烟风道阻力降计算
- 格式:xls
- 大小:44.00 KB
- 文档页数:2
烟风煤粉管道阻力计算《燃烧及制粉系统计算手册》试
用稿之六
烟风煤粉管道阻力计算《燃烧及制粉系统计算手册》试用稿之六
1 [计算步骤]
(1)将静压力换算为静压阻力
根据烟风管道的静压力可以换算为静压阻力:
静压阻力=静压力×烟气流速的平方÷管道水平长度
其中管道水平长度为以米为单位的实际长度。
(2)将动压力换算为动压阻力
根据烟风管道的动压力可以换算为动压阻力:
动压阻力=动压力×烟气流速的平方÷管道水平长度
其中管道水平长度为以米为单位的实际长度。
(3)计算总阻力
总阻力等于管道水平段内的动压阻力和静压阻力之和。
2 [计算示例]
计算一烟风煤粉管道的阻力,其参数如下:管径:200mm
烟气流速:20m/s
静压力:1000Pa
动压力:400Pa
管道水平长度:8m
计算过程如下:
(1)将静压力换算为静压阻力
静压阻力=1000Pa×20m/s的平方÷8m
= 5000Pa×m2/8m
= 625Pa/m
(2)将动压力换算为动压阻力
动压阻力=400Pa×20m/s的平方÷8m = 8000Pa×m2/8m
= 1000Pa/m
(3)计算总阻力
总阻力=静压阻力+动压阻力
= 625Pa/m+1000Pa/m
= 1625Pa/m。
烟风阻力计算一、锅炉烟气总阻力计算ΣΔh=Δh L+Δh bt+Δh sm+Δh ky+Δh cc+Δh yd+Δh yc(公式一)式中ΣΔh——烟气系统总阻力(Pa)Δh L——炉膛出口出的负压,因燃气锅炉为微正压燃烧(无该项);Δh bt——锅炉本体受热面阻力,根据厂家资料为950Pa;Δh sm——省煤器阻力,根据厂家资料为30Pa;Δh ky——空气预热器阻力(无该项);Δh cc——除尘器阻力(无该项);Δh yd——烟道阻力Δh yc——烟囱阻力1.1烟道阻力计算Δh yd=Δh m+Δh j=(ΛL/d+ε)×ω2ρ0/2×273/(273+t)(公式二) 式中Δh yd——烟道阻力(Pa)Λ——摩擦阻力系数,查表8.4.5-2得Λ取0.03;L——烟道长度取3米;d——烟道直径0.45mε——局部阻力系数0.7ω——气体流速,按9m/sρ0——气体密度,按1.34Kg/Nm3t——烟气平均温度,按80℃将以上数据代入公式二得,Δh yd=(0.03×3/0.45+0.7)×92×1.34/2×273×(273+80) =37.8Pa1.2烟囱阻力计算Δh yc=ΔP m+ΔP c=ΛHωpj2/2g/d pj×ρpj +Aωc2/2×ρc (公式三) 式中Δh yc——烟囱阻力Λ——烟囱的摩擦阻力,取0.04d pj——烟囱直径0.45mH——烟囱高度15mωpj——烟气流速,按9m/sρpj——烟气密度,按1.34Kg/Nm3A——烟囱出口阻力系数,取1.0将以上数据代入公式三得,Δh yc=0.04×15×92/2×9.8/0.45×1.34+1.0×92/2×1.34 =61.7Pa1.3将以上计算结果代入公式一即可得到锅炉烟气总阻力ΣΔh=Δh L+Δh bt+Δh sm+Δh ky+Δh cc+Δh yd+Δh yc=950+30+37.8+61.7=1079.5Pa二、烟囱抽力计算S=Hg[ρ0K×273/(273+t k)-ρ0y×273/(273+t pj)](公式四)式中S——烟囱抽力H——烟囱高度,取15米ρ0K——标态下空气密度,取1.293kg/m3ρ0y——标态下烟气密度,取1.34kg/m3t k——空气温度,取10℃t pj——烟气平均温度,取80℃则S=15×9.8×[(1.293×273/(273+10)- 1.34×273/(273+80)]=31.4Pa四、燃烧器所提供的压头根据燃烧器负荷曲线可知,燃烧器在额定工况下所提供的压头为1200Pa。
