传感器原理及应用-磁敏
- 格式:pptx
- 大小:6.85 MB
- 文档页数:3
磁敏传感器的工作原理
磁敏传感器是一种可以感应磁场的传感器,它可以将磁场的变化转化为电信号输出。
磁敏传感器的工作原理是基于磁阻效应或霍尔效应。
磁阻效应是一种磁敏传感器常用的工作原理之一。
它利用磁阻材料在外加磁场下电阻值的变化来感应磁场。
磁阻材料通常是由两种具有不同电阻的材料叠层组成,当外加磁场改变时,两种材料的电子结构的变化会导致磁阻材料的电阻值发生变化。
这种变化可以通过测量电路中的电压或电流来检测。
霍尔效应是另一种常用的磁敏传感器工作原理。
它利用材料在磁场下形成电势差的现象来感应磁场。
当材料中的载流子在外加磁场下偏转时,会在材料的两端产生电势差。
这个电势差可以通过连接到测量电路中的霍尔元件来测量。
霍尔元件通常是由半导体材料制成的,它们可以对电势差产生响应并转化为电信号。
磁敏传感器可以广泛应用于许多场合,例如测量电机转速、磁头位置、地磁场、车辆速度和方向等。
它们的优点是精度高、反应速度快、稳定性好和可靠性高。
因此,磁敏传感器已成为许多电子器件和系统中不可或缺的部分。
- 1 -。
磁敏式传感器的原理及应用1. 磁敏式传感器的原理磁敏式传感器是一种能够检测和测量磁场变化的装置。
它利用材料的磁敏特性,在磁场的作用下产生相应的电信号,从而实现对磁场的检测和测量。
1.1 磁敏效应磁敏效应是指材料在外加磁场作用下,呈现出磁介质性质的变化。
常见的磁敏效应包括磁电效应、霍尔效应和磁致伸缩效应等。
其中,磁电效应是磁敏式传感器工作的基础。
1.2 磁敏材料磁敏式传感器所使用的磁敏材料具有以下几个主要特点: - 高磁导率:磁敏材料能够有效地传导磁场,在外加磁场作用下形成较大的感应电流。
- 高磁阻率:磁敏材料对磁场的变化非常敏感,能够产生较大的电信号响应。
- 稳定性:磁敏材料的特性稳定,能够在较宽的温度范围内工作。
1.3 工作原理磁敏式传感器的工作原理基于磁电效应,即磁场变化引起材料电阻的变化。
当外加磁场发生变化时,磁敏材料内部的自由电荷受到磁力作用,导致电荷运动方向发生变化,从而改变了材料内部的电流分布和电阻。
2. 磁敏式传感器的应用磁敏式传感器的应用非常广泛,在许多领域中发挥着重要的作用。
2.1 位移检测磁敏式传感器可以用于测量物体的位移。
通过将磁敏材料与运动物体相连,并放置在磁场中,当物体发生位移时,磁敏材料的电阻发生变化,从而可以测量位移的大小。
2.2 速度检测磁敏式传感器还可以用于监测物体的速度。
通过将磁敏材料与运动物体相连,并放置在磁场中,当物体以一定速度运动时,磁敏材料的电阻发生变化,从而可以测得物体的速度。
2.3 磁场检测磁敏式传感器能够检测磁场的变化。
当磁场发生变化时,磁敏材料的电阻也会发生变化,从而可以检测磁场的强度和方向。
2.4 电流检测磁敏式传感器还可以用于检测电流。
通过将磁敏材料与电流回路相连,当电流通过时,磁场的变化会引起磁敏材料的电阻变化,从而可以测量电流的大小。
2.5 磁导航磁敏式传感器可以应用于磁导航领域。
通过检测磁场的变化,磁敏式传感器可以确定物体的方向和位置,从而实现导航功能。
磁敏传感器工作原理磁敏传感器工作原理:磁敏传感器,顾名思义就是感知磁性物体的存在或者磁性强度(在有效范围内)这些磁性材料除永磁体外,还包括顺磁材料(铁、钴、镍及其它们的合金)当然也可包括感知通电(直、交)线包或导线周围的磁场。
一,传统的磁检测中首先被采用的是电感线圈为敏感元件。
特点正是无须在线圈中通电,一般仅对运动中的永磁体或电流载体起敏感作用。
后来发展为用线圈组成振荡槽路的。
如探雷器,金属异物探测器,测磁通的磁通计等. (磁通门,振动样品磁强计)。
