电力系统基本概述
- 格式:doc
- 大小:28.50 KB
- 文档页数:8
附录一:电力系统概述一、电力系统1.电力系统简介英文:power system电力系统图由发电、变电、输电、配电和用电等环节组成的电能生产与消费系统。
它的功能是将自然界的一次能源通过发电动力装置(主要包括锅炉、汽轮机、发电机及电厂辅助生产系统等)转化成电能,再经输、变电系统及配电系统将电能供应到各负荷中心,通过各种设备再转换成动力、热、光等不同形式的能量,为地区经济和人民生活服务。
由于电源点与负荷中心多数处于不同地区,也无法大量储存,故其生产、输送、分配和消费都在同一时间内完成,并在同一地域内有机地组成一个整体,电能生产必须时刻保持与消费平衡。
因此,电能的集中开发与分散使用,以及电能的连续供应与负荷的随机变化,就制约了电力系统的结构和运行。
据此,电力系统要实现其功能,就需在各个环节和不同层次设置相应的信息与控制系统,以便对电能的生产和输运过程进行测量、调节、控制、保护、通信和调度,确保用户获得安全、经济、优质的电能。
建立结构合理的大型电力系统不仅便于电能生产与消费的集中管理、统一调度和分配,减少总装机容量,节省动力设施投资,且有利于地区能源资源的合理开发利用,更大限度地满足地区国民经济日益增长的用电需要。
电力系统建设往往是国家及地区国民经济发展规划的重要组成部分。
电力系统的出现,使高效、无污染、使用方便、易于调控的电能得到广泛应用,推动了社会生产各个领域的变化,开创了电力时代,发生了第二次技术革命。
电力系统的规模和技术水准已成为一个国家经济发展水平的标志之一。
2.电力系统发展简况在电能应用的初期,由小容量发电机单独向灯塔、轮船、车间等的照明供电系统,可看作是简单的住户式供电系统。
白炽灯发明后,出现了中心电站式供电系统,如1882年T.A.托马斯·阿尔瓦·爱迪生在纽约主持建造的珍珠街电站。
它装有6台直流发电机(总容量约670千瓦),用110伏电压供1300盏电灯照明。
19世纪90年代,三相交流输电系统研制成功,并很快取代了直流输电,成为电力系统大发展的里程碑。
面试电力专业基础知识一、电力系统概述电力系统是指由发电厂、输变电设施和配电网等组成的供电网络系统。
它是现代工业、农业和生活的基础设施,也是保障国民经济正常运行的重要支撑。
1.1 电力系统的组成•发电厂:负责将其他能源(如水力、煤炭、天然气等)转化为电能的设施。
•输电系统:负责将发电厂产生的电能通过高压输电线路送达各个地区。
•变电站:负责将高压输电线路的电能转换为适合分配和使用的电压。
•配电系统:负责将变电站输出的电能经过配电变压器降压后分配给各个用户。
1.2 电力系统的分类根据电力系统的规模和范围不同,可以将电力系统分为以下几类:- 送电系统:主要指输变电设施和相关的电网,用于向用户提供电能。
- 发电系统:主要指发电厂及其附属设施,用于将其他能源转化为电能。
- 配电系统:主要指配电变压器及其附属设施,用于将高压电能降压并分配给用户。
二、电力系统的运行与保护电力系统的运行与保护是保证电力系统安全可靠运行的重要环节。
2.1 电力系统的运行电力系统的运行包括以下几个方面: - 负荷调度:根据用户的实际用电需求,合理安排发电机组的运行和负荷分配,以保证电网供需平衡。
- 运行控制:通过监控设备和自动化系统对电力系统进行实时监测和控制,及时发现故障并采取相应措施。
- 频率控制:保持电力系统的频率在合理范围内,以确保电力设备的正常运行。
- 电压控制:保持电力系统的电压稳定,以满足用户的电压需求。
2.2 电力系统的保护电力系统的保护是为了防止电力设备受到损坏,保障电力系统的安全运行。
-过电流保护:主要用于检测和保护系统中的电流超过额定值的情况,以防止设备过载和短路故障。
- 过电压保护:主要用于检测和保护系统中的电压超过额定值的情况,以防止设备过电压损坏。
- 欠电压保护:主要用于检测和保护系统中的电压低于额定值的情况,以防止设备欠电压损坏。
- 过频保护:主要用于检测和保护系统中的频率超过额定值的情况,以防止设备因频率异常而受损。
电力系统解析与设计随着社会的不断发展,电力系统作为现代社会中不可或缺的基础设施,具有着重要的意义。
