,降低实验成本。
正交试验设计方法讲义及举例正交试验设计方法是一种多因素试验设计方法,它能够有效地减少试验所需的样本数量,提高试验结果的精确性和可靠性。
正交试验设计方法是在已知因素水平的情况下选择对试验结果影响最大的因素进行研究的一种方法。
以下是正交试验设计方法的讲义及举例:一、正交试验设计方法的原理及步骤:1.原理:正交试验设计方法通过选择适当的正交表,将多个因素的不同水平组合进行排列,使各因素的变化对试验结果影响均匀化,从而获得准确可靠的试验结果。
2.步骤:a.确定试验因素及其水平:根据试验目的确定需要研究的因素及其水平。
b.选择正交表:根据试验因素的个数和水平确定适用的正交表,正交表能够保证试验结果的均匀性和可靠性。
c.设计试验方案:根据选择的正交表,将试验因素的水平进行组合,获得试验方案。
d.进行试验:按照试验方案进行实际试验。
e.分析试验结果:对试验结果进行统计分析,获得对试验因素的影响程度及其交互作用等信息。
f.微调试验方案:根据试验结果微调试验方案,迭代优化试验过程。
二、正交试验设计方法的优点:1.降低样本数量:正交试验设计方法能够通过对试验水平的排列组合,使试验因素的水平均匀分布,从而减少试验所需的样本数量。
2.提高试验效率:正交试验设计方法能够在有限样本量下获得更多的试验信息,提高试验效率。
3.确保结果可靠:正交试验设计方法通过保证试验因素的均匀分布,减少人为因素的干扰,从而保证试验结果的可靠性和准确性。
4.揭示因素交互作用:正交试验设计方法能够揭示因素之间的交互作用,进一步优化设计过程。
三、正交试验设计方法的举例:例如,公司要研究一种新的洗发水对头发柔顺度的影响,试验主要包括3个因素:洗发水品牌(A、B、C)、洗发水用量(X、Y、Z)和洗发水停留时间(T1、T2、T3)。
根据正交试验设计方法,按照以下步骤进行设计:1.选择正交表:根据3个因素和各因素的水平,选择适用的正交表,如L9正交表。
2.设计试验方案:根据L9正交表,将3个因素的水平进行组合,得到9个试验方案,每个方案分别测试一种组合情况。
第七章-正交试验设计法第七章:正交试验设计法正交试验设计法是一种实验设计方法,旨在有效地确定多个因素对结果的影响,并找到最佳的组合条件。
正交设计法是一种统计方法,通过在试验设计中使用正交矩阵来实现对各个因素的全面考虑和分析。
本章将详细介绍正交试验设计法的原理、应用和优势。
7.1 正交试验设计法的原理正交试验设计法的原理基于一个关键观点:在多因素实验设计中,通过设计合理的试验矩阵,能够避免因素之间的相互干扰,从而有效地确定各个因素对结果的影响。
正交试验设计法通过使用正交矩阵,将各个因素进行组合,确保在限定的试验条件下,各个因素之间的相互影响最小化。
这样,通过对正交试验设计法进行数据分析,可以准确地确定各个因素对结果的主导程度。
7.2 正交试验设计法的应用正交试验设计法在许多领域中得到广泛应用,特别是在工程、医学、化学和农业等实验研究中。
正交试验设计法可以帮助研究人员从多个因素中确定影响结果的主要因素,并找到最佳的操作条件。
例如,在工程领域中,正交试验设计法可以用于确定材料的最佳组合,以提高产品质量和性能。
在医学研究中,正交试验设计法可用于确定药物的最佳剂量和治疗方案。
在农业研究中,正交试验设计法可以用于确定最佳的种植条件和施肥方法。
总之,正交试验设计法可以帮助研究人员快速、准确地找到最佳的解决方案。
7.3 正交试验设计法的优势正交试验设计法相比传统的试验设计方法有以下几个优势:1. 高效性:正交试验设计法可以通过使用正交矩阵,将多个因素进行有效组合,从而减少试验次数,提高试验效率。
2. 统计可靠性:正交试验设计法通过使用正交矩阵,可以有效地避免因素之间的相互干扰,确保实验结果的统计可靠性。
3. 实用性:正交试验设计法不仅可以用于确定各个因素对结果的影响程度,还可以用于优化因素的组合以达到最佳效果。
4. 灵活性:正交试验设计法可以应用于不同的实验设计要求,可灵活调整试验因素和水平,以满足具体的研究需求。
正交实验法的原理
正交实验法是一种多因素试验设计方法,用于确定多个因素对实验结果的影响。
该方法的原理基于以下理念:
