北师大版必修3 1.3 统计图表 学案
- 格式:doc
- 大小:606.00 KB
- 文档页数:11
§1.3统计图表【学习目标】1、结合实例了解几种统计图表的特点和用途;2、理解统计图的意义和作用;3、掌握统计图表的制作与应用;一、知识记忆与理解【自主预习】阅读教材P16-P23,完成下列问题:1、条形统计图是如何定义的?其特点是什么?2、扇形统计图是如何定义的?其特点是什么?3、折线统计图是如何定义的?其特点是什么?4、茎叶图是如何定义的?其特点是什么?【预习检测】1、甲、乙两人在相同条件下各射靶10次,每次射靶的成绩情况如图所示:从折线图上两人射击命中环数的走势看,最有潜力的是________.2、想用统计图来描述下面这些数据,最合适的是( )南美洲面积占地球陆地总面积的11.9%;北美洲面积占地球陆地总面积的16.1%;大洋洲面积占地球陆地总面积的6%;南极洲面积占地球陆地总面积的9.3%.A.条形图B.扇形图C.折线图D.直方图 D.直方图二、思维探究与创新【问题探究】探究一:茎叶图的应用某赛季甲、乙两名篮球运动员每场比赛的得分情况如下:甲的得分12,15,24,25,31,31,36,36,37,39,44,49,50;乙的得分8,13,14,16,23,26,28,33,38,39,51.(1)画出甲、乙两名运动员得分数据的茎叶图;(2)根据茎叶图分析甲、乙两运动员的水平.变式训练1:在某电脑杂志的一篇文章中,每个句子所含的字数如下:10,28,31,17,23,27,18,15,26,24,20,19,36,27,14,25,15,22,11,24,27,17;在某报纸的一篇文章中,每个句子所含的字数如下:27,39,33,24,28,19,32,41,33,27,35,12,36,41,27,13,22,23,18,46,32,22.(1)将这两组数据用茎叶图表示;(2)将这两组数据进行比较分析,得到什么结论?整理反思探究二:下面是权威机构公布的一组反映世界人口的数据:1957年世界人口30亿,17年后(即1974年)增加了10亿,即达40亿;又过13年达到50亿;到1999年全世界总人口达到60亿.以此速度,人口学专家预测到2025年,世界人口将达到80亿;而到2050年人口将超过90亿,其中亚洲人口最多,将达到52.68亿,北美洲3.92亿、欧洲8.28亿、拉丁美洲及加勒比地区8.09亿,非洲17.68亿.有位同学根据以上提供的数据制作了三幅统计图,请根据这些图回答问题:(1)三幅统计图分别表示了什么内容?(2)从哪幅统计图最能看出世界人口的总体变化情况?(3)2050年非洲人口大约将达到多少亿?你是从哪幅统计图中得到这个数据的?(4)2050年亚洲人口比其他各洲人口的总和还要多,你从哪幅统计图中可以明显地得到这个结论?变式训练2:台州某校七(1)班同学分三组进行教学活动,对七年级400名同学最喜欢喝的饮料种类情况、八年级300名同学零花钱的最主要用途情况、九年级300名同学完成家庭作业时间情况进行了全面调查,并分别用扇形图、频数分布直方图、表格来描述整理得到的数据.九年级同学完成家庭作业时间情况统计表时间1小时左右1.5小时左右2小时左右2.5小时左右人数508012050根据以上信息,请回答下列问题:(1)七年级400名同学中最喜欢喝“冰红茶”的人数是多少?(2)补全八年级300名同学中零花钱的最主要用途情况的频数分布直方图.(3)九年级300名同学中完成家庭作业的平均时间大约是多少小时?(结果保留两位小数)三、技能应用与拓展【当堂检测】有关部门从甲、乙两个城市所有的自动售货机中分别随机抽取了16台,记录了8:00~11:00间各自的销售情况(单位:元)甲: 18,8,10,43,5,30,10,22,6,27,25,58,14,18,30,41;乙: 22,31,32,42,20,27,48,23,38,43,12,34,18,10,34,23.请你用适当的方式统计上述数据,然后加以分析比较。
教学准备1. 教学目标三种常用抽样方法2. 教学重点/难点三种常用抽样方法3. 教学用具4. 标签教学过程一、基本知识概要:1.三种常用抽样方法:(1)简单随机抽样:设一个总体的个数为N。
如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样。
简单随机抽样的常用方法:①抽签法,②随机数表法用随机数表进行抽样的步骤:①将总体中的个体编号;②选定开始号码;③获取样本号码。
(2)系统抽样(也称为机械抽样):当总体的个数较多时,采用简单随机抽样较为费事。
这时可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样叫做系统抽样(也称为机械抽样)。
系统抽样的步骤:①采用随机的方式将总体中的个体编号;②整个的编号分段(即分成几个部分),要确定分段的间隔k。
当N/n(N为总体中的个体的个数,n为样本容量)是整数时,k=N/n;当N/n不是整数时,通过从总体中剔除一些个体使剩下的总体中个体的个数N‘能被n整除,这时k=N′/n;③在第一段用简单随机抽样确定起始的个体编号1;④按照事先确定的规则抽取样本(通常是将1加上间隔k得到第2个编号1+k,第3个编号1+2k,这样继续下去,直到获取整个样本)。
(3)分层抽样:当已知总体由差异明显的几部分组成时,为了使样本更充分地反映总体的情况,常将总体分成几个部分,然后按照各部分所占的比例进行抽样,这种抽样叫做“分层抽样”,其中所分成的各部分叫做“层”。
2、总体分布的估计:随着试验次数的不断增加,试验结果的频率值在相应的概率值附近摆动.当试验次数无限增大时,频率值就变成相应的概率了.此时随着样本容量无限增大其频率分布也就会排除抽样误差,精确地反映总体取的概率分布规律,通常称为总体分布.用样本的频率分布去估计总体分布:由于总体分布通常不易知道,我们往往用样本的频率分布去估计总体分布,一般地,样本容量越大,估计越精确.总体分布的估计的两种方式(1)频率分布表(2)频率分布直方图。
精选教课教课设计设计| Excellent teaching plan教师学科教课设计[ 20–20学年度第__学期]任教课科: _____________任教年级: _____________任教老师: _____________xx市实验学校《统计图表》◆ 教材剖析教材经过设置“问题1”和“问题2”,一方面,让学生经过详细的实例,初步领会总体及其散布的含义,同时为后边理解整体散布的意义、用样本的频次散布预计整体的散布作一个铺垫;另一方面,复习了义务教育阶段已学过的一些统计图,并商讨了不一样统计图的特色及合用范围。
