分子生物学复习资料 绝对重点
- 格式:doc
- 大小:120.50 KB
- 文档页数:10
现代分子生物学1、DNA重组技术:又称基因工程,是将DNA片段或基因在体外经人工剪接后,按照人们的设计与克隆载体定向连接起来,在特定的受体细胞中与载体同时复制并得到表达,产生影响受体细胞的新的遗传性状。
2、基因组:指某种生物单倍染色体中所含有的基因总数,也就是包含个体生长、发育等一切生命活动所需的遗传信息的整套核酸。
3、功能基因组:又称后基因组,是在基因组计划的基础上建立起来的,它主要研究基因及其所编码蛋白质的结构与功能,指导人们充分准确地利用这些基因的产物。
1、简述分子生物学的基本含义:从广义来讲:分子生物学是从分子水平阐明生命现象和生物学规律的一门新兴的边缘学科。
它主要对蛋白质和核酸等生物大分子结构和功能以及遗传信息的传递过程进行研究。
从狭义来讲:分子生物学的范畴偏重于核酸(或基因)的分子生物学,主要研究基因或DNA的复制、转录、表达和调节控制等过程,当然其中也涉及到与这些过程有关的蛋白质与酶的结构和功能的研究2、早期主要有那些实验证实DNA是遗传物质?写出这些实验的主要步骤主要是两个实验:肺炎链球菌转化实验和噬菌体侵染细菌实验步骤:肺炎链球菌转化实验首先将光滑型致病菌(S型)烧煮杀灭活性以后再侵染小鼠,发现这些死细菌自然丧失了治病能力,再用活的粗糙型细菌(R型)来侵染小鼠,也不能使之发病,因为粗糙型细菌天然无治病能力。
讲经烧煮杀死的S型细菌和活的R型细菌混合在感染小鼠时,实验小鼠都死了,解剖小鼠,发现有大量活的S型(而不是R型)细菌,推测死细菌的中的某一成分转化源将无治病力的细菌转化成病原细菌。
噬菌体侵染细菌的实验:用分别带有S标记的氨基酸和P标记的核苷酸的细菌培养基培养噬菌体,自带噬菌体中就相应的含有S标记的蛋白质或P标记的核酸,分别用这些噬菌体感染没有被放射性标记的细菌,经过1~2个噬菌体DNA复制周期后发现,子代噬菌体中几乎不含带S标记的蛋白质,但含有30%以上的P标记,这说明在噬菌体传代过程中发挥作用的可能是DNA,而不是蛋白质。
分子生物学需要掌握的重点一、DNA、RNA、蛋白质、质粒、基因、端粒、聚合酶、密码子、突变、变性的概念或结构、性质及特点;二、复制、转录、逆转录、翻译、加工修饰、靶向输送的主要过程及特点;三、癌基因的概念、原癌基因产物的类型及细胞定位、癌基因活化致癌的主要机制;四、常用分子生物学技术的原理、主要步骤、酶学及特点;五、基因表及其调控的原理、主要过程或步骤,乳糖操纵子的正、负调节机制;六、常用的基因诊断及基因治疗技术;七、基因克隆、基因诊断、基因治疗、管家基因、抑癌基因、Klenow片段、核蛋白体、限制性内切核酸酶、人类基因组计划、原位杂交的概念;八、双脱氧末端终止法DNA测序、重组DNA技术的主要步骤;九、结构基因、顺式作用元件、启动子、遗传密码、反式作用因子、氨基酰-tRNA、基因组文库、DNA多态性、转位因子、探针、Tm值、DNA微阵列、DNA甲基化的概念、性质;十、核酸分子杂交的主要类型、PCR的主要步骤及引物设计;十一、DNA、RNA及多肽链的合成方向;十二、真核细胞转染的基本方法;十三、细胞周期的主要调控点;十四、DNA损伤及修复的主要类型和机制;十五、基因文库筛选的主要方法及原理。
名词解释●质粒——是细菌细胞内携带的染色体外的DNA分子,是共价闭合的环状DNA分子,能独立进行复制。
质粒只有在宿主细胞内才能够完成自己的复制。
●基因——指贮存有功能的蛋白质多肽链或RNA序列及表达这些信息所需的全部核苷酸序列,是核酸分子中贮存遗传信息的遗传单位。
●癌基因——是细胞内控制细胞生长和分化的基因,具有潜在的诱导细胞恶性转化的特性,它的结构异常或表达异常,可以引起细胞癌变。
●基因克隆——是指把一个生物体的遗传信息(基因片段)转入另一个生物体内进行无性繁殖,得到一群完全相同的基因片段,又称DNA克隆。
●抑癌基因——是指存在于正常细胞内的一大类可抑制细胞生长并具有潜在抑癌作用的基因,当这类基因在发生突变、缺失或失活时可引起细胞恶性转化而导致肿瘤发生。