燃煤锅炉房烟道风道阻力计算2008-06-19 15:33:43| 分类:热电联盟| 标签:|字号大中小订阅1.锅炉烟气系统总阻力按下式计算:h=hL+hbt+hsm+hky+hcc+hyd+hys (8.4.5-1) 式中h 烟气系统总阻力(Pa);hL 炉膛出口处的负压(Pa)有鼓风机时,一般取hL=20~40Pa;无鼓风机时,取hL=20~30Pahbt 锅炉本体受热面阻力(Pa),由锅炉制造厂提供;hsm 省煤器阻力(Pa),由锅炉制造厂提供;hky 空气预热器阻力(Pa),由锅炉制造厂提供;hcc 除尘器阻力(Pa),根据除尘设备厂提供资料确定一般对旋风除尘器其阻力约为600~800Pa,多管除尘器阻力约为800~lO00Pa,水膜降尘器阻力约为800~1200Pa;电除尘器阻力每级约200~300Pa,一般为1~3级;布袋除尘器阻力与积灰厚度和清灰频率有关,一般设计可按500~1200Pa考虑hyd 烟道阻力(Pa),hyd包括摩擦阻力hm和局部阻力hj;hm和hj按本条第3款计算hys 烟囱阻力(Pa)2.燃煤锅炉空气系统的总阻力按下式计算:h=hfd+hky+hLP+hr (8.4.5-2)式中h 空气系统总阻力(Pa);hfd 风道阻力(Pa),包括摩擦阻力hm和局部阻力hj,见本条第3款;hky 空气预热器阻力(Pa),由锅炉制造厂提供;hLp 炉排阻力(Pa);hr 燃料层阻力(Pa)炉排与燃料层的阻力取决于炉子型式和燃料层厚度等因素,宜取制造厂给定数据为计算依据对于出力为6t/h以下的锅炉,可参考表8.4.5-1表8.4.5-1层燃炉炉排下所需空气压力炉排型式炉排下风压(Pa) 备注倾斜往复炉炉排200~500 表中较大的阻力用于燃烧细粉末多的烟煤、无烟煤、贫煤和结焦性较强的煤种快装锅炉链条炉排350~7003.烟道和风道的阻力包括摩擦阻力和局部阻力两部分组成,按下式进行计算:Δhd=Δhm+Δhj=9.8×(λL+ε)×ω2×ρ0×273(8.4.5-3)d 2 273+t=4.9×(λL+ε)×ω2×ρ0×273 d 273+t式中Δhd—烟道或风道阻力(Pa);λ—摩擦阻力系数,见表8.4.5-2;L —管道长度(m);d —管段直径(m);对非圆形管道采用当量直径dd,dd=4F/U;(F、U分别是管道截面的面积和周长);ε—局部阻力系数;ω—气体流速(m/s);ρ0—气体(空气或烟气)在标准状态下的密度,取空气的ρ0=1.293kg/Nm3,烟气ρ0=1.34kg/Nm3;t —气体(空气或烟气)温度(℃);Δhm和Δhj分别为烟道或风道的摩擦阻力和局部阻力(Pa)。
第三节 管道阻力空气在风管内的流动阻力有两种形式:一是由于空气本身的黏滞性以及空气与管壁间的摩擦所产生的阻力称为摩擦阻力;另一是空气流经管道中的管件时(如三通、弯头等),流速的大小和方向发生变化,由此产生的局部涡流所引起的阻力,称为局部阻力。
一、摩擦阻力根据流体力学原理,空气在管道内流动时,单位长度管道的摩擦阻力按下式计算:ρλ242v R R s m ⨯= (5—3) 式中 Rm ——单位长度摩擦阻力,Pa /m ;υ——风管内空气的平均流速,m /s ;ρ——空气的密度,kg /m 3;λ——摩擦阻力系数;Rs ——风管的水力半径,m 。
对圆形风管:4D R s =(5—4)式中 D ——风管直径,m 。
对矩形风管 )(2b a abR s += (5—5)式中 a ,b ——矩形风管的边长,m 。
因此,圆形风管的单位长度摩擦阻力ρλ22v D R m ⨯= (5—6) 摩擦阻力系数λ与空气在风管内的流动状态和风管内壁的粗糙度有关。
计算摩擦阻力系数的公式很多,美国、日本、德国的一些暖通手册和我国通用通风管道计算表中所采用的公式如下:)Re 51.27.3lg(21λλ+-=D K (5—7)式中 K ——风管内壁粗糙度,mm ;Re ——雷诺数。
υvd=Re (5—8)式中 υ——风管内空气流速,m /s ;d ——风管内径,m ;ν——运动黏度,m 2/s 。