经过对2001 年上海居民的支出构成状况的不一样统计图表显现形式的讨论,让学生进一步领会折线统计图和扇形统计图的特色及用途. 在学习了条形统计图、折线图、扇形统计图的基础上,教材给出了两台自动售货机销售状况的例子,让学生经过实例领会茎叶图和条形统计图的特色及用途,以此培育学生依据实质问题的需要选择适合的统计图表的能力,并用自己的方式表达数据.◆ 教课目的【知识与能力目标】(1)经过实例初步领会散布的意义和作用;(2)经过复习初中学习的统计图表(包含条形统计图、折线图、扇形统计图、频次散布直方图等),领会不一样统计图表的各自特色,适合地选择图表剖析样本的散布.【过程与方法目标】在解决实质问题中,领会不一样统计图表的特色及合用范围,渐渐掌握用适合图表表示和描绘数据的方法 .【感情与态度目标】经过对统计图表表示的意义剖析的过程,感觉数学数学应用的宽泛性.◆ 教课重难点◆【教课要点】:不一样统计图表的特色及用途.【教课难点】:能依据问题的需要选择适合的统计图表,并能用自己的方式进行表示.◆ 课前准备◆多媒体课件◆ 教课过程一、提出问题,引入新课问题 1:依据以下数据列出统计数表4, 5, 6, 1, 2, 8,4, 7, 9, 8, 1, 5,6, 4, 2, 7, 9, 3, 4, 5, 8, 7, 6, 2, 4, 5,8, 6, 5, 6, 8, 9,8, 9, 6, 8请同学们依据已知数据达成下表:数数123456789数数总结 :数据出现的次数即为频数。
2019-2020学年度最新北师大版高中数学必修三学案:第一章3统计图表 1.理解统计图表的作用与意义.2.掌握茎叶图的概念与应用.3.通过实例体会条形统计图、折线统计图、扇形统计图和茎叶图的各自特征,从而恰当地选择上述方法分析样本的分布,准确地做出总体估计.知识点一统计图表的作用与意义思考通过抽样获得的原始数据有什么缺点?梳理数据分析的基本方法:(1)借助于图形分析数据的一种基本方法是用图将它们画出来,此方法可以达到两个目的,一是从数据中________信息,二是利用图形________信息.(2)借助于表格分析数据的另一种方法是用紧凑的________改变数据的排列方式,此方法是通过改变数据的________,为我们提供解释数据的新方式.知识点二常见统计图的特征类型一条形图的制作及读图例1某人统计了一本书中的100个句子的字数,得出下列结果:1~5个字的15句,6~10个字的27句,11~15个字的32句,16~20个字的15句,21~25个字的8句,26~30个字的3句.(1)试作出条形统计图;(2)统计出1~15个字及16~30个字的句子个数所占百分比,作出条形统计图;(3)统计出1~10个字,11~20个字,21~30个字的句子个数所占百分比,作出条形统计图.反思与感悟条形图的制作一般可分为以下几步:(1)根据统计资料整理数据,一般整理成表格形式;(2)画出横轴、纵轴,确定它们表示的项目;(3)画直条,条形的高与数据的大小成比例.跟踪训练1有100名学生,每人只能参加一个运动队,其中参加足球队的有30人,参加篮球队的有27人,参加排球队的有23人,参加乒乓球队的有20人.(1)列出学生参加运动队的频率分布表;(2)画出频率分布条形图.类型二折线统计图与扇形统计图例2某市是我国西部的一个多民族城市,总人口数为370万(2000年普查统计).如图1和图2所示的是2000年该市各民族人口的统计图,请你根据统计图提供的信息回答下列问题.(1)2000年该市少数民族的总人口数是多少?(2)2000年该市总人口中的苗族所占的百分比是多少?(3)若2000年该市参加中考的学生有40 000人,则参加中考的少数民族的学生人数约为多少?反思与感悟用统计图来表示百分比时,我们可以用条形统计图、折线统计图和扇形统计图,但最适宜用扇形统计图来表示.在解题过程中要看清楚题目的要求,根据不同的要求选择不同的统计图.统计图的功能就是将数据信息通过图表的形式恰当地表示出来.跟踪训练2如图是某保险公司提供的资料,在1万元以上的保险单中,有821少于2.5万元,那么不少于2.5万元的保险单有________万元.类型三茎叶图例3某赛季甲、乙两名篮球运动员每场比赛的得分情况如下:甲的得分12,15,24,25,31,31,36,36,37,39,44,49,50;乙的得分8,13,14,16,23,26,28,33,38,39,51.(1)画出甲、乙两名运动员得分数据的茎叶图;(2)根据茎叶图分析甲、乙两名运动员的水平.反思与感悟当数据较少时,用茎叶图分析问题的突出优点是(1)保留原始信息;(2)随时记录.用茎叶图分析数据可以运用数据分布的对称情况、集中分散情况来分析总体情况.跟踪训练3在某电脑杂志的一篇文章中,每个句子所含的字数如下:10,28,31,17,23,27,18,15,26,24,20,19,36,27,14,25,15,22,11,24,27,17;在某报纸的一篇文章中,每个句子所含的字数如下:27,39,33,24,28,19,32,41,33,27,35,12,36,41,27,13,22,23,18,46,32,22.(1)将这两组数据用茎叶图表示;(2)将这两组数据进行比较分析,得到什么结论?1.当收集到的数据量很大或有多组数据时,用哪种统计图表示较合适()A.茎叶图B.条形统计图C.折线统计图D.扇形统计图2.如图所示是从一批产品中抽样得到的数据的条形统计图,由图可看出数据出现机会最大的范围是()A.(8.1,8.3) B.(8.2,8.4)C.(8.4,8.5) D.(8.6,8.7)3.如图所示是某校高一年级学生到校方式的条形统计图,根据图形可得出骑自行车人数占高一年级学生总人数的()A.20% B.30%C.50% D.60%4.甲、乙两人在相同条件下各射靶10次,每次射靶的成绩情况如图所示:从折线图上两人射击命中环数的走势看,最有潜力的是________.1.条形统计图及折线统计图特别适用于数据量很大的情况,但却损失了数据的部分信息.扇形统计图适合表示总体的各个部分所占比例的问题,但不适用于总体分成部分较多的问题.2.茎叶图表示数据有两个突出优点:(1)统计图上没有原始信息的损失.