现代分子生物学复习重点现代分子生物学复习资料第一章绪论分子生物学:是研究核酸、蛋白质等所有生物大分子的形态、结构及其重要性、规律性和相互关系的科学分子生物学的主要研究内容1、DNA重组技术2、基因表达调控研究3、生物大分子的结构功能研究——结构分子生物学4、基因组、功能基因组与生物信息学研究5、DNA的复制转录和翻译第二章染色体与DNA半保留复制:DNA在复制过程中碱基间的氢键首先断裂;双螺旋解旋并被分开;每条链分别作为模板合成新链;产生互补的两条链..这样新形成的两个DNA分子与原来DNA分子的碱基顺序完全一样;因此;每个子代分子的一条链来自亲代DNA;另一条链则是新合成的;所以这种复制方式被称为DNA 半保留复制DNA半不连续复制:DNA双螺旋的两条链反向平行;复制时;前导链DNA的合成以5′-3′方向;随着亲本双链体的解开而连续进行复制;后随链在合成过程中;一段亲本DNA单链首先暴露出来;然后以与复制叉移动相反的方向、按照5′-3′方向合成一系列的冈崎片段;然后再把它们连接成完整的后随链;这种前导链的连续复制和后随链的不连续复制称为DNA的半不连续复制原核生物基因组结构特点:1、基因组很小;大多只有一条染色体2、结构简练3、存在转录单元;多顺反子4、有重叠基因真核生物基因组的结构特点:1、真核基因组庞大;一般都远大于原核生物的基因组2、真核基因组存在大量的重复序列3、真核基因组的大部分为非编码序列;占整个基因组序列的90%以上;该特点是真核生物与细菌和病毒之间最主要区别4、真核基因组的转录产物为单顺反子5、真核基因是断裂基因;有内含子结构6、真核基因组存在大量的顺式作用元件;包括启动子、增强子;沉默子等7、真核基因组中存在大量的DNA多态性8、真核基因组具有端粒结构DNA转座移位是由可移位因子介导的遗传物质重排现象DNA转座的遗传学效应:1、转座引入插入突变2、转座产生新的基因3、转座产生的染色体畸变4、转座引起生物进化转座子分为插入序列和复合型转座子两大类环状DNA复制方式:θ型、滚环型和D-环型第三章生物信息的传递上从DNA到RNA转录:指拷贝出一条与DNA链序列完全相同的RNA单链的过程启动子:是一段位于结构基因5′段上游区的DNA序列;能活化RNA聚合酶;使之与模板DNA准确地结合并具有转录起始的特异性原核生物启动子结构:存在位于-10bp处的TATA区和-35bp处的TTGACA 区;其是RNA聚合酶与启动子的结合位点;能与σ因子相互识别而具有很高的亲和力终止子:是给予RNA聚合酶转录终止信号的DNA序列促进转录终止的DNA 序列终止子的类型:不依赖于ρ因子和依赖于ρ因子增强子:能增强或促进转录起始的序列增强子的特点:1、远距离效应2、无方向性3、顺式调节4、无物种和基因的特异性5、具有组织特异性6、有相位性7、有的增强子可以对外部信号产生反应上升突变:增加Pribnow区共同序列的同一性;将Pribnow区从TATGTT变成TATATT的启动子突变;会提高启动子的效率;提高乳糖操纵子基因的转录水平下降突变:把Pribnow区从TATAAT变成AATAAT的启动子突变;会大大降低其结构基因的转录水平RNA编辑及其生物学意义:RNA的编辑是某些RNA;特别是mRNA前体的一种加工方式;如插入、删除或取代一些核苷酸残基;导致DNA所编码的遗传信息的改变生物学意义:1、校正作用2、调控翻译3、扩充遗传信息RNA的再编码:mRNA在某些情况下不是以固定的方式被翻译;而可以改变原来的编码信息;以不同的方式进行翻译;科学上把RNA编码和读码方式的改变称为RNA的再编码比较原核和真核基因转录起始位点上游区的结构:1、原核基因启动区范围较小;一般情况下;TATAAT的中心位于-10——-7;上游-70——-30区为正调控因子结合序列;-20——+1区为负调控因子结合序列;真核基因调控区较大;TATAA/TA区位于-30——-20;而-110——-40区为上游激活区-2、除Pribnow区之外;原核基因启动子上游只有TTGACA区作为RNA聚合酶的主要结合位点;参与转录调控;而真核基因除了含有可与之相对应的CAAT区之外;大多数基因还拥有GC区和增强子区第四章翻译:所谓翻译是指将mRNA链上的核苷酸从一个特定的起始位点开始;按每3个核苷酸代表一个核苷酸的原则;依次合成一条多肽链的过程..