年龄分组的种群增长模型
- 格式:doc
- 大小:232.00 KB
- 文档页数:7
种群增长的三个模型一、引言种群增长是生态学中的重要研究领域,对于了解生物群体的数量和结构变化、探究物种在自然环境中的适应性和竞争性等具有重要意义。
在研究种群增长过程中,学者们提出了多个模型,以便更好地解释和预测种群数量变化。
本文将介绍三个经典的种群增长模型:指数增长模型、对数增长模型和S形曲线增长模型,并探讨它们在实际应用中的意义。
一、指数增长模型的概述指数增长模型作为一种基础的种群增长模型,其基本假设在于环境资源充足、个体间无竞争、出生率和死亡率保持恒定。
在这种理想条件下,一个物种的数量会以指数级速度增长。
然而,在现实的自然环境中,这种理想条件往往难以实现。
因此,指数增长模型在实际应用中,更多地被用于描述短期内资源丰富、无竞争压力下物种数量变化的情况,如某些繁殖周期短、繁殖率高的昆虫。
二、对数增长模型的提出对数增长模型是对指数增长模型的一种修正和拓展。
它考虑到了资源有限和种群间的竞争因素。
在對数增长模型中,种群数量的增长速率随着数量的增加而逐渐减缓,最终趋于稳定。
相较于指数增长模型,对数增长模型在描述实际种群数量变化时更为准确。
例如,在资源有限且个体间存在竞争压力的情况下,种群数量会逐渐达到一个稳定值,这个稳定值被称为种群的容量极限。
三、S形曲线增长模型的综合特点S形曲线增长模型是一种更复杂且更符合实际情况下种群增长规律的模型。
它融合了指数增长模型和对数增长模型的特点,同时考虑了环境因素、竞争压力以及其他影响因素。
S形曲线增长模型最早由人口学家托马斯·马尔萨斯提出,后在生态学领域得到广泛应用。
四、S形曲线增长模型的应用价值S形曲线增长模型描述了一个物种在资源有限且存在竞争时,从指数生长逐渐过渡到饱和状态,并最终趋于稳定的过程。
这种增长模型在描述人类和其他大型哺乳动物种群的数量变化时非常有用。
通过对S 形曲线增长模型的研究,我们可以更好地了解生物种群在自然界中的生长规律,为生态环境保护、资源利用和人口管理等领域提供理论依据。
种群增长特征模型
种群增长特征模型主要有两种:J型增长模型和S型增长模型。
J型增长模型:J型增长是在理想条件下,种群数量呈指数增长的模式,其数学模型为Nt=N0λt,其中Nt代表t年种群数量,N0是初始种群数量,λ是种群增长率,t是时间。
J型增长的种群数量每年以一定的倍数增长,不受种群密度制约,无环境容纳量(K 值)限制。
S型增长模型:S型增长是在自然条件下,由于资源和空间的限制,种群数量呈逻辑斯蒂增长的模式。
其数学模型为dN/dt=rN*(1-N/K),其中r是种群增长率,K是环境容纳量,N是种群数量。
S型增长的种群数量在达到环境容纳量K值后将停止增长,有时在K值左右保持相对稳定。
环境阻力在S型增长模型中表现为抑制种群增长的因子,这些因子在生存斗争中被淘汰的个体数占个体总数的比例随种群密度的增大而增加。
问题陈述:一群动物最高年龄为15岁(年),繁殖周期为5年,因此每5岁一组分成3个年龄组,各组繁殖率为0, 4, 3,存活率为1/2,1/4。
建立种群增长模型。
(1)开始每组各有1000只,求30年内每5年各组动物数量; 并确定种群的固有增长率和稳定分布。
(2)如果饲养者每5年出售一次动物,出售量为龄组i在这5年的增量,记出售量与该龄组存量之比为本时段收获系数H,即hi(n)ai (n)=ai (n)-ai (n-1),H(n)=diag(h1(n), h2 (n), h3(n)) 。
建立稳定收获模型。
(3)如果饲养者只出售幼龄组动物,即h2 =h3 =0。
求稳定收获的收获系数h1,该种群的稳定分布和收获量。