在实际应用中,为了避免烦琐的计算,可制成各种形式的计算表或线解图。
图5—2是计算圆形钢板风管的线解图。
它是在气体压力B =101.3kPa 、温度t=20℃、管壁粗糙度K =0.15mm 等条件下得出的。
经核算,按此图查得的Rm 值与《全国通用通风管道计算表》查得的λ/d 值算出的Rm 值基本一致,其误差已可满足工程设计的需要。
只要已知风量、管径、流速、单位摩擦阻力4个参数中的任意两个,即可利用该图求得其余两个参数,计算很方便。
图5—2 圆形钢板风管计算线解图[例] 有一个10m 长薄钢板风管,已知风量L =2400m 3/h ,流速υ=16m /s ,管壁粗糙度K =0.15mm ,求该风管直径d 及风管摩擦阻力R 。
烟道改造阻力数值分析
根据工艺图纸,按照实际尺寸,经Fluent软件分析后得出下列相关分析报告:
以上三图是按100%进风量计算,得出实际压损(包括烟道摩擦损失等)为:第一图(烟道进口),707Pa,917 Pa
第二图(中间弯管段),457.5Pa
第三图(风机前进风口),62.7Pa
总阻力:917+457.5+62.7=1437.2 Pa
以上三图是按75%进风量计算,得出实际压损(包括烟道摩擦损失等)为:第一图(烟道进口),707Pa,
第二图(中间弯管段),302.4Pa
第三图(风机前进风口),38Pa
总阻力:707+302.4+38=1047.4Pa
改造后,增加中间弯管段管道大小,弯管改为直管,风速降低明显,压损降低明显,但进风口,风机进口前端管路没有改变,此段压损不变,以上三图是按100%进风量计算,得出实际压损(包括烟道摩擦损失等)为:
第一图(烟道进口),687.5Pa,
第二图(中间弯管段),180.5Pa
第三图(风机前进风口),62.7Pa
总阻力:687.5+180.5+62.7=930.7Pa
注:风机前三通没有尺寸,未作分析,压降未计入烟道总压损。
15.烟道阻力损失及烟囱计算烟囱是工业炉自然排烟的设施,在烟囱根部造成的负压——抽力是能够吸引并排烟的动力。
在上一讲中讲到的喷射器是靠喷射气体的喷射来造成抽力的,而烟囱是靠烟气在大气中的浮力造成抽力的,其抽力的大小主要与烟气温度和烟囱的高度有关。
为了顺利排出烟气,烟囱的抽力必须是足够克服烟气在烟道内流动过程中产生的阻力损失,因此在烟囱计算时首先要确定烟气总的阻力损失的大小。
15.1 烟气的阻力损失烟气在烟道内的流动过程中造成的阻力损失有以下几个方面:摩擦阻力损失、局部阻力损失,此外,还有烟气由上向下流动时需要克服的烟气本身的浮力――几何压头,流动速度由小变大时所消耗的速度头——动压头等。
15.1.1 摩擦阻力损失摩擦阻力损失包括烟气与烟道壁及烟气本身的粘性产生的阻力损失,计算公式如下:t m h dLh λ=(mmH 2O) )1(2h 0204t gw βγ+= (mmH 2O)式中:λ—摩擦系数,砌砖烟道λ=0.05 L —计算段长度,(m ) d —水力学直径)(4m uFd =其中 F —通道断面积(㎡);u —通道断面周长(m );t h —烟气温度t 时的速度头(即动压头)(mmH 2O);0w —标准状态下烟气的平均流速(Nm/s );0γ—标准状态下烟气的重度(㎏/NM 3); β—体积膨胀系数,等于2731; t —烟气的实际温度(℃)15.1.2 局部阻力损失局部阻力损失是由于通道断面有显著变化或改变方向,使气流脱离通道壁形成涡流而引起的能量损失,计算公式如下:)1(202t gw K Kh h t βγ+==(㎜H 2O)式中 K —局部阻力系数,可查表。
15.1.3 几何压头的变化烟气经过竖烟道时就会产生几何压头的变化,下降烟道增加烟气的流动阻力,烟气要克服几何压头,此时几何压头的变化取正值,上升烟道与此相反,几何压头的变化取负值。
