07-08(2)概率统计试卷(A卷)
- 格式:doc
- 大小:174.50 KB
- 文档页数:5
(勤奋、求是、创新、奉献)2011~ 2012 学年第 一 学期考查试卷主考教师: 彭利平课程序号 班级 学号 姓名《概率论与数理统计A 》课程试卷 (A 卷)标准答案(本卷考试时间 90 分钟)题号 一 二 三 四 五 六 七 总得分题分 24 24 12 10 10 10 10 得分一、单项选择题(本题共8小题,每小题3分,共24分,将答案填在下面的横线上)1. B ;2. C ;3. D ;4. B ;5. C ;6. A ;7. A ;8. D .1.从一副52张的扑克牌中任意抽5张,其中没有K 字牌的概率为( B ).(A )4852 (B )548552C C (C )54852C (D )5548522. 设随机变量X 和Y 不相关,则下列结论中正确的是( C ) (A )X 与Y 独立. (B )()()()D X Y D X D Y -=- (C )()()()D X Y D X D Y -=+. (D )()()()D XY D X D Y =.3.如果随机变量X 的概率密度为,01()2,120,x x x x x ϕ≤≤⎧⎪=-<≤⎨⎪⎩其他 ,则P (X ≤1.5)= ( D )(A )1.5xdx -∞⎰(B ) 1.5(2)x dx -⎰ (C ) 1.5xdx ⎰ (D )1 1.501(2)xdx x dx+-⎰⎰4.设随机变量X 的2(),(),E X D X μσ==用契比雪夫不等式估计{||3}P X μσ-≤( B ). (A )89≤; (B )89≥; (C )19≤; (D )19≥ 5.设总体2~(,)X N μσ,且μ已知、2σ未知,设123,,X X X 是来自该总体的一个样本,则下列样本的函数中是统计量的为( C ).(A )21231()3X X X σ+++ (B )1232X μX σX ++ (C )222123X X X μ++- (D )22123X σX X ++6.设X 的分布律为()F x 为其分布函数,则(2)F =( A ).(A )0.8 (B )0.6 (C )0.4 (D )0.2 7.设12,,,n X X X 是来自总体2(,N μσ)的样本,记2211()n ni i S X X n ==-∑,11n ii X X n ==∑,则)nX Y S μ-=服从的分布是( A ).)(A (1)t n - )(B (0,1)N )(C 2(1)n χ- )(D ()t n8. 对总体2~(,X N μσ)的均值μ作区间估计,得到置信度为0.95的置信区间,其意是指这个区间( D ).(A)平均含总体95%的值 (B) 平均含样本95%的值 (C) 有95%的机会含样本的值 (D) 有95%的机会含μ的值二、填空题(本题共8小题,每小题3分,共24分,将答案填在下面的横线上)1. c b - ;2. (8,97)N ;4. 314e -- ;5. 46 ;6. 1/4 ;7. 1/6 ;8. ˆˆ()()D D αβ< .1.已知(),(),()P A a P B b P AB c ===,则()P A B = .2.设二维随机变量(,)~(1,2,4,9,0)X Y N ,则23~X Y + .3.已知随机变量~(0,2)X U ,则2Y X =在(0,4)内的概率密度函数为()Y f y = . 4. 设X 服从参数为λ的泊松分布,且3{0}P X e -==,则{1}P X >= . 5.设随机变量,,X Y Z 相互独立,其中X 在(0,6) 上服从均匀分布,Y 服从正态分布2(0,2)N ,Z 服从参数为3λ=泊松分布,记23W X Y Z =-+,则()D W = .6.设121,,X X 来自正态总体)1 ,0(N , 2129285241⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=∑∑∑===i i i i i i X X X Y ,当常数k = 0 时,kY 服从2χ分布.7.设123,,X X X 是取自总体X 的样本,()E X μ=为未知参数,若1231132T X X kX =++是μ的无偏估计,则k =________.8. ˆα和βˆ都是参数θ的无偏估计,如果有 成立 ,则称ˆα是比βˆ有效的估计. 三、计算题(本题12分)设二维随机变量),(Y X 具有概率密度⎩⎨⎧>>=+-,,0,0,0,2),()2(其它y x e y x f y x , (1)求出关于X 和关于Y 的边缘概率密度;(2)判断X 和Y 是否相互独立; (3) 求概率}{X Y P ≤.解:(1)⎰+∞∞-=dy y x f x f X ),()((2)02,00,x y edy x +∞-+⎧>⎪=⎨⎪⎩⎰其它,00,x e x -⎧>=⎨⎩其它⎰+∞∞-=dx y x f y f Y ),()((2)02,00,x y edx y +∞-+⎧>⎪=⎨⎪⎩⎰其它22,00,y e y -⎧>=⎨⎩其他(2)因为()()()y x f y f x f Y X ,=,所以X 与Y 相互独立. (3)}{X Y P ≤(2)2xx y dx edy +∞-+=⎰⎰2200()|(1)0x yx x xe edx e e dx+∞+∞----=-=-⎰⎰312()|033x x e e --+∞=-+=四、计算题(本题10分)某保险公司多年的资料表明,在索赔户中,被盗索赔户占20%,以X 表示在随机抽查100个索赔户中因被盗而向保险公司索赔的户数,试用中心极限定理计算{1430}P X ≤≤.