电力系统的解析与设计是确保电力供应的可靠性和稳定性的关键,本文将对电力系统的解析与设计进行探讨。
一、电力系统概述电力系统是由发电厂、输电线路、变电站、配电线路和用户组成的一个供电网络。
它的任务是将电能从发电厂输送到不同的用户,并保证电力供应的稳定和可靠。
电力系统通常包括三个主要组成部分:发电系统、输电系统和配电系统。
发电系统是指将各种能源转化为电能的设备组成。
它可以由火力发电厂、水力发电厂、核电站、风力发电厂等不同类型的发电厂组成。
输电系统负责将发电厂生成的电能通过输电线路输送到远离发电厂的地方,以满足不同地区的电力需求。
配电系统将输电系统输送过来的高压电能转化为低压电能,以供给各个用户使用。
二、电力系统的解析1. 负荷流分析负荷流分析是电力系统解析的一种重要方法。
它通过计算不同节点上的电压和功率来确定电力系统中的电能分布情况。
负荷流分析可以帮助我们了解系统中是否存在功率不平衡、电压下降等问题,并提出相应的解决方案。
2. 短路分析短路分析是电力系统解析中的另一项重要工作。
它用于确定电力系统中可能发生短路故障的位置以及故障后对系统的影响。
通过短路分析,我们可以评估电力系统的短路能力,以确保系统在出现故障时能够正常运行,并提供有效的保护措施。
3. 暂态稳定分析暂态稳定分析是电力系统解析中对系统稳定性的评估。
它考虑了电力系统在故障发生后的暂态过程,包括故障与恢复之间的过渡。
通过暂态稳定分析,我们可以确定电力系统中潜在的不稳定性问题,并提出相应的改进方案,以确保系统的稳定运行。
三、电力系统的设计1. 发电系统设计发电系统设计需要考虑不同类型的发电设备的选择、容量计算和配置。
根据实际需求和资源状况,选择合适的发电设备和能源类型,并进行合理的容量规划和布置。
2. 输电系统设计输电系统设计包括输电线路的选址、敷设和电缆选择等方面。
电力工程基础知识总结一、电力系统概述:1。
1 电力系统定义:电力系统是电能生产、变换、输送、分配、消费的各种设备按照一定的技术和经济要求有机组成的一个统一系统的总称。
简言之,电力系统是由发电机、变压器、输电线路、用电设备组成的网络,它包括通过电的或机械的方式连接在网络中的所有设备。
1.2 动力系统的构成:动力系统是由锅炉(反应堆)、汽轮机(水轮机)、发电机等生产电能的设备,变压器、输电线路等变换、输送、分配电能的设备,电动机、电热电炉、家用电器、照明等各种消耗电能的设备以及测量、保护、控制乃至能量管理系统所组成的统一整体。
1。
3 电力系统的电压等级额定电压:通常取线路始末电压的算术平均值作为用电设备以及电力网的额定电压。
由于用电设备的允许电压偏移为±5%,而延线路的电压降落一般为10%,这就要求线路始端电压为额定值的105%,以保证末端电压不低于95%.发电机往往接于线路始端,因此发电机的额定电压为线路的105%.通常,6.3KV 多用于50MW及以下的发电机;10。
5KV用于25~100MW的发电机;13。
8KV用于125MW的汽轮发电机和72.5MW的水轮发电机;15.75KV用于200MW的汽轮发电机和225MW的水轮发电机;18KV用于300MW的汽轮发电机。
变压器的一次额定电压:升压变压器一般与发电机直接相连,故与发电机相同降压变压器相当于用电设备,故与线路相同.变压器的二次额定电压:考虑到变压器内部的电压降落一般为5%,故比线路高5%~10%。
只有漏抗很小的、二次测线路较短和电压特别高的变压器,采用5%。
习惯上把1KV以上的电气设备称为高压设备反之为低压设备。
◇ 500、330、220KV多半用于大电力系统的主干线;◇ 110KV既用于中小电力系统的主干线,也用于大电力系统的二次网络;◇ 35、10KV既用于大城市或大工业企业内部网络,也广泛用于农村网络。
◇大功率电动机用3、6、10KV,小功率电动机用220、380V;◇照明用220、380V。
工业用电知识点总结大全工业用电作为现代工业生产的重要能源之一,在工业生产中起着至关重要的作用。
它的安全使用、高效利用对于提高工业生产效率、保障生产安全具有重要意义。
下面将对工业用电的知识点进行总结,以期在实际工业生产过程中能够更好的应用。
一、电力系统基本知识1. 电力系统概述电力系统是由发电厂、输电网和配电网组成的系统。