1. 因素的独立性:正交实验法假设各个因素之间是相互独立的,即一个因素的变化不会影响其他因素的变化。
这使得实验结果能够准确地反映每个因素的影响。
2. 最小二乘法:正交实验法通过最小二乘法来构建试验矩阵。
最小二乘法是一种通过最小化实际数据与拟合曲线之间的差异来确定因素对结果的影响的方法。
正交实验法通过设计合适的试验矩阵,使得最小二乘法能够有效地判断因素对结果的影响。
3. 科学有效性:正交实验法基于数学统计学原理和设计思想,能够充分挖掘因素之间的关系,并减少试验的数量。
这使得实验结果更加科学可靠,并且能够提高实验效率。
通过正交实验法设计的实验,可以将多个因素进行有效控制,避免因素之间的相互干扰,从而准确地确定每个因素对实验结果的影响程度。
这对于优化生产工艺、改进产品性能和提高实验效率具有重要意义。
正交试验设计的原理
正交试验设计是一种常用的统计实验设计方法,主要用于确定影响某个响应变量的因素及其各因素水平对响应变量的影响程度。
其原理可以简要概括如下:
1. 因素及水平的确定:首先确定影响响应变量的因素,并确定每个因素所涉及的水平,例如因素A有两个水平(水平1和
水平2),因素B有三个水平(水平3、水平4和水平5)等。
2. 构建正交表:根据因素及其水平的确定,构建一个正交表。
正交表是基于一组数学规律得出的,通过该表可以保证不同因素及其水平之间的相互独立和均衡。
3. 分配试验条件:根据正交表,将试验条件分配给不同的试验组。
每个试验组都包含不同的因素水平组合,以观察其对响应变量的影响。
4. 进行实验:按照试验设计好的方案进行实验,记录每个试验组的响应变量数据。
5. 数据处理与分析:根据实验数据,使用统计方法对数据进行分析,以确定各因素及其水平对响应变量的影响程度。
常用的统计分析方法包括方差分析、回归分析等。
通过以上步骤,正交试验设计可以有效地降低实验误差,提高实验效率,同时还能全面考虑多个因素及其水平对响应变量的影响,从而得到更准确的结论和实验结果。
正交实验设计1.概述任何生产部门,任何科学实验工作,为达到预期目的和效果都必须恰当地安排实验工作,力求通过次数不多的实验认识所研究课题的基本规律并取得满意的结果。
例如为拟定一个正确而简便的分析方法,必然要研究影响这种分析方法效果的种种条件,诸如试剂浓度和用量、溶液酸度、反应时间以及共存组分的干扰等等。
同时,对于影响分析效果的每一种条件,还应通过试验选择合理的范围。
在这里,我们把受到条件影响的反系方法的准确度、精密度以及方法的效果等叫做指标;把试验中要研究的条件叫做因素;把每种条件在试验范围内的取值(或选取的试验点)叫做该条件的水平。
这就是说我们常常遇到的问题可能包括多种因素,各种因素又有不同的水平,每种因素可能对分析结果产生各自的影响,也可能彼此交织在一起而产生综合的效果。
正交试验设计就是用于安排多因素实验并考察各因素影响大小的一种科学设计方法。
它始于1942年,之后在各个领域里都得到很快的发展和广泛应用。
这种科学设计方法是应用一套已规格化的表格——正交表来安排实验工作,其优点是适合于多种因素的实验设计,便于同时考查多种因素各种水平对指标的影响通过较少的实验次数,选出最佳的实验条件,即选出各因素的某一水平组成比较合适的条件,这样的条件就所考查的因素和水平而言,可视为最佳条件。
另一方面,还可以帮助我们在错综复杂的因素中抓住主要因素,并判断那些因素只起单独的作用,那些因素除自身的单独作用外,它们之间还产生综合的效果。
数理统计上的实验设计还能给出误差的估计。
2. 试验设计的基本方法全面试验法正交设计的方法,首先应根据实验的目的,确定影响实验结果的各种因素,选择这些影响因素的试验点,进而拟出实验方案,之后按所拟方案进行实验并对实验结果作出评估。
必要时再拟出进一步的实验方案,使实验工作更趋完善,所得结果也更为可靠。
如在研究某一显色反应时,为选择合适的显色温度、酸度和显色完全的时间,可作如下的试验安排。
首先确定上述三因素的实验范围:显色温度: 25——35℃ (温度以A表示)酸浓度:——L (酸浓度以B表示)显色时间: 10——30 min (时间以C表示)其次确定每种因素在上述实验范围内各取的水平数(如各取三个水平)。