二,霍尔传感器霍尔传感器是依据霍尔效应制成的器件。
霍尔效应:通电的载体在受到垂直于载体平面的外磁场作用时,则载流子受到洛伦兹力的作用,并有向两边聚集的倾向,由于自由电子的聚集(一边多一边必然少)从而形成电势差,在经过特殊工艺制备的半导体材料这种效应更为显著。
从而形成了霍尔元件。
早期的霍尔效应的材料Insb(锑化铟)。
为增强对磁场的敏感度,在材料方面半导体IIIV 元素族都有所应用。
近年来,除Insb之外,有硅衬底的,也有砷化镓的。
霍尔器件由于其工作机理的原因都制成全桥路器件,其内阻大约都在 150Ω~500Ω之间。
对线性传感器工作电流大约在2~10mA左右,一般采用恒流供电法。
Insb与硅衬底霍尔器件典型工作电流为10mA。
而砷化镓典型工作电流为2 mA。
作为低弱磁场测量,我们希望传感器自身所需的工作电流越低越好。
(因为电源周围即有磁场,就不同程度引进误差。
另外,目前的传感器对温度很敏感,通的电流大了,有一个自身加热问题。
(温升)就造成传感器的零漂。
这些方面除外附补偿电路外,在材料方面也在不断的进行改进。
霍尔传感器主要有两大类,一类为开关型器件,一类为线性霍尔器件,从结构形式(品种)及用量、产量前者大于后者。
霍尔器件的响应速度大约在1us 量级。
三,磁阻传感器磁阻传感器,磁敏二极管等是继霍尔传感器后派生出的另一种磁敏传感器。
采用的半导体材料于霍尔大体相同。
霍尔磁敏传感器工作原理霍尔磁敏传感器工作原理霍尔磁敏传感器是一种常用的磁敏元件,可广泛应用于位置检测、速度测量、角度测量等领域。
它利用霍尔效应来检测磁场,并将其转化为电信号。
下面将介绍霍尔磁敏传感器的工作原理。
1. 引入霍尔效应霍尔效应是指当导体中有电流通过时,置于垂直磁场中的导电材料会在其两侧产生电势差。
这种现象是由于磁场对载流子的影响导致的。
2. 基本构造霍尔磁敏传感器的基本构造包括霍尔元件和信号处理电路。
霍尔元件是一个半导体器件,通常采用硅或镓化合物制成。
信号处理电路负责将霍尔元件输出的微弱电信号放大并转换为可用的电压或电流信号。
3. 工作原理当霍尔磁敏传感器暴露在磁场中时,磁场作用于霍尔元件上的载流子。
根据磁场的方向和极性,载流子会产生偏转,从而在霍尔元件的两侧产生电势差。
3.1 磁场方向垂直于电流方向当电流通过霍尔元件时,磁场方向垂直于电流方向,则在霍尔元件的两侧会形成相反的电势差。
这个电势差称为霍尔电压(Hall voltage)。
3.2 输出信号处理霍尔电压通过信号处理电路进行放大和处理。
常见的处理方法包括使用运算放大器和滤波器等电路来调整信号的增益和频率响应。
4. 特点和应用霍尔磁敏传感器具有灵敏度高、响应速度快、可靠性好等优点。
它可以检测不同强度和方向的磁场,能够工作在宽温度范围内。
因此,它在许多领域中得到广泛应用,包括角度传感、位置检测、速度测量、电流测量等。
总结:霍尔磁敏传感器的工作原理是基于霍尔效应,利用磁场对导电材料的影响产生电势差,通过信号处理电路将其转化为可用的电信号。
其高灵敏度、快速响应和可靠性使得它成为许多应用中的重要组成部分。
通过不断的研究和改进,霍尔磁敏传感器在工业、汽车、电子等领域中的应用前景将更加广阔。
磁电传感器的原理和应用前言磁电传感器是一种能将磁场信号转换成电信号的传感器,广泛应用于各种领域。
本文将介绍磁电传感器的原理和应用。
一、磁电传感器的原理磁电传感器的工作原理基于磁效应,主要包括霍尔效应、磁电阻效应和磁敏电容效应。
1. 霍尔效应霍尔效应是最早被发现和广泛应用的磁电效应之一。
当电流通过一块导电材料时,若将其放在磁场中,磁场就会对电子流的平衡状态产生影响,从而引起一侧电子浓度的变化,产生电压差。