发电厂将化石能源或可再生能源转换为电能,输电网将发电厂产生的电能传输到不同地区,配电网将输电过来的电能传输给终端用户。
2. 电压、电流、功率和电阻的关系电压是以伏特(V)为单位,用于描述电路上的电压差;电流是以安培(A)为单位,用于描述电路中电子的流动情况;功率是以瓦特(W)为单位,表示单位时间内能量的转化率;电阻是用欧姆(Ω)为单位,用于描述电路对电流的阻碍程度。
3. 交流电和直流电交流电是周期性的电流,其方向和大小随时间而变;直流电是恒定方向和大小的电流。
工业生产中通常使用交流电。
4. 三相电和单相电三相电是三个正弦波形电压或电流之间相位差120度的交流电;单相电是只有一个正弦波形电压或电流的交流电。
工业用电中,三相电更为常见,使用更为稳定,功率较大。
5. 电力负荷电力负荷是指电力系统所需要的电能。
负荷分为有功负荷和无功负荷,有功负荷是完成功率型工作的负荷,无功负荷是完成磁动作负荷的负荷。
二、工业用电系统及设备1. 变压器的作用及应用变压器是用来改变电压大小的电气设备。
在工业生产中,变压器用于提高或降低交流电的电压,以保障设备的正常运行。
2. 发电机组发电机组是将机械能转换为电能的设备,是电力系统中的主要能源。
在工业生产中,发电机组通过燃料燃烧或水能等方式转化能源,提供工业用电。
3. 高低压配电设备高低压配电设备包括开关设备、断路器、隔离开关、负荷开关等,用于对电能进行开关、控制和保护。
4. 照明设备工业场所需要大量的照明设备,包括荧光灯、LED灯等。
合理的照明系统能够提升工作效率,保障员工的安全。
电力系统工程基础知识概述1. 引言电力系统工程是指对电力系统进行设计、建造、运行和维护的工作。
本文将概述电力系统工程的基础知识,包括电力系统的组成、电力系统的工作原理以及电力系统中常见的设备和技术等方面。
2. 电力系统的组成电力系统是由发电厂、输电线路、变电站和配电网等组成的。
发电厂通过转换能源(如煤炭、石油和水力等)来产生电能。
输电线路将发电厂产生的电能传输到变电站,再由变电站进行电压转换和分配。
配电网将变电站分配的电能供应给终端用户。
3. 电力系统的工作原理电力系统的工作原理基于电能的传输和转换。
发电厂通过发电机将机械能转化为电能。
发电机输出的电能经过变压器升压,然后通过输电线路传输到变电站。
在变电站,电能再次经过变压器降压并分配到不同的配电网。
配电网将电能供应给工业、商业和个人用户。
电力系统的输电过程主要涉及到电压的变化。
高压输电可以减少输电线路的损耗,但在分配到用户时需要通过变压器降压。
低压输电则适用于近距离的输电,如城市配电网。
4. 电力系统的设备和技术4.1 发电设备发电厂的主要设备是发电机组,常见的发电机包括蒸汽轮机、水轮机和燃气轮机等。
发电机组的工作原理是利用能源(如化石燃料或水力)驱动发电机转子旋转,产生电能。
4.2 输电设备输电线路是将发电厂的电能传输到变电站的重要设备。
常见的输电线路包括高压直流(HVDC)输电线路和交流(AC)输电线路。
HVDC 输电线路能够远距离传输大容量的电能,而AC输电线路则主要用于城市和近距离的输电。
4.3 变电设备变电站是电力系统的重要组成部分,用于电能的变压和分配。
变电站包括变压器、断路器和开关等设备。
变压器用于升压和降压,断路器用于控制电力的开关和断开,开关则用于控制电路的通断。
4.4 配电设备配电网将电能从变电站分配给终端用户。
常见的配电设备包括配电变压器、配电开关和电能计量设备等。
配电变压器用于将高电压的电能变换为低电压,配电开关用于控制电能的通断,电能计量设备则用于测量电能的消耗。
电力系统概述(一)电力系统的组成和基本特征电力系统是由发电厂、电力网、用电设备和相应的辅助系统(继电保护、安全自动、测量、调度自动化和通信等装置),按规定的技术和经济要求组成的整体。
火力发电厂、水力发电厂和核电厂发出的电力,按其容量的不同和所需输送距离的不同,分别接入110、220kV和500kV交流电力网以及高压电流输电线路。
在电力网的构成中,不同电压的输电线路和配电线路通过相应电压等级的变电所相互连接,在配电网的低压侧接有动力负荷和照明负荷等各种用电设备,这就形成了发电、输电和配电设备,以及用电设备在内的统一的电力系统。
