几种测量机床导轨直线度误差的方法
- 格式:pdf
- 大小:147.71 KB
- 文档页数:3
导轨直线度测量方法
导轨直线度的测量方法有多种,以下是一些常见的方法:
1. 水平仪检测:水平仪是检测导轨直线度的常用仪器,使用方便且检测精度较高。
通过观察水平仪的读数,可以判断导轨的直线度误差。
2. 光学平直仪检测:光学平直仪可用来检测导轨在垂直面和水平面的直线度误差,且精度较高。
但光学平直仪的安装调整较为复杂,需请专业的计量人员操作。
3. 钢丝和读数显微镜检测:对于行程长度大于米的机床,当导轨直线度要求不太高时,可用钢丝和读数显微镜对导轨在水平面的直线度进行检测。
因为钢丝的直径误差对检测精度有直接影响,所以精度不太高。
4. 检查棒和百分表检测:对于行程长度小于等于米的机床,可用检查棒和百分表检测机床床鞍沿导轨的运动在水平面的直线度误差。
5. 节距法测量:一般导轨直线度通常利用水平仪与桥板采用节距法来测量,根据得到的一条近似于导轨实际线的误差曲线来确定导轨的直线度误差。
6. 直尺反转测量误差分离法:在高精度导轨直线度的测量中,由于导轨本身直线度等级与检测工具直线度等级处于一个数量级上,节距法无法将导轨与工具的直线度误差分离开来。
这时需要使用“直尺反转测量误差分离法”来进行误差的有效分离。
以上方法中,无基准测量是被测面上取一定量的测试点,对测量数据进行一定方法的处理。
有基准测量则是将被测直线与所选的标准直线进行比较。
在实际操作中,可以根据导轨的类型、精度要求以及实际条件选择适合的测量方法。
数控机床的精度检测与调整方法数控机床是现代制造业中不可或缺的一种设备,它的精度对于产品的质量和性能起着至关重要的作用。
本文将介绍数控机床的精度检测与调整方法,帮助读者更好地了解和应用这些技术。
一、精度检测方法1. 几何误差检测几何误差是数控机床精度的重要指标,包括直线度、平行度、垂直度、圆度等。
常用的几何误差检测方法有激光干涉仪、三坐标测量仪等。
通过这些设备,可以精确测量机床各个轴向的几何误差,并得出相应的数据。
2. 理论切削路径与实际切削路径对比在数控机床的加工过程中,理论切削路径与实际切削路径之间可能存在偏差。
通过对比理论切削路径与实际切削路径,可以判断数控机床的精度是否达标。
常用的方法是使用光学测量仪器,对切削路径进行高精度的测量和分析。
二、精度调整方法1. 机床结构调整数控机床的结构调整是提高其精度的重要手段。
首先,需要检查机床各个部件的紧固情况,确保机床的刚性和稳定性。
其次,根据几何误差的检测结果,对机床的导轨、滑块等部件进行调整,以减小误差。
2. 控制系统调整数控机床的控制系统对于其加工精度起着至关重要的作用。
通过调整控制系统的参数,可以改善机床的运动精度和定位精度。
常用的调整方法包括增加控制系统的采样频率、优化控制算法等。
3. 刀具与工件的匹配调整刀具与工件的匹配对于加工精度有很大影响。
在数控机床的加工过程中,需要根据工件的要求选择合适的刀具,并对刀具进行调整和校准。
同时,还需要对工件进行检测,确保其尺寸和形状与设计要求一致。
三、精度检测与调整的重要性数控机床的精度检测与调整是保证产品质量和性能的关键环节。
只有通过科学的检测方法,准确地了解机床的精度情况,才能及时采取相应的调整措施,提高机床的加工精度。
这对于提高生产效率、降低成本、提升产品竞争力具有重要意义。
四、未来发展趋势随着制造业的不断发展,数控机床的精度要求也越来越高。
未来,数控机床的精度检测与调整方法将更加精细化和智能化。
机床各部位精度检测知识汇总,⼲货!1、对不同形状的导轨,各表⾯应分别控制哪些平⾯的直线度误差? 答:机床导轨常见形状有矩形导轨和V形导轨。
矩形导轨的⽔平表⾯控制导轨在垂直平⾯内的直线度误差。
矩形导轨的两侧⾯控制导轨在⽔平⾯内的直线度误差。