解: ~(100,0.2)X B , ()1000.220E X =⨯=,()1000.20.816D X =⨯⨯=,20~(0,1)4X N -近似, 1420203020{1430}{}444X P X P ---≤≤=≤≤20{1.5 2.5}4X P -=-≤≤(2.5)( 1.5)≈Φ-Φ-(2.5)1(1.5)=Φ-+Φ0.99380.933210.927=+-=五、计算题(本题10分)设总体X的概率密度为1,01()0,x f x ≤≤=⎪⎩其它, 其中0>θ为未知参数. 若n X X ,,1 是来自母体的简单子样,试求θ的矩估计量与极大似然估计值.解:(1) 令11110EX x dx μ====⎰解得 2111μθμ⎛⎫= ⎪-⎝⎭所以θ的矩估计量为 2ˆ1θ⎛⎫= ⎪-⎝⎭X X (2)似然函数 ()()1,n ii L f x θθ==∏)11211(nnni i i x θ====∏∏对数似然函数 ())1ln ln 1ln 2θθ==+∑nii nL x令()121ln 1ln 022ni i d L n x d θθθθ-==+=∑ 解得θ的极大似然估计值为 221ˆln θ==⎛⎫⎪⎝⎭∑ni i n x六.计算题(本题10分)某化工厂为了提高某种化学药品的得率,提出了两种工艺方案,为了研究哪一种方案好,分别对两种工艺各进行了10次试验,计算得65.96x =,21 3.351s =,69.43y =,22 2.246s =,假设得率均服从正态分布,且方差相同,问方案乙是否能比方案甲显著提高得率 ?解:由x y <知,原假设012:H μμ≥备择假设:112:H μμ<, 检验统计量:2211221212(1)(1)112X YT n S n Sn n n n =-+-++-拒绝域:12{2}W T t n n α=≤-+-() 1210n n ==,0.01,α=120.01218 2.5524αt n n t +-==()(), 拒绝域:{ 2.5524}W T =≤-,1211110.44721010n n +=+=, 22112212(1)(1)9 3.3519 2.2461.6729218n S n S n n -+-⨯+⨯==+-,65.9669.434.6383 2.55240.4472 1.6729t -==-<-⨯,t W ∈,所以拒绝0H ,认为方案乙比方案甲显著提高得率.七.计算题(本题10分)对某种产品进行一项腐蚀加工试验,得到腐蚀时间X (秒)和 腐蚀深度Y (毫米)的数据见下表:X 5 5 10 20 30 40 50 60 65 90 120Y 4 6 8 13 16 17 19 25 25 29 46(1)计算xx L , yy L , xy L ;(2) 计算样本相关系数r ,并判断其相关方向和密切程度;(3)求变量y 倚x 的线性回归方程. (计算结果保留到小数点后四位)解:(1), 1495n i i x ==∑,2135875n ii x ==∑,2211113600nn xx i i i i L x x n ===-=∑∑()1208n i i y ==∑,215398n ii y ==∑,22111()1464.9091nnyy i i i i L y y n ===-=∑∑ 113755ni i i x y ==∑,11114395nnnxy i i i i i i i L x y x y n ====-⋅=∑∑∑(2) L r=0.9847==0.8>所以X与Y高度线性相关且正相关 (3)45x =,18.9091y =4395ˆ0.323213600xy xx L bL ===, ˆˆ18.90910.323245 4.3651ay bx =-=-⨯=,ˆˆˆ 4.36510.3232 =+=+y a bx x.。
2007 – 2008学年第一学期《概率论与数理统计A 》试卷答案一、填空题(每小题3分,满分21分,把答案填在题中横线上)1.设()()P A P B p ==,且,A B 至少有一个发生的概率为0.2,,A B 至少有一个不发生的概率为0.6,则p = 0.3 . 解 已知()0.2,()0.6P A B P A B == ,0.2()()()()2()P A B P A P B P AB p P AB ==+-=- ,0.6()1()1()P A B P A B P AB ==-=- ,()0.4P AB =, 0.3p =2.11个人随机地围一圆桌而坐,则甲乙两人相邻而坐的概率为 0.2 .解 设A 表示事件“甲乙相邻而坐”。
