第05讲——故障模型 超大规模集成电路测试技术课件
- 格式:ppt
- 大小:614.50 KB
- 文档页数:10
集成电路测试技术的发展与现状集成电路的复杂性在日益增加,自从芯片系统(SOC)实现之后,各种知识产权(IP)模块大量集成在同一芯片内,包括逻辑电路、存储器、模/数和数/模转换器、射频前端等等。
它们的功能互不相同,测量用的算法、定时周期、时序、供电电压都有很大差异,给自动测试系统带来新的挑战。
集成度增加和功能多样的SOC在消费量最大的产品中,如移动通信手机、微控制器、监视器、游戏机等中广泛使用,销售量攀升的同时价格不断地下降,但测试费用却居高不下。
超大规模集成电路不但构造精细、集成度高,而且是经过许多道工序流程制作而成的,难免存在着缺陷导致其不能正常工作。
因此,超大规模集成电路的测试对生产厂商和用户都具有重要意义。
目前的测试方法种类很多,各种测试方法均针对一定特性的故障。
研究发现,要证明所设计的芯片的正确性,在不同设计和生产阶段中才去的不同测试所花费的代价有非常大的差别,甚至可以达到几个数量级的差距,其示意图如图1。
从测试增长代价图可以看出,如果在设计阶段就多体现些主动性,就会极大的降低测试的难度和工作量,并能最大程度的改变测试仅仅将作为附属过程的被动性。
测试的基本原理是:将被测试的电路放在测试仪器上,测试设备根据需要产生一系列测试矢量信号,加到输入端,将得到的测试输出与预期输出进行比较,如果两者相等,表明测试通过。
反之,则不通过.在芯片设计及流片生产的各个阶段,经常需要测试来对得到的阶段性结果进行校验。
在芯片设计过程中,需要进行针对电路设计的测试,及模拟各种输入激励情况下电路的输出响应情况,还有各种参数值的范围,设计过程所依据的是迷你软件及工艺厂家后,厂家在流片的各个主要步骤完成后也会进行测试,其目的除了进一步验证设计的正确性,还要测试生产过程中出现的各种不确定因素带来的影响。
而生产阶段又包括样片和大批量生产两种,每种生产阶段都需要具备这些测试环节。
测试结果的可靠性取决于测试信号的正确性和完整性。
芯片失效模式及影响分析集成电路常见的失效(续)雷鑑铭1、聚焦离子束(FIB)介绍与应用在去封胶、打线或封装后必须再次测试建议提供GDSII电路图文件以利导引指定区块线路•电子束探测系统(E-Beam Prober)是利用极精准的聚焦电子束来取代一般的机械式探针,以VC4、新型FIB电路修正技术也面临同样的定位问题。
面对IC表面没有高低起伏而无法成像,FIB 必须配合IC设计布局图数据(GDSII)及自动定位系统来找到工作点。
先进的FIB机型皆配备有CAD 导航迭图的软件(CAD Navigation) 可以将IC表面与IC设计者提供的线路布局图作重去大量扫瞄IC表面造成的离子轰击伤害,有效的减少IC特性漂移,提高FIB的2、信号引出: 藉由金属导线将目标点信号引出进行验证测试。
因为整个联机路径的电阻、电感较使用探针小而且稳定度较雷鑑铭1、超音波扫瞄检测•超音波显微镜(SAT)是指Scanning AcousticTomography的简称,而Tomography 的意思即是”断层扫瞄摄影”。
又称为SAM (Scanning Acoustic Microscope),应用于电子产品之超音波频率是指高于20KHz者,可以穿透一定厚度的固态与液态物质,以检测其结构组成之变异。
目前使用之介质,通常为纯水,为最便宜与安全之物质。
•超音波检测之基本原理系利用超音波信号发射源(Transducer,俗称探头)并以纯水为介质而传导到待测物体上,经由超音波的回声反射或穿透等的动作,让此信号在机台经过特定软件处理呈现影像。
Transducer的选择会因为待测物之厚度与材质而有不同选择。
•电子产品主要使用SAT来进行结构脱层(Delamination)或裂缝(Crack)等的检测之用X光射线(以下简称X-RAY) 是利用一阴极射线管,发出高能量的电子,使其撞击到金属靶上,在撞击过程中,因电子突然减速,其损失的动能芯片尺寸量测,打线线弧量测,组件吃锡面积比例量测。