(2)茎叶图可以随时记录,方便表示与比较.缺点:当数据量很大或有多组数据时,茎叶图就不那么直观、清晰了.答案精析问题导学知识点一思考因为通过抽样获得的原始数据多而且杂乱,无法直接从中理解它们的含义,并提取信息,也不便于我们用它来传递信息.梳理(1)提取传递(2)表格构成形式知识点二直观准确具体数目折线统计图扇形统计图原始数据题型探究例1(1)条形统计图如图(1)所示.(2)1~15个字的句子个数为1~5个字,6~10个字,11~15个字的句子个数之和:15+27+32=74,所占百分比为74%;16~30个字的句子个数为16~20个字,21~25个字,26~30个字的句子个数之和:15+8+3=26,所占百分比为26%.条形统计图如图(2)所示.(3)1~10个字的句子个数为15+27=42,所占百分比为42%;11~20个字的句子个数为32+15=47,所占百分比为47%;21~30个字的句子个数为8+3=11,所占百分比为11%.条形统计图如图(3)所示.跟踪训练1解(1)参加足球队记为1,参加篮球队记为2,参加排球队记为3,参加乒乓球队记为4,得频率分布表如下:(2)由上表可知频率分布条形图如图.例2 解 (1)15%×370=55.5(万人),即2000年该市少数民族的总人口数是55.5万人. (2)40%×15%=6%,∴2000年该市总人口中的苗族所占的百分比是6%. (3)40 000×15%=6 000(人),即2000年该市参加中考的少数民族的学生约有6 000人. 跟踪训练2 91解析 不少于1万元的占700万元的21%,为700×21%=147万元.1万元以上的保险单中,超过或等于2.5万元的保险单占1321,金额为1321×147=91万元,故不少于2.5万元的保险单有91万元.例3 解 (1)作出茎叶图如图.(2)由上面的茎叶图可以看出,甲运动员的得分情况是大致对称的;乙运动员的得分情况除一个特殊得分外,也大致对称.因此甲运动员的发挥比较稳定,总体得分情况比乙运动员好.跟踪训练3解(1)茎叶图如图所示:(2)电脑杂志上每个句子的字数集中在10~30之间,报纸上每个句子的字数集中在20~40之间,说明电脑杂志上每个句子的平均字数要比报纸上每个句子的平均字数少.说明电脑杂志作为科普读物需要通俗易懂、简明.当堂训练1.B 2.B 3.B 4.乙。
统计图表-备课资料学习导航学习提示1.掌握常用四种统计图表(条形统计图、扇形统计图、折线统计图、茎叶图)的功能及其特点.2.能针对实际问题和收集到的数据的特点,选择科学的统计图表.3.能从统计图表中获取有价值的信息. 本节重点是用统计图表表示数据;难点是统计图表的制作.教材习题探讨 方法点拨练习1(第20页)我们可以用条形图和折线图来表示.14012010080604020年份图1-3-1614012010080604020份图1-3-17我们从统计图中可以看出,高等学校、高中阶段、初中阶段在校生总体上呈逐年递增的趋势,而小学和幼儿园呈先增后减的变化趋势;高等学校、高中阶段在校生所占的比例呈逐年递增的趋势;小学和初中人数最多,这也正是九年义务教育的结果.我们用条形图和折线图更能反映出数据随时间变化的情况.练习2(第27页)用茎叶图表示上面的数据如下.5 4 08811118 57 6 43 2 0023445675 62 4 9 96 72 2 5甲乙图1-3-18从茎叶图中比较明显地看出甲网站的点击量远远超过乙网站的点击量,所以甲网站更受欢迎. 思考交流(第21页)我们用条形图和折线图来表示上面的数据.图1-3-19图1-3-20用茎叶图表示数据时,中间表示数据的十位数,两侧表示数据的个位数.要熟悉用计算机电子表格软件来作各种统计图.习题1—31.(1)甲县有300000×52%=156000(人).(2)乙县和丁县共有300000×(15%+13%)=84000(人). (3)甲县比丙县多300000×(52%-20%)=96000(人).2.我们可用条形图和折线图表示其中的数据,按人数和比例分别表示.2015105图1-3-212015105图1-3-22444333图1-3-23某县人口=该市总人口×该县所占的比例.用条形图和折线图来表示,利于表达数据随时间的变化发展而变化的趋势.通过统计图能直观、形象地观察到数据发展变化的趋势,便于分析数据.其中浅色表示高等学校女教师所占比例,深色表示普通学校女教师所占比例.444333图1-3-24其中浅色表示普通学校女教师所占比例,深色表示高等学校女教师所占比例.3.我们可以用条形统计图、折线统计图和扇形统计图来表示.2211图1-3-2522111.15000以下2.15000~250003.25000~350004.35000~50000在选择用统计图来表示数据时,要注意数据的特点,采用合适的统计图来表达,如此题就不宜用茎叶图来表示...而且信息也不会丢失.5.我们可以用象形统计图、条形图、茎叶图来分别表示:甲乙976611525400094112233445586438639831图1-3-30甲乙1002345甲乙5 25 49 76 6 1 19 483 4 63 6 83 8 91图1-3-31 图1-3-32 6.我们可先对每位同学进行调查,把他们一周的活动时间记录下来,然后对数据进行初步整理,最后从学过的四种统计表中选择其中的一种或几种把它们表示出来.在进行调查时,要设计科学、合理的调查方案,以利于数据的搜集.互动学习知识链接1.常用抽样方法有哪些?它们各自有什么特点?2.请选择适当的抽样方法解决下列问题.(1)从50名同学中抽取10名同学进行智商测试; (2)对我国各类职业的年收入情况作一个调查; (3)对10000件产品抽样调查其质量状况.答案:1.常用抽样方法有简单随机抽样、分层抽样、 系统抽样.各自特点分别为:简单随机抽样:简便易行,一般适用于总体的个体数较 少的情况.分层抽样:主要适用于总体由明显差异的几部分组成的 情形.系统抽样:主要适用于总体无明显差异的几部分组 成并且总体中的个体数较多的情况.2.(1)简单随机抽样.因为总体中的个体数较少,用最简 单的简单随机抽样较好.我们用普查或抽查的方法搜集到数据,但搜集到的数据一般乱而多,我们无法将其包含的信息统统理解并加以表达,这就需要对数据进行整理和分析,将其转化成可以直接利用的形式,并从中获取相应的信息,统计图表正是表达和分析数据的重要工具,并且还可以直观地、准确地理解相应结果.