样本空间所包含的基本事件数为11!,事件A 包含的基本事件数为1129!⨯⨯11292()0.21110P A ⨯⨯===!! 3.设随机变量~(,)X B n p ,则对任意实数x ,有limn x P →∞⎫≤=⎬⎭()x Φ或22t xdt -⎰. 4.设随机变量X Y 与的方差和相关系数分别为XY ()3,()4,0D X D Y ρ===,则(21)D X Y -+= 16 .解 (21)(2)D X Y D X Y -+=-(2)()2cov(2,)D X D Y X Y =+- 4()()4cov(,)D X D Y X Y =+-4()()4XY D X D Y ρ=+-=165.设~(0,1)X N ,1.96是标准正态分布的上0.025分位点,则{}1.96P X =≤ 0.975 .解 1.96是标准正态分布的上0.025分位点,即{}0.0251.96P X =≥{}1.96P X =≤{}110.0250.9751.96P X -=-=>6.设12(,,,)n X X X 是来自总体2(,)N μσ的样本,则当常数k =11n -时, 221()ni i k X X σ==-∑ 是参数2σ的无偏估计量.7.设总体2~(,)X N μσ,12(,,,)n X X X 是来自总体X 的样本,X 为样本均值,2S 为样本方差,2σ未知,若检验假设0010:,:H H μμμμ=≠~ t (n-1).二、选择题(每小题3分,满分18分)X Y 与满足条件()()()D X Y D X D Y +=+, 则下面结论不成立的是( C )(A )X Y 与不相关.(B )()()()E XY E X E Y =.(C )X Y 与相互独立. (D )cov(,)0X Y =.2.设随机变量X 的概率密度为cos ,||,2()0,||.2k x x f x x ππ⎧≤⎪⎪=⎨⎪>⎪⎩ 则k 等于( B )(A )14. (B )12. (C )0. (D )1.3.某班12名战士各有一支归自己使用的枪,枪的外形完全一样,在一次夜间紧急集合中,每人随机地取了一支枪,则拿到是自己枪的人数的数学期望是( D ) (A )112. (B )0. (C )12. (D )1. 解 设1,i 0,i i X ⎧=⎨⎩第个战士拿到自己的枪,第个战士没拿到自己的枪,1,2,,12i = ,则1(),12i E X = 设X 表示拿到自己枪的人数.则121i i X X ==∑1212111()()12112i i i i E X E X E X ==⎛⎫===⨯= ⎪⎝⎭∑∑4.设X Y 与为相互独立的随机变量,其分布函数分别为()X F x 和()Y F y ,则随机变量max(,)Z X Y =的分布函数为( A ) (A )()()()Z X Y F z F z F z =.(B )[][]()1()1()Z X Y F z F z F z =--.(C )()1()()Z X Y F z F z F z =-.(D )()()()Z X Y F z F z F z =+.5.设1210(,,,)X X X 是来自总体2(0,)N σ的样本,则下面结论正确的是( C )(A )1022211~(9)kk Xχσ=∑.(B )1021~(9)k k X t =∑.(C )1022211~(10)k k X χσ=∑. (D )1021~(10)k k X t =∑.6.设总体2~(,)X N μσ,μ为未知参数,样本12,,,n X X X 的方差为2S ,对给定的显著水平α,检验假设2201:2,:2H H σσ=<的拒绝域是( B ) (A )221/2(1)a n χχ-≤-. (B )221(1)a n χχ-≤-. (C )221/2()a n χχ-≤.(D )221()a n χχ-≤.三、计算题(每小题10分,满分50分)1.一个系统中有三个相互独立的元件,元件损坏的概率都是0.2.当一个元件损坏时,系统发生故障的概率为0.25; 当两个元件损坏时,系统发生故障的概率为0.6; 当三个元件损坏时,系统发生故障的概率为0.95; 当三个元件都不损坏时,系统不发生故障. 求系统发生故障的概率. 解 设A 表示“系统发生故障”的事件,i B 表示“有i 个元件发生故障”的事件,1,2,3i =;由全概率公式 112233()()()()()()()P A P B P A B P B P A B P B P A B =++ 由已知,1()0.25P A B =,2()0.6P A B =,3()0.95P A B =1213()0.20.80.384P B C =⨯⨯= ,2223()0.20.80.096P B C =⨯⨯= ,3333()0.20.008P B C ==所以1612.095.0008.06.0096.025.0384.0)(=⨯+⨯+⨯=A P 2.设随机变量X 的分布律为X -1 0 1 2P 0.1 2.0 a b若()1E X =,(1)求常数a , b ; (2)求Y=X 2 的分布律.解 (1)由 0.10.21a b +++=,()E X =10.100.212a b -⨯+⨯+⨯+⨯=1,解得a =0.3, b =0.4. (2) Y=X 2的可取值为0,1,4.{}0P Y =={}0P X ==0.2,{}1P Y =={}1P X =-+{}1P X ==0.1+0.3=0.4, {}4P Y =={}==2X P 0.4, 因此Y=X 2 的分布律为Y 0 1 4 P 2.0 0.4 0.43.设二维随机变量(,)X Y 的联合概率密度函数为,0<1,(,)0,Ax x y f x y <<⎧=⎨⎩其他.(1)求常数A ; (2)求关于,X Y 的边缘概率密度函数;(3)判断X Y 与是否相互独立;(4)求{1}P X Y +≤. 