(所谓稳定收获指收获量不变,这时收获系数和收获后的种群数量与时间n无关)问题(1)分析:问题(1)蕴含着三个平衡关系:第k个5年的幼年=第k-1个5年的中年和老年所繁殖之和;第k个5年的中年=第K-1个5年的存活下来的幼年;第k个5年的老年=第K-1个5年的存活下来的中年;于是可以依此给出LESLIE矩阵,建立模型,求出30年内每5年各组的数量。
至于固有增长率和稳定分布,归结为求矩阵的特征值特征向量的问题。
问题假设:幼年经过5年存活下来的就成长为中年,中年经过5年存活下来的就成长为老年,老年经过5年全部死亡。
变量:幼年在第K个5年的数量a1(k)中年在第K个5年的数量a2(k)老年在第K个5年的数量a3(k)LESLIE矩阵A建立模型:根据平衡关系可以列出方程:[a1(k) a2(k) a3(k) ]’=A*[ a1(k-1) a2(k-1) a3(k-1)] ’;其中A=[0 4 3;0.5 0 0 ;0 0.25 0];初始条件为:[a1(1) a2(1) a3(1) ]’=[1000 1000 1000]’1按照这个递推关系求出30年内各个年龄组的数量为第个5年0 1 2 3 4 5 6 幼年1000 7000 2750 14375 8125 29781 21641中年1000 500 3500 1375 7188 4063 14891老年1000 250 125 875 344 1797 10162 画出各个年龄组数量随时间变化图像如下蓝色代表幼年,绿色代表中年,红色代表老年。
按年龄分组的种群增长模型——Leslie 模型 种群直接通过雌性个体的繁殖而增长的,所以用雌性个体数量的变化为研究对象比较方便。
下面提到的种群数量均指其中的雌性,总体数量可按照一定的性别比算出。
将种群按年龄大小等间隔地分成n 个年龄组,如每1岁或5岁为1组。
与之相对应,时间也分成与年龄组区间大小相等的时段,如1年或5年为一个时段。
记时段k 第i 年龄组的种群数量为x i (k),k=0,1,2,……,i=1,2,3,4,……,n 。
在稳定的环境下和不太长的时间内,合理地假设种群的繁殖率和死亡率不随时段k 变化,只与年龄组有关。
记第i 年龄组的繁殖率为b i ,即每个(雌性)个体在1个时段内繁殖的数量;记第i 年龄组的死亡率为d i ,即1个时段内死亡数量(占总量)的比例。
s i =1-d i 称为存活率。
通常,b i 和s i 可由统计资料获得,且有以下性质:b i >=0,i=1,2,3,……,n ,且至少有一个b i >0;0<s i <=1,i=1,2,3,……,n-1。
种群数量x i (k)的变化规律由2个基本关系得到:时段k+1第1年龄组的数量是各年龄组在时段k 的繁殖数量之和;时段k+1第i+1年龄组(i=1,2,……,n-1)的数量是时段k 第i 年龄组存活下来的数量,由此得到x 1(k+1)= 1b ()ni i i x k =∑,k=0,1,2, (1)x i+1(k+1)=s i x i (k),k=0,1,2,……,i=1,2,……,n-1(2)(1),(2)是差分方程组,记种群数量在时段k 按照年龄组的分布向量为x(k)=[(x 1(k),x 2(k),......,x n (k)]T ,k=0,1,2 (3)由繁殖率b i 和存活率s i 构成的矩阵1()limk k x k λ→∞11212100000000n n n b b b b s L s s --⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦则(1),(2)可表为x(k+1)=Lx(k),k=0,1,2 (5)当矩阵L 和按年龄组的初始分布x(0)已知时,可以预测种群数量在时间段k 按年龄组的分布为x(k)=L k x(0),k=1,2, (6)有了x(k),不难算出种群在时段k 的总数。
实验22 按年龄分组的种群增长模型实验目的1、利用常差分方程建立实际问题的数学;2、学会用MATLAB 软件计算出模型的相关问题。