(2)分层抽样.因为不同的职业,其年收入差距较大,为此可按职业类别进行分层.(3)系统抽样.因为总体中的个体数较大,并且又无明显差异的几部分组成,故选用系统抽样.知识总结在统计活动中,一个很重要的步骤是对调查数据进行整理,而整理数据的常用方法有统计表和统计图,用统计图来表示统计数据,显得更加直观、形象.常用的统计图有条形统计图、扇形统计图、折线统计图和茎叶统计图.它们都有各自的特点和用途.其中条形统计图的特点是便于看出和比较各种数量的多少;扇形统计图能够清楚地表示出各部分在总体中所占的百分比;折线统计图不但可以表示出数量的多少,而且能够清楚地表示数量增减变化的情况;茎叶统计图有两个突出的优点:其一,统计图上没有信息的损失,所有的原始数据都可以从茎叶图中得到,其二,茎叶图可以随时记录,方便表示与比较.但是,当数据量很大或有多组数据时,茎叶图就不那么直观、清晰了.条形统计图虽然损失了数据的部分信息,但当数据量很大时,却更能直观地反映数据分布的大致情况,并且能够清晰地表示出各个区间的具体数目.在面对实际问题时,我们常常根据不同的需要,结合各种统计图的特点,选择合适的统计图来进行表示.。
3 统计图表[核心必知]1.统计图表统计图表就是表达和分析数据的重要工具,它不仅可以帮助我们从数据中获取有用的信息,还可以帮助我们直观、准确地理解相应的结果.统计图表有:条形统计图、扇形统计图、折线统计图、茎叶图.2.茎叶图用茎叶图表示数据的优、缺点:(1)优点:一是茎叶图上没有信息的损失,所有的原始数据都可以从茎叶图中得到;二是茎叶图可以随时记录,方便表示与比较.(2)缺点:当数据量很大或有多组数据时,茎叶图就不那么直观、清晰了.[问题思考]1.茎叶图的茎和叶各表示什么?提示:一般地说,数据是两位数时,十位上数字为“茎”,个位数字为“叶”,如果是小数时,通常把整数部分作为“茎”,小数部分作为“叶”.2.茎叶图的运用范围是什么?提示:茎叶图只适用于样本数据较少的情况.讲一讲1.据2016年4月份的《生活报》报道,某省有关部门要求各中小学要把“每天锻炼一小时”写入课程表,为了响应这一号召,某校围绕着“你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行了随机抽样调查,从而得到一组数据.图1是根据这组数据绘制的条形统计图.请结合统计图回答下列问题:(1)该校对多少名学生进行了抽样调查?(2)本次抽样调查中,最喜欢篮球活动的有多少人?占被调查人数的百分比是多少? (3)若该校九年级共有200名学生,图2是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请你估计全校学生中最喜欢跳绳活动的人数约为多少?[尝试解答] (1)由图1知:4+8+10+18+10=50(名). 即该校对50名学生进行了抽样调查.(2)本次调查中,最喜欢篮球活动的有18人,1850×100%=36%.即最喜欢篮球活动的人数占被调查人数的36%. (3)1-(30%+26%+24%)=20%, 200÷20%=1 000(人), 850×1 000=160(人). 即估计全校学生中最喜欢跳绳活动的人数约为160人.1.条形统计图是用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直条按照一定的顺序排列起来.其特点是便于看出和比较各种数量的多少,即条形统计图能清楚地表示出每个项目的具体数目.2.扇形统计图是用整个圆面积表示总数(100%),用圆内的扇形面积表示各部分所占总数的百分数.总之,用统计图来表示数量关系更生动形象、具体,使人一目了然.练一练1.如图是甲、乙、丙、丁四组人数的扇形统计图的部分结果,根据扇形统计图的情况可以知道丙、丁两组人数和为()A .250B .150C .400D .300解析:选A 甲组人数是120,占30%,则总人数为12030%=400;乙组人数是400×7.5%=30,则丙、丁两组人数和为400-120-30=250.2.某班计划开展一些课外活动,全班有40名学生报名参加,他们就乒乓球、足球、跳绳、羽毛球等4项活动的参加人数做了统计,绘制了条形统计图(如图所示),那么参加羽毛球活动的人数的频率是________.解析:参加羽毛球活动的人数是4,则频率是440=0.1.答案:0.1讲一讲2.下表给出了2015年A 、B 两地的降水量(单位:mm):根据统计表绘制折线统计图.[尝试解答] 建立直角坐标系,用横坐标上的点表示月份,用纵坐标上的点表示降水量,描出每个月份对应的点,然后用直线段顺次连结相邻点,得到折线统计图如图表示.在绘制折线统计图时,可以先整理和观察数据统计表,建立直角坐标系,用两坐标轴上的点分别表示数据,再描出数据的相应点,顺次连接相邻的点,得到一条折线.特别注意,画折线统计图时,横轴、纵轴表示的实际含义要标明确.练一练3.如图是某市2016年4月1日至4月7日每天最高、最低气温的折线统计图,在这7天中,日温差最大的一天是( )A.4月1日B.4月2日 C.4月3日 D.4月5日解析:选D 由折线图可以看出,该市日温差最大的一天是4月5日.讲一讲3.某良种培育基地正在培育一种小麦新品种A,将其与原有的一个优良品种B进行对照试验,两种小麦各种植了25亩,所得亩产数据(单位:千克)如下:品种A:357, 359, 367, 368, 375, 388, 392, 399, 400, 405, 412, 414, 415, 421, 423, 423, 427, 430, 430, 434, 443, 445, 445, 451, 454;品种B:363, 371, 374, 383, 385, 386, 391, 392, 394, 394, 395, 397, 397, 400, 401, 401, 403, 406, 407, 410, 412, 415, 416, 422, 430.(1)试用茎叶图表示上面的数据;(2)用茎叶图处理现有的数据,有什么优点?(3)通过观察茎叶图,对品种A与B的亩产量及其稳定性进行比较,写出统计结论.[尝试解答](1)茎叶图如图所示.(2)用茎叶图处理现有的数据不仅可以看出数据的分布状况,而且可以看出每组中的具体数据.(3)通过观察茎叶图,可以发现品种A的产量在420千克以上的亩数比品种B多10亩,而且品种A的产量在390千克以下的亩数与品种B一样多,由此可知,品种A的平均亩产量比品种B的平均亩产量高.