解(1)由(,)d d 1f x y x y +∞+∞-∞-∞=⎰⎰,有 1001d d 6yAy Ax x ==⎰⎰,得6A =; (2)()X f x =(,)d f x y y +∞-∞⎰, 当0x ≤或1x ≥时,()X f x =0,当01x <<时,1()6d 6(1)X x f x x y x x ==-⎰, 所以6(1),01;()0.X x x x f x -<<⎧=⎨⎩其它同理 23,01;()0.Y y y f y ⎧<<=⎨⎩其它(3)由(,)()()X Y f x y f x f y ≠,所以X Y 与不相互独立 (4)11201(1)6d d 4xx P X Y x x y -+≤==⎰⎰.4.设随机变量X Y 与相互独立,其概率密度分别为0;e ,()0,0.xX x f x x ->⎧=⎨≤⎩ 20;1e ,()20,0.yY y f y y ->⎧⎪=⎨⎪≤⎩求Z X Y =+的概率密度.解法1 由卷积公式 ()()()d Z X Y f z f x f z x x +∞-∞=-⎰因为e >0;()00.xX x f x x -⎧=⎨≤⎩ 21e>0;()200.yY y f y y -⎧⎪=⎨⎪≤⎩所以 0()()()d e ()d xZ X Y Y f z f x f z x x f z x x -+∞+∞-∞=-=-⎰⎰e ()d t zY z t z x f t t --∞=--⎰令e()d t zzY f t t --∞=⎰当0z ≤时 ()e ()d 0t zzZ Y f z f t t --∞==⎰ 当0z >时 201()e ()d ee d 2tt zt zzzZ Y f z f t t t ----∞==⎰⎰2e (e 1),z z -=- ()()()d Z X Yf z f x f z x x +∞-∞=-⎰2e (e 1),0,0,0.zz z z -⎧⎪->=⎨⎪≤⎩解法2 先求Z 的分布函数()Z F z . 联合密度函数为21,0,0,(,)()()20,,y x X Y e e x y f x y f x f y --⎧>>⎪==⎨⎪⎩其它(){}{}(,)Z x y zF z P Z z P X Y z f x y dxdy +≤=≤=+≤=⎰⎰当0z ≤时, ()(,)0,Z x y zF z f x y dxdy +≤==⎰⎰当0z >时, 21()(,)2yx Z x y zDF z f x y dxdy e e dxdy --+≤==⎰⎰⎰⎰20012yzz x x e dx e dy ---=⎰⎰221z ze e --=-+分布函数为 221,0()0,0z z Z e e z F z z --⎧⎪-+>=⎨⎪≤⎩再求导,得概率密度 2e (e 1),0,()()0,0.zz Z Z z f z F z z -⎧⎪->'==⎨⎪≤⎩5.设12(,,,)n X X X 是来自总体2(,)N μσ的样本,求μ和2σ的最大似然估计量. 解 设12,,,n x x x ,相应的样本观测值,则似然函数为2()22122221L(,)11exp ()22i x ni nni i x μσμσμπσσ--===⎛⎫⎧⎫=--⎨⎬⎪⎝⎭⎩⎭∑取对数,得222211ln L(,)(ln 2ln )()22n i i n x μσπσμσ==-+--∑将2ln L(,)μσ分别对μ与2σ求偏导数,并令其等于零, 得方程组2122241ln 1()0ln 1()022ni i ni i L x L n x μμσμσσσ==∂⎧=-=⎪∂⎪⎨∂⎪=-+-=⎪∂⎩∑∑ 解此方程组,得到参数μ和2σ的最大似然估计值是12211ˆ;1().n i i ni i x x n x x n μσ==⎧==⎪⎪⎨⎪=-⎪⎩∑∑ 因此,μ和2σ的最大似然估计量是12211ˆ;1().n i i ni i X X n X X n μσ==⎧==⎪⎪⎨⎪=-⎪⎩∑∑四、证明题(共2道小题,满分11分)1.(6分)若(|)(|)P A B P A B >,试证(|)(|)P B A P B A >. 证明 因为()(|)()()()()()(|)()1()1()P AB P A B P B P AB P A AB P A P AB P A B P B P B P B =--===--由 (|)(|)P A B P A B >, 所以得()()()()1()P AB P A P AB P B P B ->- ()()()()()()()P AB P B P AB P A P B P B P AB ->- ()()()P AB P A P B ∴>从而 ()()()()()()()P AB P A P AB P A P B P A P AB ->-即()()()()P AB P A P A P BA > ()()()()P AB P BA P A P A > 所以(|)(|)P B A P B A >.2.(5分)设12(,,,)n X X X 是来自总体(0,1)N 的样本,证明{}21202ni i n P X n n=-<<≥∑. 证明 根据2221~()ni X n χχ=∑,且22(),()2E n D n χχ==,由切比雪夫不等式,有{}{}2221|()|02ni P P E nX n χχ=-<<<∑22()21D n n nχ-≥-=.。