实验内容1、用常差分方程建立按年龄分组的种群增长模型;2、用MATLAB 软件求按年龄分组的种群模型的一些问题。
实验步骤问题 野生或饲养的动物因繁殖而增加,因自然死亡和人为屠杀而减少,不同年龄动物的繁殖率、死亡率有较大差别,因此在研究某一种群数量的变化时,需要考虑按年龄分组的种群增长。
将种群按年龄等间隔地分成若干个年龄组,时间也离散化为时段,给定各年龄组种群的繁殖率和死亡率(在稳定环境下不妨假定它们与时段无关),建立按年龄分组的种群增长模型,预测未来各年龄组的种群数量,并讨论时间充分长以后的变化趋势。
模型及其求解 设种群按年龄等间隔地分成n 个年龄组,记0,1,2,...,i n =,时段记作0,1,2,...k =,且年龄组区间与时段长度相等(若5岁为一个年龄组,则5年为一个时段)。
以雌性个体为研究对象比较方便,以下种群数量均指其中的雌性。
记第i 年龄组在时段k 的数量为()x k i ;第i 年龄组的繁殖率为i b ,表示每个(雌性)个体在一个时段内繁殖的数量;第i 年龄组的死亡率为i d ,表示一个时段内死亡数与总数的比。
1i i s d =-是存活率。
为建立()i x k 的变化规律,我们注意到:第1年龄组在时候1k +的数量为各年龄组在第k 时段繁殖的数量之和,即11(1)()0,1,ni i i x k b x k k =+==∑(22.1)而第1i +年龄组在时段1k +的数量是第i 年龄组在时段k 存活的数量,即 1(1)()1,2,,1,0,1,i i i x k s x k i n k ++==-=(22.2) 记在时段k 种群各年龄组的数量为12()((),(),,())T n x k x k x k x k = 。
(22.3)这样,有1(1)(),0,1,k x k Lx k k ++== (22.4)将()x k 归一化后的向量记做()xk ,称种群按年龄的分布向量。
生态学实验报告具有年龄结构的种群增长模型模拟姓名:学号:时间:一、实验原理种群统计的核心是建立反映种群生活史的各年龄组成出生率和死亡率等信息的综合表,即生命表。
种群生命表都是在假设种群的数量和年龄结构不变的前提下,反映一个特定年龄种群的个体存活率、死亡率和生殖率所呈现的变化;或特定时间内的各龄级间的个体存活、死亡及增值力的变化。
Leslie矩阵,可以依据生命表的参数,使种群数量与年龄结构的变化得到定量的表达和预测。
二、实验假设假设对一个人群的数量增长进行监控,寿命范围0-100年,以十年为一个年龄级,现设0,1,2,3,4,5,6,7,8,9这九个年龄级对应的存活率分别为1 , 0.9 , 0.8 , 0.7 , 0.65 , 0.55 , 0.35 , 0.15 , 0.05 , 0 。
调查当天,前四个年龄级对应人数为10 , 8,5, 3,其余年龄级人数均为零,通过改变各年龄段的平均生殖率模拟计划生育对种群总数增长的影响(假设各年龄级存活率不变)。
实验猜测,计划生育会降低种群的增长速度,降低各年龄级的平均生殖率对种群数量控制有显著效果。
三、实验过程1.打开population程序,设置年龄级为0-92.设置lx分别为1 , 0.9 , 0.8 , 0.7 , 0.65 , 0.55 , 0.35 , 0.15 , 0.05 , 03.设置1,2,3级对应的Mx为1,4,24.设置1,2,3,4级对应的Sx(0)为10,8,5,35.设置代数为5,绘制∑Sx-Time曲线图6.改变1,2,3级Mx为0,1,1,绘制5代内∑Sx-Time曲线图四、实验数据(1)假如不对该人群进行计划生育,1,2,3年龄级对应的平均生殖率分别为1,4,2,用population 软件模拟种群五代内的种群增长曲线表一、不进行计划生育时该人群生命表部分数据表二、表一数据设置对应的Leslie矩阵图一、不进行计划生育时五代内人群数量增长曲线图(2)假如对该人群进行计划生育,使其1,2,3,年龄级对应的平均生殖率分别降低至0,1,1然后用population软件模拟该群体五代内的增长曲线表三、进行计划生育时该人群生命表部分数据表四、表三数据设置对应的Leslie矩阵图二、进行计划生育时五代内人群数量增长曲线图图三、进行计划生育时20代内人群数量增长曲线图五、结果分析1.