这个电压差被称为霍尔电压。
2. 磁电阻效应磁电阻效应是指材料在外加磁场下,其电阻发生变化的现象。
常见的磁电阻效应有巨磁电阻效应(GMR)和隧道磁电阻效应(TMR)。
它们的本质是通过控制材料中磁性局域区域的磁结构来改变电阻值。
3. 磁敏电容效应磁敏电容效应是指材料在磁场下,电容值发生变化的现象。
这种效应通常是通过改变材料中的磁性局域区域的电容性质来实现的。
二、磁电传感器的应用磁电传感器由于其高灵敏度、响应速度快、易于集成等特点,在许多领域得到了广泛的应用。
1. 汽车工业磁电传感器在汽车工业中起到了重要的作用。
例如,在车辆换挡控制中,霍尔效应传感器被用于检测离合器和制动踏板的位置,从而实现自动换挡;在刹车控制中,磁敏电容效应传感器被用于检测刹车片的磨损程度,提供刹车片更换的提示。
2. 电子设备磁电传感器广泛应用于各种电子设备中。
例如,在手机中,磁敏电容效应传感器被用于检测翻盖状态和磁盖位置,实现手机的自动睡眠和唤醒功能;在音频设备中,磁电阻传感器被用于控制音量调节,实现用户友好的操作体验。
3. 工业自动化磁电传感器在工业自动化领域中发挥着重要的作用。
例如,在生产线上,磁敏电容效应传感器被用于检测零件的位置和运动状态,实现精准的定位和控制;在机械加工过程中,磁电阻传感器被用于检测工件的尺寸和形状,实现自动化的加工过程控制。
4. 医疗器械磁电传感器在医疗器械领域中应用广泛。
例如,在磁共振成像(MRI)中,磁电阻传感器被用于检测磁场强度和方向,提供精准的成像结果;在心脏起搏器中,霍尔效应传感器被用于检测心脏的电信号,实现有效的心脏节律调整。
传感器技术的原理和应用场景近年来,随着科技的不断发展和完善,各种高科技产品不断涌现,其中传感器技术便是其中之一。
传感器技术的原理和应用场景非常广泛,我们可以从以下几个方面来探讨。
一、传感器技术的原理传感器技术的原理有很多,以下列举几个比较普遍的:1. 压力传感器:利用杠杆原理,将受力点移动到传感器的压力敏感区域,从而实现了压力的检测。
2. 光电传感器:利用光电原理,通过检测红外线或激光束等电磁波的反射,来实现物体的检测和跟踪。
3. 磁敏传感器:利用磁敏材料的磁阻效应,将物理量转变为磁场,再通过传感器磁阻的变化来检测出物理量的大小。
二、传感器技术的应用场景1. 工业自动化:在工业生产中,传感器技术被广泛应用。
通过监控流程、温度、湿度、压力等物理量,可以实现生产过程的自动化和数字化。
2. 能源管理:在现代社会中,能源是不可避免的问题。
传感器技术的应用可以帮助用户更加有效地管理能源,例如智能电表、智能空调等。
3. 智能家居:近年来,智能家居受到越来越多的关注。
通过传感器技术,可以实现门锁、留守、空气质量等方面的智能化,为用户提供更加智能化便捷的生活体验。
4. 医疗健康:传感器技术在医疗健康领域也有广泛的应用。
例如血糖检测器、心率监测器等,可以帮助人们更好地了解自己的身体状况,实现更好的健康管理。
5. 物流交通:在物流和交通领域中,传感器技术同样得到了广泛应用。
例如智能交通管制、智能安全检测等,可以实现真正的数字化交通管理。
总之,传感器技术不断演进和发展,它的应用场景越来越广泛。
未来,它将成为各个领域的中流砥柱,给人们的生活带来更多的便捷和创新。
磁敏传感器的工作原理
磁敏传感器是一种基于磁场效应的传感器,具有可靠的工作性能,可以检测磁场的强度和方向。
在磁敏传感器中,磁场在磁环中旋转形成磁轴,当外部磁场的方向和磁轴一致时,则产生相应的信号。
典型结构
磁敏传感器的典型结构是由一个铁环及一个线圈组成,磁环上的线圈就是信号传感器,其作用是将受到影响的磁场转换为电信号,磁环用于捕捉外界磁场,其形状及大小对磁敏传感器的性能有较大影响,另外,磁敏传感器中一般采用蛇形线圈,以增大线圈的感应面积,提高传感器的灵敏度。