对V形导轨,因为组成导轨的是两个斜表⾯,所以两个斜表⾯既控制垂直平⾯内的直线度误差,同时也控制⽔平⾯内的直线度误差。
2、导轨直线度误差常⽤检测⽅法有哪些? 答:导轨直线度误差常⽤检测⽅法有:研点法、平尺拉表⽐较法、垫塞法、拉钢丝检测法和⽔平仪检测法、光学平直仪(⾃准直仪)检测法等。
么叫研点法?3、什、什么叫研点法 答:⽤平尺检测导轨直线度误差时,在被检导轨表⾯均匀涂上⼀层很薄的红丹油,将平尺覆在被检导轨表⾯,⽤适当的压⼒作短距离的往复移动进⾏研点,然后取下平尺,观察被检导轨表⾯的研点分布情况及研点最疏处的密度。
研点在导轨全长上均匀分布,则表⽰导轨的直线度误差已达到平尺的相应精度要求。
这种⽅法叫做研点法。
研点法所⽤平尺是⼀根标准平直尺,其精度等级则根据被检导轨的精度要求来选择,⼀般不低于6级。
长度不短于被检导轨的长度(在精度要求较低的情况下,平尺长度可⽐导轨短1/4)。
4、研点法适⽤于哪⼏类导轨直线度误差的检测?答:采⽤刮研法修整导轨的直线度误差时,⼤多采⽤研点法。
研点法常⽤于较短导轨的检测,因为平尺超过2000mm时容易变形,制造困难,⽽且影响测量精度。
刮研短导轨时,导轨的直线度误差通常由平尺的精度来保证,同时对单位⾯积内研点的密度也有⼀定的要求,可根据机床的精度要求和导轨在本机床所处地位的性质及重要程度,分别规定为每25mm×25mm内研点不少于10~20点(即每刮⽅内点⼦数)。
⽤研点法检测导轨直线度误差时,由于它不能测量出导轨直线度的误差数值,因⽽当有⽔平仪时,⼀般都不⽤研点法作最后检测。
但是,应当指出,在缺乏测量仪器(⽔平仪,光学平直仪等)的情况下,采⽤三根平尺互研法⽣产的检验平尺,可以较有效地满⾜⼀般机床短导轨直线度误差的检测要求。
直线度误差的测量直线度误差一般是指机床导轨在全部长度上的实际直线度与理想直线的偏差值,它关系机床的精确度,影响加工工件的质量,对于高精度的数控机床来说,控制直线度误差在允许的范围内就显得更为重要。
直线度误差分为垂直面的直线度误差和水平内的直线度误差两种,这里通常指垂直面的直线度误差。
1、用百分表来打表的方法测量具体步骤见教材相关内容。
测量时应当注意几点:1.百分表的表杆触头要与被测表面垂直,否则会产生测量误差,不是准确的误差值。
2.移动表面要光滑平直,自身的直线度要高。
3.表杆触头起点位置时,转动表盘调整表针对准零位。
2.一般选用框式水平仪和光学自准直仪来测量,检测工具不同,但原理相似。
对于高精度的数控机床,要借助电脑和专用软件进行检测并给予修正。
这里主要介绍常用的水平仪的测量原理和使用方法。
测量直线度误差的水平仪为200 mm×200 mm的框式结构,其精度为0.02 mm/m,即当水平仪放在1m长的垫板上,一端垫起0.02 mm高时,其水平仪中的水泡必定向低端移动一个刻度,如果移动了两个刻度,则表面垫起的高度应为0.04 mm,一般导轨的长度较短,常以200 mm为一测量单位,即直接把水平仪的底面放在被检测的导轨上,由于底面长为200 mm,所以当水平仪上的气泡向低端移动一刻度时,此时水平仪底面两端的高度差应当为200×0.02/1000 mm=0.004 mm,而决不是0.02 mm,这一点应当注意。
3.将被测导轨按200 mm一段分成若干段,从左向右依次测量200 mm长一段两端的高度差,并列表记录。
表中数字正值表示右端高左端低,负值表示左端高右端低,最后按照所测的数值列出误差图形。
从图形中可以看出终点不在纵坐标的零线上,说明导轨的起点和终点不在同一水平线上,这时图形上的直线度误差反映不是真实情况,要想准确地计算直线度误差应当将两端点调成水平,才能得出实际值,否则应当对图形进行技术处理,通常采用技术处理图形的方法较为简单。