但品种A的亩产量不够稳定,而品种B的亩产量比较集中,所以品种B的亩产量比较稳定.1.茎叶图适用于样本数据较少,且数位基本相同的情形,三位数以上的数据不太方便,当叶中数据重复时,一定要重复记录.2.茎叶图由所有数据构成,没有损失任何样本信息.可以在抽样过程中随时记录,特别适合体育活动中的数据统计.练一练4.某中学甲、乙两名同学最近几次的数学考试成绩情况如下:甲的得分:95,81,75,89,71,65,76,88,94,110,107;乙的得分:83,86,93,99,88,103,98,114,98,79,101.画出两人数学成绩的茎叶图,并根据茎叶图对两人的成绩进行比较.解:甲、乙两人数学成绩的茎叶图如图所示.从这个茎叶图上可以看出,乙同学的得分情况是大致对称的,大多集中在80~100之间,中位数是98分;甲同学的得分情况除一个特殊得分外,也大致对称,多集中在70~90之间,中位数是88分,但分数分布相对于乙来说,趋向于低分阶段.因此,乙同学发挥比较稳定,总体得分情况比甲同学好.【解题高手】【多解题】为了了解各自受顾客欢迎的程度,甲、乙两个商店分别随机选取了14天记录下上午9∶00~10∶00间各自的顾客人数.甲:73,24,58,72,64,38,66,70,20,41,55,67,8,25;乙:12,37,21,5,54,52,61,45,19,6,19,36,42,14.你能用哪些方法表示上面的数据?你认为甲、乙两个商店哪个更受顾客欢迎?[解] 法一:列频数统计表如下:法二:画出茎叶图如图所示.由以上方法,比较各自的优劣可见,甲商店的中位数是56.5,且在此处波动,乙商店的中位数是28.5,波动较大,因此甲商店更受顾客欢迎.1.如图所示是某校高一年级学生到校方式的条形统计图,根据图形可得出骑自行车人数占高一年级学生总人数的( )A.20% B.30% C.50% D.60%解析:选B 某校高一年级学生总数为60+90+150=300(人),骑自行车人数为90.骑自行车人数占高一年级学生总数的百分比为90300×100%=30%.3.一次选拔运动员,测得7名选手的身高(单位:cm)分布茎叶图如图,测得平均身高为177 cm,有一名候选人的身高记录不清楚,其末位数记为x,那么x的值是( )A.5 B.6C.7 D.8解析:选D 180+181+170+173+178+179+170+x=177×7,即1 231+x=1 239,解得x=8.4.如图是华联商厦某个月甲、乙、丙三种品牌彩电的销售量统计图,则甲、丙两种品牌彩电该月的销售量之和为________.解析:由图可知,甲品牌该月的销售量为45台,丙品牌该月的销售量为30台.答案:75台5.甲、乙两个班级各随机选出15名同学进行随堂测验,成绩的茎叶图如图所示,则甲班的最高成绩是________,乙班的最低成绩是________.解析:由茎叶图可知,甲班的最高分为96,乙班的最低分是57.答案:96 576.2010年全国硕士研究生的报考热门专业的统计数据如下表所示:2010年全国硕士研究生招生报考人数为127.5万,你能用不同的方式分别表示2010年各热门专业的报考情况吗?解:从表中的数据不易直接看出各自的分布情况,为此我们可以用条形统计图、扇形统计图两种不同的方式进行表示.可用如图(1)所示的条形统计图表示2010年各热门专业的报考情况,还可以用如图(2)所示的扇形统计图来表示2010年各热门专业的报考情况.一、选择题1.下面哪种统计图没有数据信息的损失,所有的原始数据都可以从该图中得到( ) A.条形统计图 B.茎叶图C.扇形统计图 D.折线统计图解析:选B 所有的统计图中,仅有茎叶图完好无损地保存着所有的数据信息.2.某班学生在课外活动中参加文娱、美术、体育小组的人数之比为3∶1∶6,则在扇形统计图中表示参加体育小组人数的扇形圆心角是( )A.108° B.216° C.60° D.36°解析:选B 参加体育小组人数占总人数的63+1+6=60%,则扇形圆心角是360°×60%=216°.3.如图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的频率为( )A.0.2 B.0.4 C.0.5 D.0.6解析:选B 由茎叶图可知数据落在区间[22,30)内的频数为4,所以数据落在区间[22,30)内的频率为410=0.4.4.某同学对高一(1)班和高一(2)班两个班级今年的获奖情况进行了统计,制成两个统计图(如图所示),你认为哪个图比较恰当( )A.①恰当 B.②恰当 C.①②都恰当 D.①②都不恰当解析:选B图②较恰当.由图②我们可以很清楚地看出运动类的获奖次数(1)班比(2)班多一些,而学习类的获奖次数(1)班比(2)班少一些.5.2013年某学科能力测试共有12万考生参加,成绩采用15级分,测试成绩分布图如下:试估计成绩高于11级分的人数为( )A.8 000 B.10 000 C.20 000 D.60 000解析:选B 由题意结合条形图分析得成绩高于11级分的考生数的百分比大约为(2.3+3+0.9+1.7)%=7.9%,所以考生大约为:7.9%×120 000=10 080(人).故最接近的人数为9480.二、填空题6.某校高一(1)班有50名学生,综合素质评价“运动与健康”方面的等级统计如图所示,则该班“运动与健康”评价等级为A的人数是________.解析:由扇形图可知:评价等级为A的人数占总人数的38%,由此可知高一(1)班的50名学生中有50×38%=19人在该等级中.答案:197.在如图所示的茎叶图中,甲、乙两组数据的中位数分别是________,________.解析:甲组数据为:28,31,39,42,45,55,57,58,66,中位数为45;乙组数据为:29,34,35,42,46,48,53,55,67,中位数为46.答案:45 468.某校为了了解学生的睡眠情况,随机调查了50名学生,得到他们在某一天各自的睡眠时间的数据,结果用如图所示的条形图表示.根据条形图可得这50名学生这一天平均每人的睡眠时间为________ h.解析:法一:要确定这50名学生的平均睡眠时间,就必须计算其总睡眠时间.总睡眠时间为5.5×0.1×50+6×0.3×50+6.5×0.4×50+7×0.1×50+7.5×0.1×50=27.5+90+130+35+37.5=320.故平均睡眠时间为320÷50=6.4 (h).