工作原理
当外部磁场作用于磁环上时,磁环上的线圈会因为磁感应而产生电动势,从而产生电流,将外部磁场信号转换为电信号,进而检测外部磁场的方向与强度。
该原理就是:利用磁环和线圈对外部磁场做变化,使磁场导致线圈感应出电动势,从而得到需要的信号。
应用
磁敏传感器应用十分广泛,它可以用于检测轴承内的磁场,从而实现动态寿命监测;可以用于检测磁铁吸附位置,进行形状及方位的测量;可以用于安全控制,当有外部磁场作用于磁敏传感器时,该传感器以特定频率发出报警信号;可以用于智能控制,通过磁敏传感器可以检测到物体的位置及方位,从而实现自动控制或仿生控制等等。
- 1 -。
磁敏传感器的工作原理
磁敏传感器(Magnetic Sensors)是物理传感器中最为重要的一种,用来检测某一事物的磁场强度。
它可以测量磁场相对于一个特定标准的强度,以及磁场的方向。
磁敏传感器可以用来检测永久磁体、自发磁体、非永久磁体以及其它磁性物质的磁场。
磁敏传感器的工作原理是:当检测到的磁场变化时,传感器的电容变化,或者变化传感器内部的负载电阻,从而改变传感器电路的输出电流,从而获得磁场的数据。
磁敏传感器可以分为三类:磁敏电阻传感器、磁敏半导体传感器和磁敏磁芯传感器。
它们的工作原理都大体相同,只是在实现技术上有所不同。
磁敏电阻传感器是由一个特殊的磁敏半导体电阻片和一个可变
电阻器构成的电路。
当检测到的磁场变化时,电路中的磁敏电阻片会产生变化,而可变电阻器则会做出准确的调节,从而提供准确的测量数据。
磁敏半导体传感器是由磁敏半导体构成的一个电路。
当检测到的磁场变化时,磁敏半导体会产生变化,从而改变电路的输出电压,从而获得磁场的准确数据。
磁敏磁芯传感器是由一个特殊的磁芯和一个电阻构成的电路。
当检测到的磁场变化时,磁芯会对电阻产生感应,通过测量电阻对外界磁场的反应来获得磁场的数据。
磁敏传感器的应用非常广泛,目前已经应用在工业自动化、家用
电器、航空、航天等方面。
未来,磁敏传感器在更多领域得到应用,并可以为社会带来更多的好处。
磁敏传感器是一种利用磁场变化来检测和测量物理量的器件。
其原理基于霍尔效应,即当电流垂直于外磁场通过导体时,在导体垂直于磁场和电流的方向上会产生电势差,这个电势差被称为霍尔电势差。
由于磁敏传感器内部装有霍尔元件,当有磁场及其方向变化时,霍尔元件能够检测到磁场强度和方向的变化,并将其转换为电信号输出。
磁敏传感器具有高灵敏度、高分辨率和高可靠性的特点,因此在许多领域都有广泛的应用。
例如,在无刷直流电机中,磁敏传感器可以用来检测转子位置和转速,从而实现电机的无接触控制。
此外,磁敏传感器还被广泛应用于测量电流、磁场、位置、速度和角度等物理量,并且在自动化控制、汽车电子、智能家居等领域也有着广泛的应用。
随着科技的不断发展,磁敏传感器的性能和可靠性也在不断提高。
目前,磁敏传感器已经从实验室走向了市场,成为一种重要的传感器类型。
未来,随着新材料、新工艺和新技术的应用,磁敏传感器的性能将会得到进一步提升,应用领域也将进一步扩大。
传感器的的工作原理及应用
传感器是指能够感知外界环境物理量并将其转化为可用信号的装置。
传感器的工作原理主要包括以下几种:
1. 电阻式:通过测量电阻的变化来感知环境物理量,如温度、湿度等。
2. 电容式:通过测量电容的变化来感知环境物理量,如接近距离、压力等。
3. 磁敏式:通过感应电磁场的变化来感知环境物理量,如磁场强度、位置等。
4. 压力式:通过测量压力的变化来感知环境物理量,如液体压力、气体压力等。
5. 光敏式:通过感应光的变化来感知环境物理量,如光强、光频等。