直线度1. 什么是直线度在工程和测量领域中,直线度(Straightness)是指物体表面或者特定部位相对于某个基准线的偏离程度。
直线度是对于物体形状的一种度量,用于评估物体的平直程度。
直线度通常作为一个质量指标,用于判断物体的制造精度和工艺质量。
直线度的单位通常为长度单位,例如毫米(mm)或微米(μm)。
直线度越小,表示物体越平直,制造过程的精度越高。
2. 直线度的测量方法直线度的测量通常使用测量仪器和设备进行,具体的测量方法取决于被测物体的类型和大小。
以下列举几种常见的直线度测量方法:2.1 直线尺直线尺是一种常用的用于测量直线度的工具,它通常由金属或塑料制成。
使用直线尺时,将其与被测物体表面接触,并观察直线尺与物体表面之间的间隙。
如果间隙较大,说明物体表面的直线度较差;如果间隙较小,说明物体表面较平直。
2.2 光学测量仪器光学测量仪器是一种精密测量直线度的设备,常用于对细小物体或高精度工件进行测量。
光学测量仪器利用光学原理,通过对物体表面的光线反射或透射进行测量,来确定物体表面的形状和直线度。
2.3 对尺对尺是一种用于测量直线度的专用工具,它由一根刚性的直线尺和测量头组成。
对尺的使用方法是将测量头与被测物体表面接触并沿着物体表面滑动,通过观察指针的变化来判断物体表面的直线度。
3. 直线度的应用直线度在制造和工程领域中有着广泛的应用,对于各种产品和工件的质量控制和工艺改进起着重要作用。
3.1 机械制造在机械制造过程中,直线度的控制是确保产品精度和质量的关键。
例如,在制造机床时,机床的导轨和滑块的直线度必须控制在一定范围内,以确保机床的运动精度和稳定性。
3.2 电子工业在电子元器件和设备的制造过程中,直线度的要求也很高。
例如,PCB板的表面必须具有很好的平直度,以确保电子元器件的安装和连接精度。
3.3 汽车制造在汽车制造过程中,直线度的控制对于车身和底盘的组装精度非常重要。
直线度的精度可以影响车辆的乘坐舒适性、操控稳定性和安全性能。
第58卷0引言导轨广泛应用于机床设备、输送装置、铁轨等领域。
直线度是导轨非常重要的技术指标,它是指被测导轨实际线对其理想直线的变动量。
导轨直线度误差是形状误差之一[1]。
设备的准确性、可靠性和稳定性都与导轨的直线度高低相关,因此有必要对其进行精确测量。
目前,测试导轨直线度的方法很多,一般有4种方法,分别为水平仪测量法、自准直仪测量法、钢丝和显微镜测量法、激光干涉仪测量法[2]。
本文利用以上4种方法分别测量某导轨的直线度。
其中,水平仪测量法是一种传统的直线度测量方法,其优点是操作简单,使用方便,而且成本较低,缺点是其测量精度较低,需要图解法求解导轨直线度误差,数据的采集和分析很容易出错,不易测量超长导轨的直线度[3];自准直仪测量法的精度相对水平仪测量法有所提高,测量精度为5μm /m 。
此外,由于测试光线在空气中并非绝对准直,测量范围越大,其偏差就越大,不适用于超高精度导轨直线度的测试要求[4];用钢丝和显微镜法测量直线度简单、易操作、读数直观、准确和成本低[5];激光追踪仪测量导轨直线的优点为可测量距离大且测试精度高,一般可到达0.4μm /m ,缺点是在测量超长导轨时,由于光路过长,空气扰动、振动等一系列因素将会对测量产生很大的影响,且该方法的数据处理和运算等比较复杂,因此很难高精度地完成对超长导轨直线度的测量[1]。
收稿日期:2022-09-28;修订日期:2022-10-23作者简介:井溢涛(1985—),男,工程师,从事机械制造工艺技术研究。
E-m ai l :j i ngyi t ao1012@导轨直线度的几种检测方法井溢涛(济南铸锻所检验检测科技有限公司,山东济南250399)摘要:导轨作为机床的一个部件,起到支承和导向作用,主要用于机床的床身、立柱、滑台上。
导轨的几何精度影响工件的表面粗糙度、尺寸精度和形状精度。