概率统计期末试卷及答案安徽农业大学2007―2008学年第二学期《概率论与数理统计》试卷(A卷) 考试形式: 闭卷笔试,2小时适用专业:全校题号一二三四五总分得分P(()())tntn,,,1、标准正态分布表: 2、t分布表: ,n ,=0.005 0.01 0.025 0.05 x 1.5 1.64 1.96 2.515 2.9467 2.6025 2.1315 1.75310.933 0.95 0.975 0.994 ,()x16 2.9208 2.5835 2.1199 1.7459得分评阅人一、填空题:(共5小题,每小题3分,共15分) 1、10张彩票,其中有一张有奖,现有10人依次抽取,则第3个人摸中奖的概率是。
kP(),1,2,,Xkk,,,,2、设随机变量的分布律为则。
X,,3、设则P(A)0.5,P(B)0.7,P(AB)0.9,()________,,,,PAB。
24、设随机变量则XNPX~(1,),(1),,, 。
XXX,,,X5、设是来自正态分布N(1,4)的一个样本,则样本均值1216的方差是。
得分评阅人二、选择题:(共5小题,每小题3分,共15分)1、设A,B为随机事件,则表示A,B中至少有一个发生的是( )ABAB(A) (B)AB (C) (D) AB,,02、设与的相关系数,则必有 ( ) YXXY(A) 与独立 (B) 与不独立; YYXXDXYDXDY()()(),,,DXYDXDY()()(),(C) (D)XY,D(2)XY,,3、若随机变量独立,其方差分别为6和3,则( ) (A) 9 (B) 15 (C) 21 (D) 2722N(,),,XX,,4、设是来自的一个样本,其中参数未知,,已,1n第1页共9页知,则下列选项中是统计量的是 ( )2n,,,,1XX(1)nS,2X,,()(A) (B) (C) (D) ,i22,,/nSn/,i,12XX,,N(,3),5、设是来自的一个样本,已知样本均值为,则x,5116的置信水平为95%的置信区间为 ( ) ,(A) (B) (C) (D) (3.53,6.47)(3.77,6.23)(3.53,6.23)(3.77,6.47)得分评阅人三、计算题:(共2小题,每小题10分,共20分)1、已知离散型随机变量的分布律为 X, PXPXPX(1)0.2,(2)0.3,(3)0.5,,,,,,求的数学期望和方差。
概率统计期末考试试题及答案试题一:随机变量的概率分布某工厂生产的产品合格率为0.9,不合格率为0.1。
假设每天生产的产品数量为100件,求下列事件的概率:1. 至少有80件产品是合格的。
2. 至多有5件产品是不合格的。
试题二:连续型随机变量的概率密度函数设随机变量X的概率密度函数为f(x) = 2x,0 ≤ x ≤ 1,0 其他,求:1. X的期望E(X)。
2. X的方差Var(X)。
试题三:大数定律与中心极限定理假设某银行每天的交易量服从均值为100万元,标准差为20万元的正态分布。
求:1. 该银行连续5天的总交易量超过500万元的概率。
2. 根据中心极限定理,该银行连续20天的总交易量的平均值落在90万元至110万元之间的概率。
试题四:统计推断某工厂生产的零件长度服从正态分布,样本数据如下:95, 96, 97, 98, 99, 100, 101, 102, 103, 104求:1. 零件长度的平均值和标准差。
2. 零件长度的95%置信区间。
试题五:假设检验某公司对两种不同品牌的打印机进行了效率测试,测试结果如下:品牌A:平均打印速度为每分钟60页,标准差为5页。
品牌B:平均打印速度为每分钟55页,标准差为4页。
样本量均为30台打印机。
假设两种打印机的平均打印速度没有显著差异,检验假设是否成立。
答案一:1. 至少有80件产品是合格的,即不合格的产品数少于或等于20件。
根据二项分布,P(X ≤ 20) = Σ[C(100, k) * (0.1)^k *(0.9)^(100-k)],k=0至20。
2. 至多有5件产品是不合格的,即不合格的产品数不超过5件。
根据二项分布,P(X ≤ 5) = Σ[C(100, k) * (0.1)^k * (0.9)^(100-k)],k=0至5。
答案二:1. E(X) = ∫[2x * x dx],从0到1,计算得 E(X) = 2/3。
2. Var(X) = E(X^2) - [E(X)]^2 = ∫[2x^2 * x dx] - (2/3)^2,从0到1,计算得 Var(X) = 1/18。
暨 南 大 学 考 试 试 卷上分位数(除填空题外,其它题用到的分位数请详细列明)0025002582306, 92262..().().,t t == 00500581859, 91833..().().t t ==20.025(8)17.532χ=, 20.025(9)19.022=χ, 20.975(8) 2.18=χ, 20.975(9) 2.7=χ 108413().Φ= ,1645095(.).Φ=,1960975(.).Φ=, 2509938(.).Φ=得分 评阅人二、选择题(共8小题,每小题2分,共16分)答案填写在右表1. 设随机变量X 服从正态分布2(,) N μσ,则随着标准差σ的增大,概率{}P X μσ-<如何变化( C )(A) 单调增大; (B) 单调减少; (C) 保持不变; (D) 增减不定。