法二:根据图形得平均每人的睡眠时间为t=5.5×0.1+6×0.3+6.5×0.4+7×0.1+7.5×0.1=6.4(h).答案:6.4三、解答题9.某赛季甲、乙两名篮球运动员每场比赛得分原始记录如下:甲运动员的得分:13,23,8,26,38,16,33,14,28,39;乙运动员的得分:49,24,12,31,50,44,15,25,36,31.用茎叶图将甲、乙运动员的成绩表示出来.解:制作茎叶图的方法是:将所有的两位数的十位数字作为“茎”,个位数字作为“叶”,茎相同者共用一个茎,茎按从小到大的顺序从上向下列出,共茎的叶一般按从大到小(或从小到大)的顺序同行列出.甲、乙运动员的得分茎叶图如图.10.某地农村某户农民年收入如下(单位:元):土地收入打工收入养殖收入其他收入4 320 3 600 2 357 843请用不同的统计图来表示上面的数据.解:用条形统计图表示,如图所示.用折线统计图表示,如图所示.用扇形统计图表示,如图所示.。
《统计图表》◆教材分析教材通过设置“问题1”和“问题2”,一方面,让学生通过具体的实例,初步体会总体及其分布的含义,同时为后面理解总体分布的意义、用样本的频率分布估计总体的分布作一个铺垫;另一方面,复习了义务教育阶段已学过的一些统计图,并探讨了不同统计图的特点及适用范围。
通过对2001年上海居民的支出构成情况的不同统计图表展现形式的讨论,让学生进一步体会折线统计图和扇形统计图的特点及用途. 在学习了条形统计图、折线图、扇形统计图的基础上,教材给出了两台自动售货机销售情况的例子,让学生通过实例体会茎叶图和条形统计图的特点及用途,以此培养学生根据实际问题的需要选择合适的统计图表的能力,并用自己的方式表达数据.◆教学目标【知识与能力目标】(1) 通过实例初步体会分布的意义和作用;(2) 通过复习初中学习的统计图表(包括条形统计图、折线图、扇形统计图、频率分布直方图等),体会不同统计图表的各自特征,恰当地选择图表分析样本的分布.【过程与方法目标】在解决实际问题中,体会不同统计图表的特点及适用范围,逐渐掌握用恰当图表表示和描述数据的方法.【情感与态度目标】通过对统计图表表示的意义分析的过程,感受数学数学应用的广泛性.【教学重点】:不同统计图表的特点及用途.【教学难点】:能根据问题的需要选择合适的统计图表,并能用自己的方式进行表示.多媒体课件一、提出问题,引入新课问题1:根据下列数据列出统计数表4,5,6,1,2,8,4,7,9,8,1,5,6,4,2,7,9,3,4,5,8,7,6,2,4,5,8,6,5,6,8,9,8,9,6,8 请同学们根据已知数据完成下表:总结:数据出现的次数即为频数。
问题2:什么叫条形统计图? 有什么特点? (学生讨论后回答)用一定的单位长度表示一定的数量, 并根据数据的多少画出长短不同的直条, 然后把这些直条按照一定的顺序排列起来, 这样的统计图叫做条形统计图. 特点:从条形统计图上很容易看出各种数量的多少. 绘制条形图的步骤:1、根据图纸大小,画出两条互相垂直的射线。
1.3统计图表本节教材分析一、三维目标1、知识与技能(1)掌握常用四种统计图表(条形统计图、扇形统计图、折线统计图、茎叶图)的功能及其特点;(2)能针对实际问题和收集到的数据的特点,选择科学的统计图表;(3)能从统计图表中获取有价值的信息.2、过程与方法通过“复习—巩固—加深—引入新知”的过程中掌握条形统计图、折线统计图、扇形统计图、茎叶图,能科学选择合适的图表示数据,并能从图中得到数据.3、情感态度与价值观在探究活动中,通过学生的举例,激发学生学习数学的兴趣和积极性,培养他们的辨析能力以及培养他们的分析问题和解决问题的能力.二、教学重点:用统计图表表示数据.三、教学难点:统计图表的制作.四、教学建议在义务教育阶段,学生已经通过实例,学习了象统计图、条形图、折线统计图、扇形统计图等,并能解决简单的实际问题.在这个基础上,高中阶段还将进一步学习茎叶图,并在学习中不断地体会它们各自的特点,在具体的问题中根据情况有针对性的选择一些合适的图表.新课导入设计导入一一图胜千字,看懂图是21世纪所有人必须具备的能力.如图所示,大家能从这图中的得到什么样的信息?这就是我们这一节要解决的问题.导入二初中我们学习了条形统计图、折线统计图、扇形统计图这一节我们继续更深入地学习这些知识.看看这些知识除了我们初中学习过的,还有没有更深的知识.是不是还有其它的方法表示数据.【教学过程】:✧名人指引华罗庚教授:数无形,少直观;形无数,难入微。
图形和数据若能恰当、准确的结合起来,必然是最具有说服力的。
扇形图、频数分布直方图都是常见的统计图,在网上、书籍、杂志、报纸上我们还会看到许多其他形式的统计图或统计表,它们使数据变得一目了然,让读者很快就能了解作者想要表达的信息.那么,哪种统计图表可以较为准确而迅速地反映出要表达的信息呢?✧世界人口下面是权威机构公布的一组反映世界人口的数据:1957年世界人口30亿,17年后(即1974年)增加了10亿,即达40亿;又过13年达到50亿;到1999年全世界总人口达到60亿。
江南中学数学学科教学设计1统计图表的作用二、分析案例、探究新知案例1如图所示,分别是哪种统计图?从图中你能得到什么信息?此类统计图具有哪些优缺点?(1)条形统计图优点:能够使人一眼看出各个数据的大小;易于比较数据之间的差别;能够清楚地表示出数量的多少缺点:损失了部分数据的信息计学解决问题的基本过程,理清思路。
通过分析实例,复习巩固初中知识,理解条形统计图、折线统计图、扇形统计图的作用、意义。
(2)折线统计图优点:可以表示数量的多少,直观地反映数量的增减情况,即变化趋势缺点:损失了部分数据的信息(3)扇形统计图优点:能够直观地显示总体中各部分的分布情况缺点:损失了部分数据的信息,且不适合总体中部分较多的情况思考追寻更好是我们的本能,在统计学中也不例外。
有没有更好的表示数据的统计图表呢?2021早期的英国统计学家阿瑟·鲍利给了我们他的回答以案例2为例案例2有关部门从甲、乙两个城市所有的自动售货机中分别随以“本能”衔接上下内容,遵循学生的认知规律直接介绍茎叶图的概念及制作步骤,便于学生快速吸收、掌握。
机抽取了16台,记录了8:00~11:00间各自的销售情况单位:元甲: 18,8,10,43,5,30,10,22,6,27,25,58,14,18,30,41;乙: 22,31,32,42,20217,48,23,38, 43,12,34,18,10,34,231茎叶图概念 2制作步骤3茎叶图的优缺点以甲的数据为例,比较甲数据的条形图和茎叶图。