本文利用框架水平仪测量法、自准直仪测量法、钢丝和显微镜测量法以及激光跟踪仪测量法四种方法检测同一导轨的直线度,并总结了四种检测方法的适用范围。
对几种机床导轨直线度误差检测方法及应用的探讨作者:白琼来源:《商品与质量·消费视点》2013年第11期摘要:机床导轨直线度误差检验方法有很多,具体操作方法和关键差别很大。
本文主要在操作方法、要点和应用场合方面进行比较和探讨。
关键词:机床导轨;直线度误差;检测引言:导轨是机床的重要运动部件之一。
导轨保证运动部件在外力的作用下(运动部件本身的重量、工件重量、切削力及牵引力等)能准确地沿着一定方向的运动。
因此,导轨是保证工作台运动精度的关键。
在导轨的各项质量指标中,导向精度是其首要指标。
导向精度是指运动导轨沿支承导轨运动时直线运动导轨的直线性及圆周运动导轨的真圆性,以及导轨同其它运动件之间相互位置的准确性,影响导向精度的主要因素有:导轨的几何精度,导轨的接触精度及导轨的结构形式,导轨和基础件结构刚度和热变形等等。
在这些因素中,导轨的直线度精度又起到举足轻重的作用。
导轨直线度对机床加工精度的影响非常大,因此,在机床出厂、修理后都要进行精度测量,以期达到要求的精度。
在导轨的直线度检验中,目前应用较广的检测方法有研点法、垫塞法、平尺拉表法、拉钢丝法、水平仪法、自准直仪法和激光干涉仪法,现在对这几种检测方法的优缺及应用进行简单探讨。
1.研点法研点法就是在被检查导轨的表面均匀的涂上一层显示剂,然后将校准平尺放在导轨上,向下施力按压住反复移动,然后拿走平尺,用方框检测导轨在一定平面内的研点数,一般要求每25mm×25mm内研点不少于10~20点。
平尺的精度等级根据被检导轨的精度要求来选择,一般不可低于6级,长度不短于被检导轨的长度(在精度要求较低的情况下,平尺长度可比导轨短1/4)。
这种方法简单易行,但是不能直接测出误差数值,而且因为平尺超过2000mm时容易变形,制造困难,测量精度难以保证。
因此,在有水平仪时,一般不用研点法做最后检测。
但是在缺乏测量仪器的情况下,可以采用检验平尺检测一般机床短导轨直线度误差。
机床精度测量及测量方法一、引言机床精度测量是机床制造和维护过程中的重要环节。
机床精度直接影响到加工零件的质量和生产效率。
因此,准确测量机床精度是确保机床性能和加工质量的关键。
二、机床精度测量的重要性机床精度是指机床在运行过程中所达到的加工精度,包括位置精度、重复精度、直线度、平行度、垂直度等。
机床精度测量的目的是为了评估机床的加工能力,及时发现和解决机床存在的问题,提高加工质量和生产效率。
三、机床精度测量的方法1. 直线度测量:直线度是指机床导轨面与某一参考直线之间的偏离程度。
直线度测量常用的方法有光学法、激光干涉法和电子触发法等。
其中,光学法是最常用的方法,通过光学仪器测量导轨面的直线度,并与参考直线进行比较,得出直线度的偏差值。
2. 平行度测量:平行度是指机床导轨面与参考平面之间的偏离程度。
平行度测量常用的方法有平行仪测量法、光学法和激光干涉法等。
其中,平行仪测量法是最常用的方法,通过平行仪测量导轨面与参考平面之间的平行度,并与参考平面进行比较,得出平行度的偏差值。
3. 垂直度测量:垂直度是指机床导轨面与参考垂直面之间的偏离程度。
垂直度测量常用的方法有水平仪测量法、光学法和激光干涉法等。
其中,水平仪测量法是最常用的方法,通过水平仪测量导轨面与参考垂直面之间的垂直度,并与参考垂直面进行比较,得出垂直度的偏差值。
4. 位置精度测量:位置精度是指机床在加工过程中所达到的位置精度。
位置精度测量常用的方法有坐标测量法、激光干涉法和编码器测量法等。
其中,坐标测量法是最常用的方法,通过测量工件在机床上的位置,并与设计位置进行比较,得出位置精度的偏差值。