2. 离散型随机变量X 的概率分布为()kP X k A λ== (1,2,k =)的充要条教 师 填写 2008 - 2009 学年度第__二_ 学期课程名称:__概率论与数理统计(理工类)_ 授课教师姓名:_____刘中学______考试时间:____2009__年 7_月__15__日课程类别必修[√ ] 选修[ ]考试方式开卷[ ] 闭卷[√ ] 试卷类别(A ,B,…) [ A ] 共 7 页考 生 填 写学院(校) 专业 班(级)姓名 学号 内招[ ] 外招[ ]题 号 一 二 三 四 五 六 七 八 九 十 总 分得 分题 号1 2 3 4 5 6 7 8 答 案 C A D A C B B A 得 分件是( A )。
(A )1(1)A λ-=+且0A >; (B )1A λ=-且01λ<<; (C )1A λ=-且1λ<; (D )0A >且01λ<<. 3. 已知()0.5P A =,()0.4P B =,()0.6P AB =,则()P A B =(D )(A) 0.2 ; (B) 0.45; (C) 0.6 ; (D) 0.75。
2020-2021大学《概率论与数理统计》期末课程考试试卷A适用专业: 考试日期:试卷类型:闭卷 考试时间:120分钟 试卷总分:100分一.填空题(每题2分,共10分)1设事件A,B 互不相容,若P (A )=0.3,P (B )=0.7,则P (AB )为_________。
设事件A,B 相互独立,若P (A )=0.3,P (B )=0.7,则P (AB )为______.3.设母体X 服从正态分布N (μ,σ2),X 1,X 2⋯,X n 为取自母体的子样,X̄为子样均值,则X ̄服从的分布为__________.4.设X 1,X 2⋯,X n 相互独立,且都服从正态分布N (0,1),则∑X i 2n i=1服从的分布为_____________.5. 将一枚硬币重复掷N 次,以X 和Y 分别表示正面向上和反面向上的次数,则X 和Y 的相关系数等于__________.二、选择题(每小题2分共10分)1.设A,B 为互不相容事件,且P (A )>0,P (B )>0,则结论正确的有( )(A )P (A |B )>0 (B )P (A |B )>P(A) (C) P (A |B )=0 (D) P (A |B )=P (A )P (B ) 2、设随机变量ξ,η相互独立,且有Dξ=6,Dη=3.则D (2ξ+η)为( ) (A )9 (B )15 (C)21 (D)27 3、设随机变量X 服从正态分布N (μ,σ2),则随着σ的增大,P (|X −μ|<σ)( )(A )单调增大 (B )单调减少 (C )保持不变 (D )增减不定4、任一连续型随机变量的概率密度函数ϕ(x )一定满足( )(A )0≤ϕ(x )≤1;(B )定义域内单调不减;(C )∫ϕ(x )+∞−∞dx =1;(D )lim x→+∞ϕ(x )=1。
5、设随机变量ξ,η满足条件D (ξ+η)=D (ξ−η),则有( )事实上 (A ) Dη=0 (B )ξ,η不相关 (C )ξ,η相互独立 (D )Dξ⋅Dη=0三、综合题(每小题5分共30分)1.某射击小组共有20名射手,其中一级射手4名,二级射手8名,三级射手7名,四级射手1名,一、二、三、四级射手能通过选拔进入决赛的概率分别是0.9,0.7,0.5,0.2,求在小组内任选一名射手,该射手能通过选拔进入决赛的概率。
第 1 页 共 5 页班级 姓名 准考证号‥‥‥‥‥‥密‥‥‥‥‥‥封 ‥‥‥‥‥ 线 ‥‥‥‥内 ‥‥‥‥‥不 ‥‥‥‥‥准 ‥‥‥‥‥答 ‥‥‥‥‥题 ‥‥‥‥‥‥期末考试试卷 参考答案学年学期: 课程名称: 《概率论与数理统计》 适用专业:(满分:100分 时间:120分钟)一、单项选择题(本大题共15小题,每小题2分,共30分)在每小题列出的备选项中选择符合题目要求的,请将其代码填涂在答题卡上相应的位置,错涂、多涂或未涂均无分。
1.设二项分布的随机变量,其数学期望与方差之比为4:3,则该分布的参数p =( ).A .0.5B .0.25C .0.75D .不能确定2.设随机变量X 与Y 的关系为21Y X =+,如果()D X =2,则()D Y =( ).A .4B .6C .8D .103.若X 服从区间[]2,6上的均匀分布,则{23}P x <<=( ).A .0.2B .0.75C .0.5D .0.254.若随机变量X 的期望EX 存在,则()E aX b +=( ).A .aEXB .2a EXC .aEX b +D .2a EX b +5.当随机变量X 的可能值充满( )时,则()cos f x x =可以成为随机变量X 的密度函数.A .π[0,]2B .π[,π]2C .[0,π]D .3π7π[,]226.矿砂中铜含量服从正态分布),(~2σμN X ,2μσ,未知,现从总体中抽取样本521,,,X X X ,5115i i X X ==∑,52211()5i i S X X ==-∑,在显著水平α下检验00:μμ=H ,则所取的统计量为( ).A .5/0σμ-X B .5/0S X μ- C .4/0σμ-X D .4/0S X μ-7.事件表达式A B +的表示( ).A .事件A 与事件B 同时发生 B .事件A 发生但事件B 不发生C .事件B 发生但事件A 不发生D .事件A 与事件B 至少有一个发生8.样本空间S 中的事件A 与B 相互独立的充要条件是( ). A .A B S += B .