二者之间有怎样的特点?优点:没有信息的损失,能够展示数据的分布情况;便于记录和读取缺点:当数据量很多或有多组通过比较、分析,总结归纳出茎叶图的优缺点及时应用茎叶图解决简单问题,巩固所学。
当堂检测有效练习作业布置课本23页习题1-3 第2、4、5题写在作业本上板书设计§统计图表统计图优点缺点条形统计图折线统计图扇形统计图茎叶图教学反思备注。
§3统计图表一、统计图表1.条形统计图条形统计图是用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直条按照一定的顺序排列起来.其优点是便于看出和比较各种数量的多少,即条形统计图能清楚地表示出每个项目的具体数目,易于比较数据间的差别.缺点是不能明确显示部分与整体的对比.2.折线统计图建立直角坐标系,用横轴上的数字表示样本值,用纵轴上的单位长度表示一定的数量,根据样本值和数量的多少描出相应点,然后用直线段顺次连接相邻点,得到一条折线,用这条折线表示样本数据情况,这种表述和分析数据的统计图称为折线统计图.折线统计图不但可以表示数量的多少,而且能够用折线的起伏清楚直观地表示数量的增减变化的情况,但不适合总体分布较多的情况.3.扇形统计图扇形统计图中,用圆面积代表总体,圆面中的各个扇形分别代表总体中的不同部分,扇形面积的大小反映所表示的那部分占总体的百分比的大小.其优点是可以很清楚地表示各部分数量同总数之间的关系,即扇形统计图能清楚地表示出各部分在总体中所占的百分比.缺点是会丢失部分数据信息且不适合总体中部分较多的情况.二、茎叶图1.茎叶图茎叶图的制作:茎相同的共用一个茎,茎按从小到大的顺序从上到下列出,共茎的叶一般按从大到小或从小到大的顺序同时列出.2.用茎叶图表示数据有两个突出特点第一,统计图上没有信息的损失,所有的原始数据都可以从这个茎叶图中得到;第二,茎叶图可以随时记录,方便表示与比较.但是,当数据量很大或有多组数据时,茎叶图就不那么直观、清晰了.1.没有信息的损失,所有的原始数据都可以从图中得到的统计图是( )A.折线统计图ﻩ B.扇形统计图C.条形统计图ﻩ D.茎叶图D[结合各个统计图的特点可知,茎叶图可以保留原始数据,且没有信息损失.]2.当收集到的数据量很大或有多组数据时,用哪种统计图表示较合适()A.茎叶图B.条形统计图C.折线统计图ﻩD.扇形统计图B [结合各种统计图的特征知适合用条形统计图.]3.如图所示的茎叶图表示的是一台自动售货机的销售情况,则茎叶图中9表示的销售额为( )A.9 B.49C.29D.1 349C [观察茎叶图,分清楚茎和叶即可.分开茎、叶的竖线左侧仅有一列,表示茎,右侧有多列,表示叶,所以9表示的销售额为29。
3统计图表考纲定位重难突破1.进一步理解统计图表的作用和意义.2.掌握茎叶图的概念与应用.3.会利用合适的统计图表研究生活中的例子. 重点:1.理解统计图表的作用与意义.2.掌握茎叶图的概念与应用.难点:恰当地利用统计图表研究样本的分布.授课提示:对应学生用书第08页[自主梳理][双基自测]1.如图所示是某校八年级学生到校方式的条形统计图,根据图形可得出骑自行车人数占八年级学生总人数的()A.20% B.30%C.50% D.60%解析:由题图可知,步行的学生有60人,骑自行车的有90人,坐公共汽车的有150人,所以骑自行车的人数占八年级学生总人数的9090+60+150=30%.答案:B2.如图为某校高三(1)班的男女比例图表,已知该班共有学生55人,则该班男生比女生约多()A.13人B.21人C.24人D.34人解析:55×(62%-38%)=55×24%≈13(人).答案:A3.如图表示8位销售员一个月销售商品数量的茎叶图,则销售数据分别为______(单位:百件).解析:由茎叶图可知销售数据都是两位数,分别为45,45,52,56,57,58,60,63.答案:45,45,52,56,57,58,60,63授课提示:对应学生用书第08页探究一条件统计图[典例1]“国际无烟日”来临之际,小彬就公众在餐厅吸烟的态度进行了调查,并将调查结果制作成如图所示的统计图,请根据图中的信息回答下列问题:(1)被调查者中,不吸烟者中赞成在餐厅彻底禁烟的人数是多少?(2)被调查者中,希望在餐厅设立吸烟室的人数是多少?(3)求被调查者中赞成在餐厅彻底禁烟的频率;(4)某市现有人口370万,根据图中的信息估计这个城市现有人口中赞成在餐厅彻底禁烟的人数.[解析](1)由条形图可知,被调查者中,不吸烟者中赞成在餐厅彻底禁烟的有97人.(2)由条形图可知,被调查者中,希望在餐厅设立吸烟室的人共有35+28=63人.(3)由97+2397+23+35+28+10+7=0.6,可知被调查者中赞成在餐厅彻底禁烟的频率为0.6.(4)因为370×0.6=222,所以此城市现有人口中赞成在餐厅彻底禁烟的约有222万人.条形统计图分两种,一种是频数条形图(纵轴为频数),另一种是频率条形图(纵轴为频率).1.为了丰富校园文化生活,某校计划在午间校园广播台播放“百家讲坛”的部分内容.为了了解学生的喜好,抽取若干名学生进行问卷调查(每人只选一项内容),整理调查结果,绘制统计图如图所示.请根据统计图提供的信息回答以下问题:(1)求抽取的学生数;(2)若该校有3 000名学生,估计喜欢收听易中天《品三国》的学生人数;(3)估计该校喜欢收听刘心武评《红楼梦》的女学生人数占全校学生人数的百分比.解析:(1)从统计图上可以看出,喜欢收听于丹析《庄子》的男生有20人,女生有10人,喜欢收听《故宫博物馆》的男生有30人,女生有15人,喜欢收听于丹析《论语》的男生有30人,女生有38人,喜欢收听易中天《品三国》的男生有64人,女生有42人,喜欢收听刘心武评《红楼梦》的男生有6人,女生有45人,所以抽取的学生数为20+10+30+15+30+38+64+42+6+45=300(人).(2)喜欢收听易中天《品三国》的男生有64人,女生有42人,共有106人,占所抽取总人数的比例为106300,由于该校有3 000名学生,因此可以估计喜欢收听易中天《品三国》的学生有106300×3 000=1 060(名).(3)该校喜欢收听刘心武评《红楼梦》的女学生人数约占全校学生人数的比例为45300×100%=15%.