5. 重复精度测量:重复精度是指机床在多次加工同一工件时,各次加工结果之间的偏离程度。
重复精度测量常用的方法有编码器测量法和激光干涉法等。
其中,编码器测量法是最常用的方法,通过测量工件在多次加工过程中的位置,并与设计位置进行比较,得出重复精度的偏差值。
四、机床精度测量的注意事项1. 在进行机床精度测量之前,需要对测量仪器进行校准和检验,确保测量结果的准确性和可靠性。
机床导轨的检验方法(一)机床导轨的检验方法机床导轨是机床的重要部件,直接关系到机床加工的精度和稳定性。
因此,对机床导轨的检验非常重要。
以下是几种机床导轨的检验方法:1. 外观检验外观检验是机床导轨检验的基础。
通过肉眼观察导轨表面,检查有无凹凸痕迹、裂纹、氧化等表面缺陷,以及有无异物或油污等。
若发现问题,需及时进行处理。
2. 直线度检验直线度是机床导轨的关键参数之一。
直线度检验可以采用直线对比法,在Y方向和X方向上检验导轨的直线度,也可以用仪器进行测量。
研究表明,直线度检测的误差主要来自于仪器和工件,因此选择合适的检测仪器非常重要。
3. 垂直度检验垂直度是导轨在Z轴方向上的重要参数。
垂直度检验需要使用测量仪器,在导轨的两个正交面上测量导轨的高度,并计算两个高度之差。
导轨垂直度的误差主要受制于测量仪器的准确度和操作者的技术水平。
4. 表面粗糙度检验表面粗糙度是导轨表面的特征之一,对机床的加工精度和表面质量有一定影响。
表面粗糙度检验可以采用手感观察法、粗糙度检测仪等。
在检测时应注意环境的干净和检测的角度。
5. 磨耗检验随着机床使用时间的增长,导轨表面磨损会逐渐加剧,影响机床的加工精度和稳定性。
磨耗检验可以通过测量导轨表面高度差来实现,也可以在导轨上粘贴毛刷进行检测,从而判断导轨是否需要进行更换或修理。
综合上述几种检验方法,可以全面了解机床导轨的情况,找出其中问题并进行及时处理,从而保证机床加工的质量和精度。
6. 摩擦系数检验摩擦系数是机床导轨性能的重要指标之一,对机床加工质量和耐磨性有很大的影响。
可采用滑动法、盲孔法等方法,检验导轨的摩擦系数,从而对导轨性能进行评估。
同时,还可以通过增加润滑油的使用或改变摩擦面的材料来改善导轨的滑动性能。
7. 其他检验方法除了以上几种机床导轨的检验方法,还可以采用声学检测、X射线检测、激光干涉等技术进行导轨性能的检测。
这些方法在特定情况下可以起到很好的作用,但一般需要较高的技术要求和较昂贵的检测设备。
直线度的检测方法引言直线度是一个物体表面或边缘与理想直线之间的偏差程度,是衡量物体形状精度的重要指标之一。
在制造业中,直线度的检测对于保证产品质量、提高生产效率至关重要。
本文将介绍直线度的概念和意义,并详细介绍几种常用的直线度检测方法。
1. 直线度的定义和意义直线度是指物体表面或边缘与理想直线之间的偏差程度。
它反映了物体形状的准确性和规整性,对于保证工件装配精度、提高产品质量具有重要作用。
在制造业中,许多零部件需要具备一定的直线度要求,如机床导轨、光学元件、传感器等。
如果这些零部件的直线度不达标,可能会导致装配不良、功能失效等问题。
因此,对于制造业来说,准确测量和控制直线度是至关重要的。
2. 直线度检测方法2.1 视觉法视觉法是一种简单且常用的直线度检测方法。
它通过人眼观察物体表面或边缘与参考直线之间的偏差来评估直线度。
具体操作步骤如下:1.准备一条直线作为参考线,可以使用光栅尺、划线仪等工具。
2.将待检测物体放置在平整的工作台上。
3.用目测的方式观察待检测物体表面或边缘与参考直线之间的偏差,并记录下来。
视觉法简单易行,但受到人眼视觉判断能力的限制,对于精度要求较高的直线度检测可能存在一定误差。
2.2 光学投影法光学投影法是一种常用的高精度直线度检测方法。
它利用光学原理将待检测物体表面或边缘投影到屏幕上,并通过测量投影图案与参考直线之间的偏差来评估直线度。