()()()P AB P A P B =C .AB =∅D .()()()P A B P A P B +=+9.设1X 、2X 是总体X 的样本,则下列统计量不是总体X 的期望的无偏估计量的是( ).A .1XB .121233X X + C .121()2X X + D .121()3X X +10.任何一个连续型随机变量X 的密度函数()f x 一定满足( ).A 卷第 2 页 共 5 页‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 密 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 封 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 线‥‥‥‥‥‥‥‥‥‥‥‥‥A .0()1f x ≤≤B .() d 1f x x +∞-∞=⎰C .在定义域内单调不减D .lim ()1x f x →+∞= 11.袋中有5球,3新2旧,从中任取一球,无返回的取两次,A =第一次取新球,B =第二次取新球.求P (B|A )=( ).A .12B .23C .35D .1312.已知事件A 和B 互不相容,()0,()0P A P B >>,下式成立的是( ). A .()()()P A B P A P B =+ B .()()()P AB P A P B =C .()1P A B =D .()0P AB >13.若随机变量2(,),3,1,X N EX DX μσ==则11}P X ≤≤={-( ).A .2(1)1A Φ-、 B .(4)(2)B Φ-Φ、C .(4)(2)Φ--Φ-C 、 D .(2)(4)Φ-ΦD 、 14.参数为λ的指数分布的方差是( ).A .1λB .2λC .λD .21λ15.设X 为连续型随机变量,则{1}P X ==( ). A .1B .0C .不能确定D .以上都不对二、判断题(本大题共5小题,每小题2分,共10分)判断正误,正确代码为A ,错误代码为B ,请将正确的答案代码涂在答题卡相应的题号下。
2007年各地概率与统计试题汇编 山东理1.某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果按如下方式分成六组:第一组,成绩大于等于13秒且小于14秒;第二组,成绩大于等于14秒且小于15秒;……第六组,成绩大于等于18秒且小于等于19秒.右图是按上述分组方法得到的频率分布直方图.设成绩小于17秒的学生人数占全班总人数的百分比为x ,成绩大于等于15秒且小于17秒的学生人数为y ,则从频率分布直方图中可分析出x 和y 分别为( )A .0.9,35B .0.9,45C .0.1,35D .0.1,452.位于坐标原点的一个质点P 按下列规则移动:质点每次移动一个单位;移动的方向为向上或向右,并且向上、向右移动的概率都是12,质点P 移动五次后位`于点(23),的概率是() A .512⎛⎫ ⎪⎝⎭B .5251C 2⎛⎫ ⎪⎝⎭ C .3351C 2⎛⎫ ⎪⎝⎭D .523551C C 2⎛⎫ ⎪⎝⎭ 3. 设b 和c 分别是先后抛掷一枚骰子得到的点数,用随机变量ξ表示方程20x bx c ++=实根的个数(重根按一个计).(Ⅰ)求方程20x bx c ++=有实根的概率;(Ⅱ)求ξ的分布列和数学期望;(Ⅲ)求在先后两次出现的点数中有5的条件下,方程20x bx c ++=有实根的概率. 山东文秒4.设集合{12}{123}A B ==,,,,,分别从集合A 和B 中随机取一个数a 和b ,确定平面上的一个点()P a b ,,记“点()P a b ,落在直线x y n +=上”为事件(25)n C n n ∈N ≤≤,,若事件n C 的概率最大,则n 的所有可能值为( )A .3B .4C .2和5D .3和4全国II 文5.一个总体含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为 .1206.从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A :“取出的2件产品中至多有1件是二等品”的概率()0.96P A =.(1)求从该批产品中任取1件是二等品的概率p ;(2)若该批产品共100件,从中任意抽取2件,求事件B :“取出的2件产品中至少有一件二等品”的概率()P B .7.某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是0.6,经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元.(Ⅰ)求3位购买该商品的顾客中至少有1位采用一次性付款的概率;(Ⅱ)求3位顾客每人购买1件该商品,商场获得利润不超过650元的概率.江西理8.将一骰子连续抛掷三次,它落地时向上的点数依次..成等差数列的概率为( ) A.19 B.112 C.115 D.1189. 某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧制,两次烧制过程相互独立.根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品合格的概率依次为0.5,0.6,0.4,经过第二次烧制后,甲、乙、丙三件产品合格的概率依次为0.6,0.5,0.75.