遗传密码:mRNA上每3个核苷酸翻译成蛋白质多肽链上的一个氨基酸就称为密码;也叫三联子密码..遗传密码的性质:1.密码的连续性 2.密码的简并性 3.密码的通用性与特殊性 4.密码子与反密码子的相互作用简并性:同一种氨基酸有两组或更多密码子的现象称为密码子的简并性..无义突变:在蛋白质的结构基因中;一个氨基酸的改变可能使代表某个氨基酸的密码子变成终止密码子;使蛋白质合成提前终止;合成无功能的多肽;这种突变称为无义突变..错义突变:是由于结构基因中某个氨基酸的变化使一种氨基酸的密码变成另一种氨基酸的密码..真核生物与原核生物在翻译的起始过程中有哪些区别1. 核糖体大小及组成不同:真核核糖体为80S;比原核70S核糖体更复杂2. 真核生物的起始因子较多3. 真核生物起始tRNA是Met-tRNA Met原核生物为fMet-tRNA fMet4. 真核生物mRNA具有m7GpppNp帽子结构;Met-tRNA Met不甲酰化5. mRNA分子5‘端的“帽子”与3’端的多聚A都参与形成翻译起始复合物SD序列:mRNA中用于结合原核生物核糖体的序列..信号肽:能启动蛋白质运转的任何一段多肽..信号肽的特点:1.一般带有10~15个疏水氨基酸 2.在靠近该序列N端常常有一个或数个带正电荷的氨基酸 3.在其C端靠近蛋白酶切割位点处常常有数个极性氨基酸;离切割位点最近的那个氨基酸往往带有很短的侧链丙氨酸或甘氨酸..简述蛋白质跨膜运转的信号肽假说及其运输过程:1. 蛋白质合成起始首先合成信号肽2. SRP与信号肽结合;翻译暂停3.4.5.6. SRP与SRP受体相结合;核糖体与膜结合;翻译重新开始信号肽进入膜结构蛋白质过膜;信号肽被切除;翻译继续进行蛋白质完全过膜;核糖体解离第五章SNP是指基因组DNA序列中由于单个核苷酸的突变而引起的多肽性..RACE技术是一项在已知cDNA序列的基础上克隆5′端或3′端缺失序列的技术;在很大程度上依赖于RNA连接酶连接和寡聚帽子的快速扩增核酸凝胶电泳技术原理:PCR原理:首先将双链DNA分子在临近沸点的温度下加热分离成两条单链DNA分子;DNA聚合酶以单链DNA为模板并利用反应混合物中的四种脱氧核苷三磷酸合成新生的DNA互补链..基因组文库:把某种生物的基因组DNA切成适当大小;分别与载体组合;导入微生物细胞;形成克隆..这些存在于所有重组体内的基因组DNA片段集合即基因组DNA文库.. cDNA文库:以组织细胞中mRNA为模板;反转录合成的双链cDNA..第七章基因表达:从DNA到蛋白质或功能RNA的过程称为基因表达..基因表达调控:对从DNA到蛋白质或功能RNA的过程的调节就称为基因表达调控.. 乳糖操纵子模型的主要内容:1.Z;Y;A基因的产物是由同一条多顺反子的mRNA分子所编码的..2.该mRNA分子的启动区P为于遏制基因I与操纵区O之间;不能单独起始半乳糖苷酶和透过酶基因的高效表达..3.操纵区是DNA上的一小段序列;是遏制物的结合位点..4.当阻遏物与操纵区相结合时;lac mRNA的转录起始受到抑制..5.诱导物通过与阻遏物结合;改变它的三维构象;使之不能与操纵区相结合;从而激发lac mRNA的合成..色氨酸操纵子:trp操纵子色氨酸合成分五步完成;有七个基因参与整个合成过程;trpE和trpG编码邻氨基苯甲酸合酶;trpD编码邻氨基苯甲酸磷酸核糖转移酶;trpF编码异构酶;trpC编码吲哚甘油磷酸合酶;trpA和trpB 则分别编码色氨酸合酶的α和β亚基;在许多细菌中;trpE和trpG融合成一个功能基因;trpC和trpB也融合成一个基因;产生具有双重功能的蛋白质;trpE基因是第一个被翻译的基因;和trpE紧邻的是启动子区和操纵区第八章基因家族:真核细胞中许多相关的基因常按功能成套组合;被称为基因家族..