具体操作步骤如下:1.准备一个光学投影仪,它可以将待检测物体表面或边缘投影到屏幕上。
2.将待检测物体放置在适当位置,调整投影仪使得投影图案清晰可见。
3.使用目镜或者测量仪器观察投影图案与参考直线之间的偏差,并记录下来。
光学投影法具有高精度和较低的人为误差,适用于对直线度要求较高的场合。
但需要专用设备和技术支持,成本较高。
2.3 探触法探触法是一种常用的机械式直线度检测方法。
它利用探头测量待检测物体表面或边缘与参考直线之间的距离变化,从而评估直线度。
水平仪的使用(作者未知)一、水平仪的使用和读数水平仪是用于检查各种机床及其它机械设备导轨的不直度、机件相对位置的平行度以及设备安装的水平位置和垂直位置的仪器。
水平仪是机床制造、安装和修理中最基本的一种检验工具。
一般框式水平仪的外形尺寸是200×200mm,精度为0.02/1000。
水平仪的刻度值是气泡运动一格时的倾斜度,以秒为单位或以每米多少毫米为单位,刻度值也叫做读数精度或灵敏度。
若将水平仪安置在1米长的平尺表面上,在右端垫0.02毫米的高度,平尺倾斜的角度为4秒,此时气泡的运动距离正好为一个刻度。
如图:1计算如下:水平仪连同平尺的倾斜角α的大小可以从下式中求出:由tgα= = =0.00002 则α=4秒从上式可知0.02/1000精度的框式水平仪的气泡每运动一个刻度,其倾斜角度等于4秒,这时在离左端200mm处(相当于水平仪的1个边长),计算平尺下面的高度H1为:tgα= =0.00002 H1=tgα×L1=0.00002×200=0.004(mm)由上式可知,水平仪气泡的实际变化值与所使用水平仪垫铁的长度有关。
假如水平仪放在500mm长的垫铁上测量机床导轨,那么水平仪的气泡每运动1格,就说明垫铁两端高度差是0.01mm。
另外,水平仪的实际变化值还与读数精度有关。
所以,使用水平仪时,一定要注意垫铁的长度、读数精度以及单独使用时气泡运动一格所表示的真实数值。
由此得知,水平仪气泡运动一格后的数值,是根据垫铁的长度来决定的。
水平仪的读数,应按照它的起点任意一格为0。
气泡运动一格计数为1,再运动一格计数为2,以此进行累计。
在实际生产中对导轨的最后加工,无论采用磨削、精磨还是手工刮研,多数导轨都是呈单纯凸或单纯凹的状态,机床导轨的直线度产生性也是少见的(加工前的导轨会有性的现象)。
测量导轨时,水平仪的气泡一般按照一个方向运动,机床导轨的凸凹是由水平仪的移动方向和该气泡的运动方向来确定。
导轨直线度的检测方法机床导轨一般时由两条以上的单根导轨组合而成。
按外型可分为矩形导轨和V 型导轨。
按工作方式可分为直线运动导轨和旋转运动导轨。
导轨的直线度可分解为互相垂直的两个平面的直线度,即垂直面内的直线度(见图3-3-1)和水平面内的直线度(见图3-3-2)。
图3-3-1 垂直平面内的直线度检测图3-3-2 水平面内的直线度检测由图3-3-1和图3-3-2所示,导轨的直线度就时指:组成V形(或矩形)导轨的平面与通过该平面的垂直平面(或水平面)的交线的直线度。
常用的检测工具有:水平仪、平尺以及光学仪器入自准仪、钢丝和显微镜等。
当被测件长度不大于1600mm时,选用水平仪、平尺或光学仪器,当被测件长度大于1600mm时,测只可用水平仪和光学仪器检测。
评定机床导轨的直线度误差的方法有最小包容区域法和两点连线法两种。
1(间隙法间隙法是指用量块(或)塞尺测量被测平面导轨和测量基准线(常用平尺类量具体现)间的间隙,直接评定直线度法差值的方法。
如图3-3-3所示,将一标准平尺置于被测平面导轨上,在距离平尺两端各约2/9L(L为平尺长度)处垫上等量块。
然后用片状塞规或塞尺测检平尺工作面和被测导轨面间的间隙。