因素A的三个水平分别以A1,A2,A3表示;因素B的三个水平分别以B1,B2,B3表示;因素C的三个水平分别以C1,C2,C3表示;然后将显色试验的因素、水平列为下表。
这是一个三因素三水平的试验问题,对这样的试验工作可做如下的安排。
A1B1C1A2B1C1A3B1C1A1B1C2A2B1C2A3B1C2A1B1C3A2B1C3A3B1C3A1B2C1A2B2C1A3B2C1A1B2C2A2B2C2A3B2C2A1B2C3A2B2C3A3B2C3A1B3C1A2B3C1A3B3C1A1B3C2A2B3C2A3B3C2A1B3C3A2B3C3A3B3C3即三因素水平的试验共27种组合(33=27),按上组合方式做完27次试验后自然可得出在所确定的因素和水平下的最佳显色条件。
这种全面试验的方法,对事物的内部规律剖析得十分清楚,但却费时费事。
假如我们还需要对实验精密度,对试验误差的大小做出估计,则每一试验至少应重复一次。
即应做54次实验。
如果在讨论六因素而每种因素均取5个水平时,则全面试验的数目是56= 15625次,这里还未包括为了给出误差估计所需的重复试验次数,显然这是难以付诸实施的。
当考察的因素,水平数越多,在试验中所有可能的搭配也更多,要逐个地进行试验,显然是不可能的。
这就提出了合理地设计和安排试验的问题。
提出了通过较少量的试验次数以获得理想的实验条件取得最佳的试验效果,并对试验结果做出科学评估的问题。
对于上述试验,一种习惯的试验方法是简单比较法。
简单比较法这种方法首先固定因素A、B为某一水平(如A1、B1),改变C以获得在A1、B1时C的最佳水平(设为C2,在其下以“--”)。
A1B1C3然后固定A为A1,C为C2,改变B 以获得在A1、C2时B的最佳水平(设为B3)B1A1C2 B2B3再固定B为B3,C为C2,改变A以获得在B3、C2时的最佳水平(设为A2)。
1B3C2A3这样可以认为A2B3C2为较佳的显色条件,即简单比较法经过9次试验也能获得较佳的试验条件,但却存在以下缺点:当各因素之间交互影响较大时,A2B3C2不认为是最佳试验条件。
它未能保证三因素中任何两因素的不同水平之间相碰一次因而上不均衡的,它提供的信息也是不丰富的。
在不做重复试验的情况下,不能给出误差的估计。
如何保持这种方法试验次数少的优点而又能避免上述缺点呢,可采用正交设计的方法来解决。
在这9次试验中实际上有两次试验是在相同条件下的重复试验(A1B3C2和A1B3C2),所以只有7次属不同条件下的实验,另一方面还可看出各因素、各水平出现的机会是不均衡的,其中A1、C2各出现了7次;B3、C1各出现了4次;而A2、A3、C1、C3、B2却只出现了一次,显然,它们的出现的机会是很不均衡的。
简单比较法认为最佳的分析条件是A2B3C2,但在试验过程中C2是在A1B1条件下与C1和C3相比,是最佳的一个条件水平,至于因素A、B取其他水平时是否也得出同样的结论,却未做过实验,也不能得出同样的结论,故上述的条件不能视为最佳的显色条件,而只能是最佳条件的一种估计。
导致上述几种问题的原因是简单比较法中各因素各水平的搭配不是均衡分散的,只能在同一批试验中做单因素比较,而在不同批数的试验之间却无法进行比较。
2.3 正交设计法试验设计是数理统计中的一个重要内容,正交设计是利用预先编制好的正交表来合理的安排多因素试验,以便通过少量的试验次数来获得满意的结果,同时对试验数据进行统计分析。
现在对三因素三水平的试验做如下的安排,首先只考虑A、B两因素,起全面实验应作9次,如下表所示。
这时两因素的三水平相互各碰一次,它反映的情况全面,现在将因素C考虑进去,也同样希望在任何两个因素的不同水平之间各相碰一次而有不增加试验的次数,可做如下按排.。
按上表安排的9次试验与简单比较法相比,试验次数相同但却克服了简单比较法的不均衡性,A的每个水平和B、C的三个水平分别各碰一次,B的每个水平和A、C的三个水平分别各碰一次,对C也是类似的情况。
即三因素中任何两因素的不同水平均相碰一次因而试验是均衡的,上述9次试验可视为三因素三水平的全面试验的代表。
为了书写方便,上述试验设计可简化为下表:表中右下角部分的每一行和每一列中,1,2,3正好各出现一次,我们把具有这样的性质方块叫拉丁方,在排这种方块时常用拉丁字母,故有拉丁方之称。