电力系统的基本特征包括电力系统电压等级,电力系统频率、电力网结构和电力系统流量等。
1、电力系统频率电力系统频率是电力系统中发电厂的同步发电机所产生的交流正弦基波电压的频率。
频率质量是电能质量的一个重要指标。
在稳态运行的条件下,各发电机同步运行,整个电力系统的频率是相等的。
它是电力系统一致的运行参数。
世界上,电力系统采用的额定频率有50Hz和60Hz 两种。
我国和世界多数国家均采用50Hz电力系统;只有美国、加拿大、古巴、朝鲜等少数国家采用60Hz电力系统;日本的东部地区为50Hz电力系统,中部和西部地区为60Hz电力系统,两种不同频率的电力系统与直流变频站互联。
电力系统中的发电和用电设备,都是按照额定频率设计和制造的,只有在额定频率附近运行时,才能发挥最好的功能。
只有当电力系统中所有发电设备发出的有功功率之总和与电力网中电力负荷吸收和消耗的有功功率相等时,系统频率才能保持不变。
2、电力系统的电压等级电压等级是电力系统及电力设备的额定电压级别系列,额定电压是指电力系统及电力设备规定的正常工作电压。
电力系统各个节点的实际运行电压容许在一定程度上偏离额定电压。
在上述容许偏离的电压范围内,各种电力设备和整个电力系统仍能正常运行。
我国国家标准规定的电力系统额定电压等级为分3、6、10、35、 63、110、220、330、500、750 kV。
电力系统基本概述
一、电力系统与电网
发电厂将一次能源转变成电能,这些电能需要通过一定方式输送给电力用户,在由发电厂向用户供电过程中,为了提高其可靠性和经济性,广泛通过升、降压变电站,输电线路将多个发电厂用电力网连接起来并联工作,向用户供电。
这种由发电厂、升压和降压变电站、送电线路以及用电设备有机连接起来的整体,称为电力系统。
发电机的原动机、原动机的力能部分、供热和用热设备,则称为动力系统。
在电力系统中,由升压和降压变电站和各种不同电压等级的送电线路连接在一起的部分称为电网。
二、电力生产的特点
电能的生产与其它工业生产有着显然不同的特点。
1.电能不能大量储藏
电力系统中发电厂负荷的多少,决定于用户的需要,电能的生产和消费时时刻刻都是保
持平衡的。
电能的生产、分配和消费过程的同时性,使电力
系统的各个环节形成了一个紧密
的有机联系的整体,其中任一台发、供、用电设备发生故障,都将影响电能的生产和供应。
2.电力系统的电磁变化过程非常迅速
电力系统中,电磁波的变化过程只有千分之几秒,甚至百万分之几秒;而短路过程、发
电机运行稳定性的丧失则在十分之几秒或几秒内即可形成。
为了防止某些短暂的过渡过程对
系统运行和电气设备造成危害,要求能进行非常迅速和灵敏的调整及切换操作,这些调整和
切换,靠手动操作不能获得满意的效果,甚至是不可能的,因此必须采用各种自动装置。
3.电力工业和国民经济各部门之间有着极其密切的关系
电能供应不足或中断,将直接影响国民经济各个部门的生产,也将影响人们的正常生活,
因此要求电力工业必须保证安全生产和成为国民经济中的
先行工业,必须有足够的负荷后备
容量,以满足日益增长的负荷需要。
三、电力系统的运行要求
为了保证为用户提供电能,电力系统的运行必须满足下列基本要求。
1.保证对用户供电的可靠性
在任何情况下都应该尽可能的保证电力系统运行的可靠性。
系统运行可靠性的破坏,将
引起系统设备损坏或供电中断,以致造成国民经济各部门生产停顿和人民生活秩序的破坏,甚至发生设备和人身事故。
电力用户,对供电可靠性的要求并不一样,即使一个企业中各个部门或车间,对供电持
续性的要求也有所差别。
根据对供电持续性的要求,可把用户分为三级。
一级负荷:如停止供电,将会危害生命、损坏设备、产生废品和使生产过程混乱,给国
民经济带来重大损失等。
二级负荷:如停止供电,将造成大量减产,城市大量居民的正常活动受到影响。
三级负荷:指所有不属于一级及二级的负荷,如非连续生产的车间及辅助车间和小城镇
用电等。
对于一级负荷,至少要由两个独立电源供电,其中每一电源的容量,都应在另一电源发
生故障时仍能完全保证一级负荷的用电;对于三级负荷,不需要备用电源;对于二级负荷是
否需要备用电源,要进行技术经济比较后才能确定。