若将实测间隙减去所用的等高量块的高度值后,小于机床规定的直线度允差:则说明该机床的导轨直线度误差符合精度要求。
图3-3-3 1——等高块 2——量块例:某机床导轨的直线度的允差为0.012mm/m。
等高量块高度为h。
若选用h0mm 厚的片状塞规或塞尺,在导+0.012轨上相距为1m的任何地方均不能塞入,则该导轨的直线度符合精度要求。
2(指示器法此法常用于检测中、小型导轨在垂直平面和水平面内的直线度。
为了降低测量时读数的不确定度,在被测导轨上移动的桥板跨距d取为d?(0.1~0.25)L。
而且,d值应小于或等于500mm,L为导轨长度。
图3-3-4所示为垂直平面内直线度的检测。
首先,将平尺工作面放成水平状,并尽可能靠近被测导轨,距离愈近愈好。
机床导轨的直线度误差直接会影响到零件的加工质量,检测导轨直线度可以提高机器制造机安装的精度、延长机器的工作寿命有着非常重要的作用。
可以掌握测试数据的处理及误差曲线的绘制,掌握方框水平仪及测量平尺的使用方法。
直线导轨直线度检测需准备平尺、方框水平仪、桥板。
下面一起来看看检测步骤:
使用长度500mm的平尺,上面放置200mm的框式水平仪,以500mm长等分机床导轨成若干段,将水平仪放置在导轨的左(右)端,作为检测工作的起点,记下此时水平仪气泡的位置,然后按导轨分段,首尾相接依次放置水平仪,记下水平仪每一段时气泡的位置,填入检测报告中。
检测床身前,直线导轨,擦净导轨表面将床身安置在适当的基础上,并基本调平。
最后作出检测坐标图并计算导轨误差。
用框式水平仪检测机床导轨直线度误差一般机床出厂验收后,按出厂前检测机床导轨很不方便,卧式车床拖板较长(尤其是龙门铣床),使机床导轨不能全长检测,故而采用大溜板上放置水平仪(移动水平)的方法来检测,此方法虽不能百分之百反映导轨直线度误差,却有两个好处,一是经过几次试验,发现此方法的结果略大于导轨的真实直线度误差,即不会出现误判为合格导轨的现象。
二是此方法的结果真实反映已加工工件的误差。
最终结果完全可以作为判定导轨是否需要调整的依据。
下面分别用移动水平和桥板两种方法进行检测并进行比较。
女助手说:“我真没有发现有什么不对的地方,以前的警察也来过几次,我都这么说,毛老师是一个很严谨的人,也很守信的,他失踪前一天还答应对我的论文进行指导的,可是他那天晚上下班后就没有再回来了,我还帮他草拟了接下来一个星期的日程安排,他还亲自提笔改了几处的。
”图11.移动水平检测(1)记录数据。
一般框式水平仪的外形尺寸是200×200mm,精度为0.02/1 000,即气泡移动1格代表每米高度差为0.02mm(倾斜角度为4″,tg4'=0.02/1 000)。
以我厂生产的1.25m卧式车床为例。
导轨可检测6m,大溜板有效长度1.5m。
将水平仪纵向置于刀架平稳处,水平仪记数应以运动方向那一端的水泡管大刻线为准,例如向右运动,就将右端大刻线调0或记0,每次记录都是水泡距离0位的格数,水泡移动与运动方向相同记为+,按程序每次运行500mm,即每板为500mm,共运行12次,记录13个数据(单位:格):0,0.2,0.5,1.0,1.2,1.0,1.8,2.5,3.5,2.5,0.5,1.0,0.5。
(2)计算最大格数,具体过程如下所述。
城乡关系是城市的必然产物,是广泛存在于城市和乡村之间的相互作用、相互影响、相互制约的普遍联系与互动关系,是一定社会条件下政治经济关系等诸多因素在城市和乡村关系的集中反映。
早期的城市空间研究起始于空间的非社会性,如城市地理学、城市经济学都侧重于从理论和模型的变量计算中关注城市发展。
导轨直线度检测方法综述导轨直线度是各项机床精度的基础精度,导轨直线度对多项机床精度都有着直接的影响,其检测仪器和检测方法较多也较为复杂,并应根据不同情况采取不同的检测仪器和不同的检测方法。