3正交设计法的基本特征3.1 均衡分散性在正交设计的试验安排中,各因素之间的搭配是均匀的,这种因素间搭配的均匀性——试验点分布的均衡性成为正交设计的均衡分散性。
或者说,正交试验设计把各试验条件均衡地分散在排列完全的水平组合之中,是之更具有代表性,更易于通过最少的试验次数来寻求最佳的试验条件,正交设计的这种性质,可以从试验结果的平均值中消除由于非均衡所引起的误差,有利于提高测定结果的可靠信。
整齐可比性正交试验设计中,各因素各水平之间不仅搭配均匀,而且变化很有规律。
在考虑某因素的每一水平的试验中,其他各因素各水平出现的次数都相同,所作的贡献也认为是一致的。
这样在比较各因素的每一水平对指标生产的影响时,就能最大限度地排除其他因素的干扰,突出本因素的作用,也就将各因素的效应清楚地加以区别并估计其大小,这就是正交试验设计的整齐可比性。
在数学上把均衡分散性和整齐可比性称为正交性,凡具有这特性的试验设计方法都称为正交设计法。
正是由于正交试验设计最大限度地排除了其他因素的干扰并消除了非均匀分散性可能造成的误差,因而只要比较因素各水平的试验指标的平均植,就能估计各因素对试验指标的影响大小,这在后面将作具体的介绍。
两拉丁方的叠合在上述三因素三水平的基础上,如果还需同时考虑第四个因素D,且因素D也取三个水平(D1,D2,D3),那么能否在不增加试验次数而又能保持前述的要求呢?这首先应将D的三个水平拼成拉丁方,其次D的拉丁方和C的拉丁方不一样。
对于前着,是使D也能与A、B均衡搭配;对于后者,是使D与C之间也能均衡,既无重复,又无遗漏。
若用(1),(2),(3)表示D的三个水平,而D的拉丁方与C的拉丁方相同时,其9次试验安排为:这时A、B和D间是均衡的搭配,但C和D的搭配却不均衡,C的(1)水平和D的(1)水平相碰三次而不与D的(2)、(3)水平相碰,C的其他水平也有类似的情况。
所以上述的试验安排是不妥的,当试验的结果表明C的(1)水平最好,而在C取(1)水平时总是伴随着D的(1)水平的出现,自然也可以认为是D的(1)水平也最好,导致C和D的作用混杂。
改进上述试验设计时,只需使D的拉丁方和C的拉丁方不同,两拉丁方具有均匀的搭配。
按此原则可作如下的设计:这时D的三个水平组成的是拉丁方,它和A、B及C之间的搭配都是均衡的,D的每一水平和C的1、2、3水平各碰一次,C的每一水平也和D的(1)、(2)、(3)水平各碰一次,既无重复,也无遗漏。
现将C、D两个拉丁方叠合在一起,就获得上述的试验设计,习惯上把具有这种性质的两个拉丁方叫正交拉丁方。
正交拉方设计因其搭配均衡,在分析试验数据时可以把每个因素的作用剖析得十分清楚而不致混杂,同时还可简便地寻求到最优的测量条件,达到预期的效果。
第一部分正交试验结果的直观分析1.正交表及其使用正交表它是一种预先编制好的表格,根据这种表可合理安排试验并对试验数据作出判断。
对于前述的三因素三水平试验的设计安排,可采用L 9(34)正交表来完成。
L 9(34)表见表1.表1 L 9(34)正交表表L 9(34)读作L —9—3—4,符号L 表示正交表,L 右下角的数字“9”表示此表有9行,即需安排9个实验,括号内数字的指数“4”表示有4列,即最多能安排四个因素;括号内数字的底数“3”表示每个因素取三个水平。
表头的列号是置放试验中的因素(因素常记为A、B、C、D……),表中列号1、2、3、4是在不考虑交互作用时最多可置放四个因素(因素少于四时,可只用其中几列),表的左侧为试验号,表内的1、2、3是因素在试验中应分别取的水平,故称作水平号。
L9(34)正交表可解决四因素(或少于四因素)的三水平试验设计问题,是一种较为简单的正交表。
当试验因素及所取水平数更多时,则应选择其它种类的正交表,如L16(45)、L27(313)、L25(56)、L16(42×29)等,其中L16(42×29)表示作16个试验,可安两个四水平的因素和9个二水平的因素。
.正交表的选择选择正交表时可考虑以下几点:()根据试验目的确定要考查的因素,如对试验的变化规律有大致的了解,有把握判断出影响试验效果的主要因素,可少取些因素,也可多取些因素,总之不能将主要影响因素漏掉。