探究二折线统计图与扇形统计图[典例2]右图是根据某市3月1日至3月10日的最低气温(单位:℃)的情况绘制的折线统计图,试根据折线统计图反应的信息,绘制该市3月1日到10日最低气温(单位:℃)的条形统计图和扇形统计图.[解析]该城市3月1日至10日的最低气温(单位:℃)情况如下表:日期12345678910最低气温-3-20-1120-12 2条形统计图如图所示.扇形统计图如图所示.1.折线统计图是用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起来.折线统计图不但可以表示出数量的多少,而且能够清楚地表示数量增减变化的情况,即折线统计图能够清晰地反映数据的变化情况.2.扇形统计图中,用圆面代表总体,圆面中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小.扇形统计图可以很清楚地表示各部分数量同总数之间的关系,即扇形统计图能清楚地表示出各部分在总体中所占的百分比.2.某摩托车厂2015年第三、四季度各月产量如下表:月份789101112月产量(辆)300350450540700600解析:建立直角坐标系,用横坐标表示月份,用纵坐标表示月产量,描出每个月份的对应点,连成折线,得到折线统计图如图,由图可知,10月和11月这两个相邻月的月产量增长幅度最大.探究三茎叶图[典例3]某中学高二(2)班甲、乙两名学生自进入高中以来,每次数学考试成绩情况如下:甲:95,81,75,91,86,89,71,65,76,88,94,110,107;乙:83,86,93,99,88,103,98,114,98,79,78,106,101.画出两人数学成绩的茎叶图,并根据茎叶图对两人的成绩进行比较.[解析]甲、乙两人数学成绩的茎叶图如图所示.从这个茎叶图上可以看出,乙同学的得分情况是大致对称的,中位数是98;甲同学的得分情况也大致对称,中位数是88.因此乙同学的成绩比较稳定,总体情况比甲同学好.画茎叶图的步骤第一步,将数据分为“茎”(高位)和“叶”(低位)两部分. 第二步,将表示“茎”的数字按大小顺序由上到下排成一列. 第三步,将各个数据的“叶”按次序写在其茎的左、右两侧.3.某市各地中小学每年都要进行学生体质健康测试,测试总成绩满分为100分,规定测试成绩在[85,100]之间为体质优秀;在[75,85)之间为体质良好;在[60,75)之间为体质合格;在[0,60)之间为体质不合格.现从某校高三年级的300名学生中随机抽取30名学生的体质健康测试成绩,其茎叶图如下:(1)试估计该校高三年级体质为优秀的学生人数;(2)根据以上30名学生的体质健康测试成绩,现采用分层抽样的方法,从体质为优秀和良好的学生中抽取5名,则优秀与良好的学生应各抽多少名?解析:(1)根据题意,样本中体质为优秀的学生人数为10,故该校高三年级体质为优秀的学生人数为1030×300=100.(2)依题意,体质为良好和优秀的学生人数之比为15∶10=3∶2,所以从体质为良好的学生中抽取的人数为35×5=3,从体质为优秀的学生中抽取的人数为25×5=2.三种统计图的综合应用[典例]1957年世界人口30亿,17年后(即1974年)增加了10亿,即达到40亿;又过了13年达到50亿;到1999年全世界总人口达60亿.以此速度,人口学专家预测到2025年,世界人口将达到80亿;而到2050年人口将超过90亿,其中亚洲人口最多,将达到52.68亿,北美洲3.92亿,欧洲8.28亿,拉丁美洲及加勒比地区8.09亿,非洲17.68亿.有一位同学根据以上提供的数据制作了三幅统计图(如图(1)(2)(3)),请根据这些统计图完成下列问题.(1)三幅统计图分别表示了什么内容?(2)从哪幅统计图中最能看出世界人口的总体变化情况?(3)2050年非洲人口大约将达到多少亿?你是从哪幅统计图中得到这个数据的?(4)2050年亚洲人口比其他各洲人口的总和还要多,你从哪幅统计图中可以明显地得到这个结论?[解析](1)世界人口变化情况折线统计图清楚地反映了世界人口的变化情况;2050年世界人口分布预测扇形统计图反映了各洲人口在世界人口分布中所占的百分比;2050年世界人口分布预测条形统计图反映了各洲2050年的具体人口数.(2)从世界人口变化情况折线统计图中看出.(3)从2050年世界人口分布预测条形统计图中可得到,2050年非洲人口大约为17.68亿.(4)从2050年世界人口分布预测扇形统计图中得到.[感悟提高]同一问题用不同的统计图表表示出来,可根据各统计图表的特点、应用范围反映出不同的问题.针对需解决的问题及统计图表的功能,可选择画出相应的统计图表或用三种统计图综合解释现实生活中的问题.[随堂训练]对应学生用书第10页1.如图是甲、乙、丙、丁四组人数的扇形统计图的部分结果,根据扇形统计图的情况可以知道丙、丁两组人数和为()A.250B.150C.400 D.300解析:甲组人数是120,占30%,则总人数是12030%=400,则乙组人数是400×7.5%=30,则丙、丁两组人数和为400-120-30=250.答案:A2.对“小康县”的经济评价标准:①年人均收入不低于7 000元;②年人均食品支出不高于年人均收入的35%.某县有40万人,年人均收入如下表如示,年人均食品支出如图所示,则该县()年人均收入/元0 2 000 4 000 6 0008 00010 00012 00016 000人数/万人6355675 3A.是小康县B.达到标准①,未达到标准②,不是小康县C.达到标准②,未达到标准①,不是小康县D.两个标准都未达到,不是小康县解析:由题中图表可知年人均收入为(2 000×3+4 000×5+6 000×5+8 000×6+10 000×7+12 000×5+16 000×3)÷40=7 050(元),达到了标准①;年人均食品支出为(1 400×3+2 000×5+2 400×13+3 000×10+3 600×9)÷40=2 695(元),则年人均食品支出占年人均收入的2 6957 050×100%≈38.2%>35%,未达到标准②.所以不是小康县.答案:B3.如图是某市5月1日至5月7日每天最高、最低气温的折线统计图,在这7天中,日温差最大的一天是________.解析:由图可知5月1日的温差为12 ℃,5月2日的温差为12 ℃,5月3日的温差为11 ℃,5月4日的温差为10.5 ℃,5月5日的温差为12.5 ℃,5月6日的温差为10 ℃,5月7日的温差为10 ℃.答案:5月5日。