在软件中通过改变各年龄级平均生殖率的参数,从而改变各年龄级特殊出生率,影响种群增长速率,从改变参数前后的图形趋势变化可以看出,各年龄级平均生殖率的降低明显使种群增长速度降低,初始种群总数为26人,未计划生育时五代后群体总数增长到了2200左右,而计划生育降低各年龄级平均生殖率后五代时种群总数为80左右,20代时种群总数也才不到1000人。
种群增长的三个模型
种群增长是生态系统的一个重要环节,衡量其中重要的元素,可
以用特定的模型来概括。
在本文中,我将介绍种群增长的三种模型:
函数种群增长模型、闭合系统增长模型和开放系统增长模型。
首先,函数种群增长模型,又称为函数种群增加模型或静态函数
模型。
函数种群增长模型是非常简单的,根据它,每年种群的增长量
近似相同,用函数表示:Nt=N0*e^ ( rt ) 。
其中,Nt为时间t的种
群量,N0为种群的初始量,r为年利率。
其次,闭合系统增长模型,又称为马尔可夫、拉斯维加斯模型。
这种模型是在静态模型中引入环境元素,根据这一模型,环境对种群
增长有很大的影响,种群受到环境条件的限制。
种群数量随时间变化,即Nt+1=Nt+Nt*(K-Nt/K),其中K为最大承载量,表示种群达到某一点后,不再继续增长。
最后,开放系统增长模型,也称为穹宁斯马尔可夫模型,这种模
型解决了闭合系统模型存在的不足,该模型把环境元素和外来因素都
考虑在内,因此,种群不仅受到环境限制,还受到外来因素的制约,
种群最终数量变化如下:Nt=N0*e^ ((r-k)*t ) ,其中r是外界的来
源增长率(利率),K表示种群承载能力,T表示时间。
从上可以看出,函数种群增长模型、闭合系统增长模型和开放系
统增长模型是种群增长中常用的三种模型,它们各自有不同的特点,
可以帮助我们理解种群增长。
讨论问题:在按年龄分组的种群增长模型中,设一群动物的最高年龄为15岁,每5岁一组,分成3个年龄组,各组的繁殖率为b1=0,b2=4,b3=3,存活率为s1=1/2,s2=1/4,开始时3组各有1000只。
求15年后各组分别有多少只,以及时间充分长以后种群的增长率(即固有增长率)和按年龄的分布。
成员:按年龄分组的种群增长不同年龄组的繁殖率和死亡率不同 以雌性个体数量为对象建立差分方程模型,讨论稳定状况下种群的增长规律 模型建立种群按年龄大小等分为n 个年龄组,记i=1,2,… , n 时间离散为时段,长度与年龄组区间相等,k=1,2,… 第i 年龄组1雌性个体在1时段内的繁殖率为bi第i 年龄组在1时段内的死亡率为di, 存活率为si=1- di xi(k)~时段k 第i 年龄组的种群数量)( ) 1 ( 11 k x b k x i ni i ∑ == + ( 设至少 1 个 b i>0)Tn k x k x k x k x )](),(),([)(21Λ=~按年龄组的分布向量X(k+1)=LX(k),k=0,1,2,…当矩阵L 和按年龄组的初始分布向量x (0)已知时,可以预测任意时段k 种群按年龄组的分布为:稳定状态分析的数学知识1, , 2 , 1 ), ( ) 1 ( 1 - = = + + n i k x s k x i i i⎥ ⎥⎥ ⎥ ⎥ ⎥ ⎥⎥⎦⎤ ⎢ ⎢ ⎢ ⎢ ⎢⎢⎢⎢ ⎣ ⎡ = - - 0 00 0 0 1 21 12 1 n n n s s s b b b b L)()(x Lkx k=矩阵存在正单特征根1,>0, 则s 1 1 ,λ)=110级应数(3)班张林 20100633任凯 20100598郭腾飞 20100549。