传感器的应用非常广泛,主要包括以下几个方面:
1. 工业自动化:用于测量和控制生产过程中的温度、压力、流量等物理量。
2. 环境监测:用于测量大气污染物、环境温湿度、声音等参数。
3. 汽车工业:用于汽车发动机和车辆控制系统的监测和控制。
4. 医疗领域:用于医疗设备的监测和控制,如血压、心率等参数。
5. 家庭和消费电子:用于智能家居、智能手机等电子产品中的各种传感应用,如距离传感、姿态传感等。
传感器的工作原理和应用因具体类型和用途而有所不同,但总体上都是通过感知环境物理量并将其转化为可用信号,用于实现监测、控制和自动化等功能。
磁敏传感器工作原理
磁敏传感器是一种能够感知磁场变化并将其转化为电信号的设备。
其基本工作原理可以分为以下几个步骤:
1. 磁敏元件:磁敏传感器通常由一种磁性材料制成,如硅钢片、铁氧体等。
这些材料具有较低的饱和磁感应强度,即在磁场作用下,材料的磁化程度能够随磁场强度的变化而改变。
2. 磁场作用:当磁敏传感器周围有磁场存在时,磁场会对磁敏元件产生作用,使其磁化程度发生变化。
3. 磁化程度变化引起的电信号:磁敏元件磁化程度的变化会导致其磁导率的改变,进而影响到通过其的磁通量。
当磁敏元件中的磁通量变化时,根据法拉第电磁感应定律,会在磁敏元件上产生涡旋电动势。
4. 电信号放大与处理:通过将磁敏传感器输出的微弱电信号进行放大、滤波等处理,将其转化为可以被电子设备读取和识别的信号。
总的来说,磁敏传感器通过感知周围磁场的变化,并将其转化为电信号,从而实现磁场的检测和测量。
应用领域广泛,包括磁力计、地磁测量、磁条读写、磁存储等。
磁敏式传感器中的磁电式和霍尔式原理及应用磁敏式传感器在许多电子设备中发挥着关键作用,其中磁电式和霍尔式是两种常见的类型。
这两种传感器利用磁感应原理,将磁场强度转换为电信号,从而实现对各种物理量的测量。
本篇文章将详细介绍磁电式传感器和霍尔传感器的原理、应用以及注意事项。
一、磁电式传感器原理及应用磁电式传感器基于磁感应原理,即磁场的变化能够产生电压。
当磁场穿过金属片时,金属片会发生相应的电位差,即电磁感应。
这种传感器通常用于测量速度、长度、位移等物理量。
其工作原理如下:1.结构:磁电式传感器通常由永久磁铁和金属感应片组成。
金属感应片固定在壳体上,通过连接线连接到测量电路。
2.工作原理:当磁场穿过金属感应片时,会产生电动势,其大小与磁场强度成正比。
因此,通过测量电动势,可以确定磁场强度或相应的物理量。
3.应用:磁电式传感器广泛应用于流量计、测速仪、转速表等领域,用于测量流体的流量和速度。
此外,在汽车电子控制系统如ABS防抱死系统、TCS牵引力控制系统等中也发挥着重要作用。
二、霍尔传感器原理及应用霍尔传感器是基于霍尔效应制成的传感器。
当电流通过一个置于磁场中的半导体时,会在电子层面上产生电压,即霍尔电压。
这种传感器能够将磁场强度转换为电信号,从而实现对各种物理量的测量。
1.结构:霍尔传感器通常由半导体、固定磁场和连接线组成。
半导体通常被夹在两个导电片之间,形成一个霍尔电场。
2.工作原理:当电流通过霍尔传感器时,会在霍尔电场上产生电压,即霍尔输出。
霍尔输出的大小与磁场强度成正比,因此通过测量霍尔输出,可以确定磁场强度或相应的物理量。
3.应用:霍尔传感器在各种电子设备中广泛应用,如电流检测、位置测量、转速表、安全气囊控制等。
此外,霍尔传感器还被用于汽车电子控制系统如发动机控制、ABS防抱死系统等。
三、注意事项使用磁敏式传感器时,需要注意以下几点:1.磁场强度:确保磁敏元件工作在适当的磁场强度范围内,以免损坏传感器。
磁敏传感器应用举例及原理磁敏传感器,简称磁传感器,是一种常用的磁性测量设备。