几何压头的计算公式如下:)(y k j H h γγ-=(㎜H 2O )式中 H —烟气上升或下降的垂直距离(m )k γ—大气(即空气)的实际重度 (kg/m 3)y γ—烟气的实际重度(kg/m 3)图15.1 为大气中每米竖烟道的几何压头,曲线是按热空气算出的,烟气重度与空气重度差别不大时,可由图15.1查取几何压头值。
关于通风管道阻力的计算与公式和方法通风管道阻力是指空气在管道内流动过程中所克服的运动阻力,计算和求解通风管道阻力是工程设计中非常重要的一项内容。
下面将介绍通风管道阻力的计算公式和方法。
一、计算公式:通风管道阻力的计算公式一般可以分为两种情况:对于圆形管道,采用简化计算公式;对于非圆形管道,一般采用雷诺数公式或进口流量公式。
1.圆形管道的简化计算公式:(1)流量公式:Q=πd²V/4其中,Q为流量,d为管道直径,V为流速。
(2)雷诺数公式:Re=dVρ/μ其中,Re为雷诺数,ρ为空气密度,μ为空气动力粘度。
(3)彭伯托公式:ΔP=KQ²其中,ΔP为管道阻力,K为阻力系数,Q为流量。
2.非圆形管道的计算公式:非圆形管道的计算公式相对复杂,一般需要根据具体的几何形状和流速情况进行求解。
二、计算方法:通风管道阻力的计算方法主要有以下几种:1.试算法:试算法是通过对不同管道直径和流速的组合进行试算,根据实测数据绘制函数曲线,然后通过函数曲线来计算阻力。
这种方法相对简单易行,适用于不需要精确计算的情况。
2.实测法:实测法是通过在实际通风系统中进行流量和压力的实测,然后根据实测数据来计算阻力。
这种方法的计算结果较为准确,但需要实际设备和条件的支持。
3.数值模拟法:数值模拟法是利用计算机进行数值模拟,通过对通风系统进行建模,并利用数值方法求解流场和压力场分布,从而计算阻力。
这种方法的计算结果精度较高,但需要一定的计算资源和专业软件的支持。
4.经验公式法:经验公式法是通过总结和归纳大量实测数据,得出经验公式来计算阻力。
这种方法适用于一般工程设计情况下的快速计算,但精度相对较低。
三、影响因素:通风管道阻力的计算还需要考虑一些影响因素,如管道长度、管道直径、流速、管道材料、管道内壁粗糙度等。
不同的影响因素会对通风管道阻力产生不同程度的影响,因此在计算阻力时需要综合考虑。
综上所述,通风管道阻力的计算需要根据具体的管道形状和流动条件选择合适的计算公式和方法,并考虑影响因素来进行精确计算。
管道阻力计算一、管道示意图管道俯视图管道主视图二、流速选择除尘管道内最低空气流速的确定:根据《简明通风设计手册》表6-11 ,已知颗粒物属于其他类别,可确定该车间的粉尘垂直最小风速为8m/s ,水平最小风速为10m/s 。
三、计算管径和压力损失 各个管段风量:(1)管段1的计算 公式v Q d /8.18⨯= 式中:Q ——体积流量,m 3 / hd ——管径,mm因为Q 1=Q B =1174.00m 3/h ,v=12m/s ,则:mmd 186121174.008.18=⨯=查《全国通用通风管道计算表》得d1=200mm ,λ/ d =0.104,实际流速v1=10.37 m / s ,动压为8.82 mmH2O 。
l =(4500-1115)+800+7400=11585 mm 。
则摩擦压力损失为:2v ·d l =ΔP 2l ρλΔPl =11.585×0.104×8.82×9.8=104.14 Pa各管件局部压损系数为 : 集气罩B :ξ=0.19 ;90°弯头(R / d =1.5)两个,ξ=0.21 ; 30°直流三通,ξ13=0.20 。
Σξ=0.19+0.21×2+0.20=0.81 则局部压损2v Σξ·=Δp 2m ρ=0.81×8.82×9.8=70.01Pa总压:Δp 1=Δpl +Δpm =104.14+70.01=174.15 Pa(2)管段2的计算 公式v Q d /8.18⨯= 式中:Q ——体积流量,m 3 / hd ——管径,mm因为Q 2=Q A =2616.33m 3/h ,v=12m/s ,则:mmd 278122616.338.18=⨯=查《全国通用通风管道计算表》得d2=280mm ,λ/ d =0.0681,实际流速v2=11.79m / s ,动压为8.82 mmH2O 。