本文根据学习内容和自己的理解,对导轨直线度的检测方法作一综合叙述。
一、各种导轨直线度检测方法的使用场合根据学习内容我们知道,导轨直线度有四种检测方法,这四种检测方法分别适用于不同的工作场合。
1.用水平仪检测导轨直线度水平仪是检测导轨直线度的常用仪器,使用方便且检测精度较高。
一般常用外形规格尺寸为200×200,测量精度为0.02/1000的框式水平仪。
但水平仪只能检查导轨在垂直面的直线度误差。
2.用光学平直仪检测导轨直线度光学平直仪可用来检测导轨在垂直面的直线度误差,也可用来检测导轨在水平面的直线度误差,且精度较高。
但光学平直仪的安装调整较为复杂,需请专业的计量人员操作。
对于行程长度大于1.6米的精密机床,其导轨在水平面的直线度最好使用光学平直仪进行检测。
对于行程长度小于等于1.6米的机床,其导轨在水平面的直线度一般不用光学平直仪检测,而用检查棒和百分表进行检测。
3.用钢丝和读数显微镜检测导轨直线度对于行程长度大于1.6米的机床,当导轨直线度要求不太高时,可用钢丝和读数显微镜对导轨在水平面的直线度进行检测。
因为钢丝的直径误差对检测精度有直接影响,所以精度不太高。
为保证导轨直线度的检测精度,最好使用光学平直仪检测大行程机床导轨在水平面的直线度误差。
4.用检查棒和百分表检测导轨直线度对于行程长度小于等于1.6米的机床,可用检查棒和百分表检测机床床鞍沿导轨的运动在水平面的直线度误差。
二、框式水平仪结构及工作原理框式水平仪由框架和水准器组成,水准器是一个带有刻度的弧型密封玻璃管,装有酒精或乙醚,并留有一定长度的气泡,当水平仪移动时,气泡移动一定距离。
对于精度为0.02/1000的水平仪,当气泡移动一格时,水平仪的角度变化为4″,即在1000mm长度两端的高度差为0.02mm(tan4″=1.939×10-5≈0.02/1000,其误差为6.1×10-7)。
水平仪的使用(作者未知)一、水平仪的使用和读数水平仪是用于检查各种机床及其它机械设备导轨的不直度、机件相对位置的平行度以及设备安装的水平位置和垂直位置的仪器。
水平仪是机床制造、安装和修理中最基本的一种检验工具。
一般框式水平仪的外形尺寸是200×200mm,精度为0.02/1000。
水平仪的刻度值是气泡运动一格时的倾斜度,以秒为单位或以每米多少毫米为单位,刻度值也叫做读数精度或灵敏度。
若将水平仪安置在1米长的平尺表面上,在右端垫0.02毫米的高度,平尺倾斜的角度为4秒,此时气泡的运动距离正好为一个刻度。
如图:1计算如下:水平仪连同平尺的倾斜角α的大小可以从下式中求出:由tgα= = =0.00002 则α=4秒从上式可知0.02/1000精度的框式水平仪的气泡每运动一个刻度,其倾斜角度等于4秒,这时在离左端200mm处(相当于水平仪的1个边长),计算平尺下面的高度H1为:tgα= =0.00002 H1=tgα×L1=0.00002×200=0.004(mm)由上式可知,水平仪气泡的实际变化值与所使用水平仪垫铁的长度有关。
假如水平仪放在500mm长的垫铁上测量机床导轨,那么水平仪的气泡每运动1格,就说明垫铁两端高度差是0.01mm。
另外,水平仪的实际变化值还与读数精度有关。
所以,使用水平仪时,一定要注意垫铁的长度、读数精度以及单独使用时气泡运动一格所表示的真实数值。
由此得知,水平仪气泡运动一格后的数值,是根据垫铁的长度来决定的。
水平仪的读数,应按照它的起点任意一格为0。
气泡运动一格计数为1,再运动一格计数为2,以此进行累计。
在实际生产中对导轨的最后加工,无论采用磨削、精磨还是手工刮研,多数导轨都是呈单纯凸或单纯凹的状态,机床导轨的直线度产生性也是少见的(加工前的导轨会有性的现象)。
测量导轨时,水平仪的气泡一般按照一个方向运动,机床导轨的凸凹是由水平仪的移动方向和该气泡的运动方向来确定。