它可以测量磁场、磁铁、电机转速、位置、方位、温度等一系列参数,具有响应速度快、精度高、稳定性好等优点。
本文将从磁传感器的应用举例及原理两个方面进行详细介绍。
一、磁传感器的应用举例1. 磁传感器在汽车领域的应用磁传感器在汽车领域中有着广泛的应用。
例如,在发动机控制系统中,磁传感器能够感知发动机传动轴的旋转速度,并将这一信息反馈给电控单元,从而实现发动机控制、点火、燃烧等功能;在刹车系统中,磁传感器能够感知刹车踏板的行程,并将这一信息传输给ABS系统,实现刹车压力的控制和调节等多个功能。
2. 磁传感器在工业领域的应用在工业领域中,磁传感器同样有着广泛的应用。
例如,在机器人的调节和控制中,磁传感器能够感知各个机械部件的位置、速度和方向等信息,从而实现机器人的动作调节、定位和导航等功能;在电机控制领域中,磁传感器能够感知电机的转速和位置等信息,并将这些信息反馈给电控单元,实现电机运转的控制和调整。
3. 磁传感器在安防领域的应用磁传感器在安防领域中同样有着广泛的应用。
例如,在门禁系统中,磁传感器能够检测门体是否关闭,从而实现门禁的控制和管理;在反盗系统中,磁传感器能够感知物品是否被移动或者被拆下,从而实现对物品的监控和保护。
二、磁传感器的原理磁传感器的本质原理是利用霍尔效应或者安培效应检测磁场的强度和方向等参数。
下面我们分别介绍这两种检测方法的原理。
1. 霍尔效应检测磁场霍尔效应是指在材料内注入电流时,当该材料与磁场相交时,磁场会使材料内的自由电子沿磁力线运动,并在材料内产生电压差。
这种电压差称为霍尔电压,具有与磁场强度和方向等相关的特性。
因此,通过测量材料内的霍尔电压,可以确定磁场的强度和方向。
2. 安培效应检测磁场安培效应是指在传导物质中流过电流时,当该物质与磁场相交时,磁场会使该物质内的电荷载流子发生偏转或者旋转,产生感应电势。
磁敏传感器的工作原理
磁敏传感器是一种广泛应用的传感器,用于检测环境中的磁场强度及其变化。
它往往由一种磁敏元件和其它元件组成,能够将外界磁场变化转换为可测量的电信号。
磁敏传感器放大的磁场强度信号可以用于控制系统中磁场的振动和旋转。
磁敏传感器的工作原理可以用模拟和数字的方式表示,根据传感器的不同功能,可以分为模拟磁敏传感器和数字磁敏传感器。
模拟磁敏传感器的工作原理,当磁场强度的变化时,通过模拟电路的工作原理,磁敏元件的磁感应电阻变化,从而使电流产生变化,以此来检测外界磁场的强度变化。
数字磁敏传感器的工作原理和模拟的相似,但是它直接产生数字输出,从而更加精确。
与模拟磁敏传感器不同,数字磁敏传感器以数字信号的形式来检测外界磁场的强度变化。
数字磁敏传感器的优点在于它能够更精确地检测到磁场强度,并且可以对磁场强度作出更精确的控制和调节。
而模拟磁敏传感器往往会有噪音的影响,影响检测结果的准确性。
- 1 -。
磁敏传感器的工作原理
磁敏传感器的工作原理
磁敏传感器是一种特殊的传感器,它可以通过受外界磁场影响而发出信号,从而判断并处理外界物理信息。
它因其具有稳定、无损耗、可靠性高及抗干扰能力强而广泛应用于各种机电设备中。
磁敏传感器的工作原理主要分为三种:
一、磁复用原理:当外界磁场发生变化时,传感器内固定的磁体原子会出现相应的微小运动,这一运动由传感器转换器转换为电讯号,最终表现为改变的输出信号。
二、磁桥原理:此类传感器具有极高的精度,它利用磁场引起抵消力对横桥相对应的角度变化,探测磁场的变化,然后通过放大器放大此变化,最后将变化转换成电流。
三、液体磁力数字原理:磁感应式旋转编码器利用光电头和聚合物液体磁力计角度拆分可以达到高精度,因为液体在外界磁场的影响下会出现微小变化,可以将其转换为电讯号,从而实现方位角度的精确检测。
- 1 -。