(1)求第一次烧制后恰有一件产品合格的概率;(2)经过前后两次烧制后,合格工艺品的个数为ξ,求随机变量ξ的期望.江西文10.一袋中装有大小相同,编号分别为12345678,,,,,,,的八个球,从中有放回...地每次取一个球,共取2次,则取得两个球的编号和不小于...15的概率为( ) A.132 B.164 C.332 D.36411.栽培甲、乙两种果树,先要培育成苗..,然后再进行移栽.已知甲、乙两种果树成苗..的概率分别为0.6,0.5,移栽后成活..的概率分别为0.7,0.9. (1)求甲、乙两种果树至少有一种果树成苗..的概率; (2)求恰好有一种果树能培育成苗..且移栽成活..的概率. 江苏理12.某气象站天气预报的准确率为80%,计算(结果保留到小数点后面第2位)(1)5次预报中恰有2次准确的概率;(4分)(2)5次预报中至少有2次准确的概率;(4分)(3)5次预报中恰有2次准确,且其中第3次预报准确的概率;(4分)湖南理 13.设随机变量ξ服从标准正态分布(01)N ,,已知( 1.96)0.025Φ-=,则(||1.96)P ξ<=( )A .0.025B .0.050C .0.950D .0.97514.某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响.(I)任选1名下岗人员,求该人参加过培训的概率;(II)任选3名下岗人员,记ξ为3人中参加过培训的人数,求ξ的分布列和期望.15.甲、乙两名跳高运动员一次试跳2米高度成功的概率分别是0.7,0.6,且每次试跳成功与否相互之间没有影响,求:(Ⅰ)甲试跳三次,第三次才成功的概率;(Ⅱ)甲、乙两人在第一次试跳中至少有一人成功的概率;(Ⅲ)甲、乙各试跳两次,甲比乙的成功次数恰好多一次的概率.。
上海海洋大学试卷
姓名: 学号: 专业班名:
一.填空题(每空2分,共24分)。
1.设A 、B 、C 为任意三事件,三个事件都未发生可表示为 。
2.设4.0)A (p =,7.0)B A (p =+,若事件A 与B 互斥,则=)B (p ,若事件A 与B 独立,则
=)B (p 。
3.袋中有大小相同的红球4只,黑球3只,现从中任取2只,则此两球颜色不同的概率为 。
4.若随机变量X 服从参数为λ的泊松分布,且有)4X (p )2X (p ===,则=λ 。
5.设随机变量X 的概率密度函数⎩⎨⎧=0
ax f(x)2 其他1x 0<<,则=a 。
6.随机变量),N(~X 2
σμ,则~X Y σ
μ
-=。
7.若),N(~X 2
σμ,n 21X ,,X ,X 是来自总体X 的样本,X ,2
S 分别为样本均值和样本方差,则
~S
n
)X (μ- 。
8.n 21X ,,X ,X 是来自总体X 的样本,若统计量∑==n
1
i i
i X
ˆαμ
是总体均值E(X)的无偏估计量,则
∑==n
1
i i
α。
9.在假设检验中,若接受原假设0H ,则可能犯 。
10.设n 21X ,,X ,X 是来自正态总体),N(~X 2
σμ的简单随机样本,要检验00H μμ=:,若2
σ
未知,则拒绝域为 ,若2
σ已知,则拒绝域为 。
二.(12分)假设一厂家生产的仪器,以概率0.70可以直接出厂,以概率0.30需进一步调试,经调
试后以概率0.80可以出厂,并以概率0.20定为不合格品不能出厂。
现该厂新生产了2)n(n ≥台仪器(假设各台仪器的生产过程相互独立),求: (1)全部能出厂的概率;
(2)其中恰有3件不能出厂的概率。
三.(15分)设随机变量X 的概率密度为⎪⎩
⎪
⎨⎧-=0
x 1A
f(x)2 1x 1x ≥< ,试求:
(1) 常数A ;(2)X 落在)2
1
,21(-内的概率;(3)X 的分布函数。
四.(9分)设连续性随机变量N(1,2)~X ,P(3)~Y ,且X 与Y 相互独立,求D(XY)E(XY),。
五.(10分)一生产线生产的产品成箱包装,每箱的重量是随机的。
假设每箱平均重50kg ,标准差
为5kg ,若用最大载重量为5吨的汽车承运,试用中心极限定理说明每车最多可以装多少箱,才能保障不超载的概率大于0.977。
六.(10分)已知总体X 的密度函数为⎪⎩
⎪⎨⎧=-0,
,e x f(x)2x
2
θθ 0x 0
x ≤>,未知参数0>θ,n 21X ,,X ,X 是
来自总体X 的样本。
求θ的矩估计量和最大似然估计量。
七.(6分)某旅行社为调查当地旅游者的平均消费额,随机访问了100名旅行者,得知平均消费额
80x =元,根据经验,已知旅行者消费),12N(~X 2μ,求该地旅游者平均消费额μ的置信度为95%
的置信区间。
八.(14分)在正常的生产条件下,某产品的测试指标总体),N(~X 200σμ,其中0.230=σ。
后来
改变了生产工艺,出了新产品,假设新产品的测试指标总体仍为X ,且知),N(~X 2σμ。
从新产品中随机地抽取10件,测得样本值为,x ,,x ,x 1021 计算得样本标准差为0.33S =。
试在检验水平
0.05=α的情况下,检验:(1)方差2σ有没有显著变化?(2)方差2σ是否变大?
附表1:
X~)(2n χ, P{X>)(2
n αχ}=α;
附表2:)x (Φ)0x (dt e
212
t x
2≥=
-
∞
-⎰
π。