第三节 管道阻力空气在风管内的流动阻力有两种形式:一是由于空气本身的黏滞性以及空气与管壁间的摩擦所产生的阻力称为摩擦阻力;另一是空气流经管道中的管件时(如三通、弯头等),流速的大小和方向发生变化,由此产生的局部涡流所引起的阻力,称为局部阻力。
一、摩擦阻力根据流体力学原理,空气在管道内流动时,单位长度管道的摩擦阻力按下式计算:ρλ242v R R s m ⨯= (5—3) 式中 Rm ——单位长度摩擦阻力,Pa /m ;υ——风管内空气的平均流速,m /s ;ρ——空气的密度,kg /m 3;λ——摩擦阻力系数;Rs ——风管的水力半径,m 。
对圆形风管:4D R s =(5—4)式中 D ——风管直径,m 。
对矩形风管 )(2b a abR s += (5—5)式中 a ,b ——矩形风管的边长,m 。
因此,圆形风管的单位长度摩擦阻力ρλ22v D R m ⨯= (5—6) 摩擦阻力系数λ与空气在风管内的流动状态和风管内壁的粗糙度有关。
计算摩擦阻力系数的公式很多,美国、日本、德国的一些暖通手册和我国通用通风管道计算表中所采用的公式如下:)Re 51.27.3lg(21λλ+-=D K (5—7)式中 K ——风管内壁粗糙度,mm ;Re ——雷诺数。
υvd=Re (5—8)式中 υ——风管内空气流速,m /s ;d ——风管内径,m ;ν——运动黏度,m 2/s 。
在实际应用中,为了避免烦琐的计算,可制成各种形式的计算表或线解图。
图5—2是计算圆形钢板风管的线解图。
它是在气体压力B =101.3kPa 、温度t=20℃、管壁粗糙度K=0.15mm 等条件下得出的。
经核算,按此图查得的Rm 值与《全国通用通风管道计算表》查得的λ/d 值算出的Rm 值基本一致,其误差已可满足工程设计的需要。
只要已知风量、管径、流速、单位摩擦阻力4个参数中的任意两个,即可利用该图求得其余两个参数,计算很方便。
图5—2 圆形钢板风管计算线解图[例] 有一个10m 长薄钢板风管,已知风量L =2400m 3/h ,流速υ=16m /s ,管壁粗糙度K =0.15mm ,求该风管直径d 及风管摩擦阻力R 。
代谢病医院DN1200烟囱自生通风力及阻力计算1 、烟囱自生通风力计算烟道长度 :①1200:垂直段L1=17m①1200:长度18m计算: 1 、烟囱自生力通风力 hzshzs=h( p k o- p ) g (Pa)式中:p k o——周围空气密度,按p k0=1、293 Kg/m3——烟气密度 ,Kg/m3g——重力加速度,9、81m/ s2h —计算点之间的垂直高度差 ,h=12m标准状况下的烟气密度P 0 = 1、34 Kg/m3则P = p 0 273/273+t =1、34*273/273+170=0、825Kg/n3 hzs=12*(1、293-0、825)*9、81=55、1Pa2、考虑当地大气压 ,温度及烟囱散热的修正。
当地大气压P=100、48kpa,最热天气地面环境温度t=29 C则p k= p k o (273/273+29)*100480/101325=1、16 Kg/m3烟囱内每米温降按0、5C考虑,则出口烟气温度为: 170-(17+18)*0、5=152、5C 则烟气内的平均烟温为(170+152、5)/2=161、25C 烟囱内烟气的平均密度为 :=1、 34*[273/(273+161 、 25)]*100480/101325=0、 853Kg/m3修正后的hzs=17*(1、 16-0、853)*9 、 81=51、2( pa)2、烟囱阻力计算已知条件:锅炉三台,每台烟气量:5100m3h 烟道长度:①1200:垂直段L1= 17m①1200:水平长度18m 入口温度:170 C烟囱出口温度:152、5CEA hy= △ h m+ △ h j+ △ h yc式中A hm——烟道摩擦阻力局部阻力A h yc ――烟囱出口阻力A h m=入 L/d di (W2/2)• p pa式中入一一摩擦阻力系数,对金属烟道取0、02L――烟道总长度,L=35mW——烟气流速,m/s 3*5100* m 3/h3、8m/s3、14*(1、2/2)2*36OOd dl――烟道当量直径,圆形烟道为其内径p烟气密度,Kg/m3 尸 p 273/(273+如)=0、826p――标准状况下烟气密度,1、34 Kg/m3;t pj ――烟气平均温度A h m=0、02*35/1、2*(3、82/2)*O、853=3、6 paA h j =(9O度弯头个数 *0、7)*W2/2*P=(3*O、7)*3、82/2*O、853=12、 9paA h yc二?*(W2/2)*P£ ――出口阻力系数,查表1、1=1、1*(3、82/2)*O、853=6、 8pa2A hy=3、6+12、9+6、8=23、3pa自拔力:51、2 pa >阻力:23、3 pa,因此烟囱可以克服自身阻力顺畅排烟代谢病医院DN400烟囱自生通风力及阻力计算1、烟囱自生通风力计算烟道长度:①400:垂直段L1=17m①400:长度22m计算:1、烟囱自生力通风力hzshzs=h( p k o- p ) g (Pa)式中:p k O——周围空气密度,按p k o=1、293 Kg/m3P——烟气密度,Kg/m3g——重力加速度,9、81m/ s2h——计算点之间的垂直高度差,h=12m标准状况下的烟气密度P 0 = 1、34 Kg/m3则P = P 0 273/273+t =1、34*273/273+170=0、825Kg/nB hzs=12*(1、293-0、825)*9、81=55、1Pa2、考虑当地大气压,温度及烟囱散热的修正。
第三节 管道阻力空气在风管内的流动阻力有两种形式:一是由于空气本身的黏滞性以及空气与管壁间的摩擦所产生的阻力称为摩擦阻力;另一是空气流经管道中的管件时(如三通、弯头等),流速的大小和方向发生变化,由此产生的局部涡流所引起的阻力,称为局部阻力。
一、摩擦阻力根据流体力学原理,空气在管道内流动时,单位长度管道的摩擦阻力按下式计算:ρλ242v R R s m ⨯= (5—3)式中 Rm ——单位长度摩擦阻力,Pa /m ;υ——风管内空气的平均流速,m /s ;ρ——空气的密度,kg /m 3;λ——摩擦阻力系数;Rs ——风管的水力半径,m 。
对圆形风管:4D R s = (5—4)式中 D ——风管直径,m 。
对矩形风管)(2b a ab R s += (5—5)式中 a ,b ——矩形风管的边长,m 。
因此,圆形风管的单位长度摩擦阻力ρλ22v D R m ⨯= (5—6)摩擦阻力系数λ与空气在风管内的流动状态和风管内壁的粗糙度有关。
计算摩擦阻力系数的公式很多,美国、日本、德国的一些暖通手册和我国通用通风管道计算表中所采用的公式如下:)Re 51.27.3lg(21λλ+-=D K(5—7)式中 K ——风管内壁粗糙度,mm ;Re ——雷诺数。
υvd =Re (5—8)式中 υ——风管内空气流速,m /s ;d ——风管内径,m ;ν——运动黏度,m 2/s 。
在实际应用中,为了避免烦琐的计算,可制成各种形式的计算表或线解图。
图5—2是计算圆形钢板风管的线解图。
它是在气体压力B =101.3kPa 、温度t=20℃、管壁粗糙度K =0.15mm 等条件下得出的。
经核算,按此图查得的Rm 值与《全国通用通风管道计算表》查得的λ/d 值算出的Rm 值基本一致,其误差已可满足工程设计的需要。
只要已知风量、管径、流速、单位摩擦阻力4个参数中的任意两个,即可利用该图求得其余两个参数,计算很方便。
图5—2 圆形钢板风管计算线解图[例] 有一个10m长薄钢板风管,已知风量L=2400m3/h,流速υ=16m/s,管壁粗糙度K=0.15mm,求该风管直径d及风管摩擦阻力R。