简述真核细胞与原核细胞在基因转录;翻译及DNA的空间结构方面存在的差异一、基因转录1、原核生物的RNA聚合酶是一种多聚体蛋白质真核生物的RNA聚合酶有三种RNA聚合酶Ⅰ、Ⅱ、Ⅲ;分别转录不同种类的RNA 2、原核生物转录全过程均需RNA聚合酶催化;起始过程需核心酶;由σ亚基辨认起始点;被辨认的DNA区段是-35区;延长过程的核苷酸聚合仅需核心酶催化;终止分依赖ρ因子的和不依赖ρ因子的转录终止;真核生物转录过程:转录起始前的-25bp区段多有典型的TATA序列;称为TATA box;通常认为这就是启动子的核心序列..此外DNA分子上还具有其他可影响转录的顺式作用元件;以及能直接、间接辨认和结合转录上游区段的蛋白质——反式作用因子;其中直接或间接结合RNA聚合酶的为转录因子..真核生物RNA聚合酶不与DNA分子直接结合;而需依靠众多的转录因子;真核生物mRNA有polyA 尾巴结构;是转录后才加进去的二、翻译:.原核生物与真核生物核蛋白体的组成不同;真核生物肽链合成起始过程与原核生物相似但更复杂..真核生物有不同的翻译起始成分;起始因子种类更多;成熟的真核mRNA有5'帽子和3'polyA尾结构DNA的空间结构:绝大部分原核生物的DNA都是共价封闭的环状双螺旋分子..在细胞内进一步盘绕;并形成类核结构;以保证其以较致密的形式存在于细胞内..在细菌基因组中;超螺旋可以相互独立存在;在真核生物;DNA以非常致密的形式存在于细胞核中..在细胞周期的大部分时间里以分散的染色质形式出现在细胞分裂期形成高度组织有序的染色体..。
分子生物学复习资料一、名词解释:分子生物学:在分子水平上研究生命现象的科学。
通过研究生物大分子(核酸、蛋白质)的结构、功能和生物合成等方面来阐明各种生命现象的本质。
RNA组学:对细胞中全部RNA分子的结构与功能进行系统的研究,从整体水平阐明RNA的生物学意义即为RNA组学(RNomics)。
减色效应:变性DNA复性时,紫外吸收减少的现象叫减色效应。
增色效应:DNA变性时紫外吸收增加的现象称增色效应。
Tm:DNA热变性时,其紫外吸收增加值到达总增加值一半时的温度,称为DNA的解链温度。
解链曲线:如果在连续加热DNA的过程中以温度对A260值作图,所得的曲线称为解链曲线。
DNA复性:在适当条件下,变性DNA的两条互补链可恢复天然的双螺旋构象,这一现象称为复性。
核酸分子杂交:在DNA变性后的复性过程中,如果将不同种类的DNA单链分子或RNA分子放在同一溶液中,只要两种单链分子之间存在着一定程度的碱基配对关系,在适宜的条件(温度及离子强度)下,就可以在不同的分子间形成杂化双链。
这种杂化双链可以在不同的DNA与DNA之间形成,也可以在DNA和RNA分子间或者RNA与RNA分子间形成。
这种现象称为核酸分子杂交。
基因:原核生物、真核生物以及病毒的DNA和RNA分子中具有遗传效应的核苷酸序列,是遗传的基本单位。
断裂基因:不连续的基因称为断裂基因,指基因的编码序列在DNA上不连续排列而被不编码的序列所隔开。
重叠基因:核苷酸序列彼此重叠的2个基因为重叠基因,或称嵌套基因。
致死基因:导致个体或细胞死亡的基因称致死基因。
基因冗余:一条染色体上出现一个基因的很多复本的现象称为基因冗余。
DNA重组:DNA分子内或分子间发生遗传信息的重新组合,又称为遗传重组或基因重排。
同源重组:发生在同源序列间的重组称为同源重组,又称基本重组。
接合作用:当细胞与细胞、或细菌通过菌毛相互接触时,质粒DNA从一个细胞(细菌)转移至另一细胞的DNA转移称为接合作用。
一、名词解释1、基因:能够表达和产生蛋白质和RNA的DNA序列,是决定遗传性状的功能单位。
2、基因组:细胞或生物体的一套完整单倍体的遗传物质的总和。
3、端粒:以线性染色体形式存在的真核基因组DNA末端都有一种特殊的结构叫端粒。
该结构是一段DNA序列和蛋白质形成的一种复合体,仅在真核细胞染色体末端存在。
4、操纵子:是指数个功能上相关的结构基因串联在一起,构成信息区,连同其上游的调控区(包括启动子和操纵基因)以及下游的转录终止信号所构成的基因表达单位,所转录的RNA为多顺反子。
5、顺式作用元件:是指那些与结构基因表达调控相关、能够被基因调控蛋白特异性识别和结合的特异DNA序列。
包括启动子、上游启动子元件、增强子、加尾信号和一些反应元件等。
6、反式作用因子:是指真核细胞内含有的大量可以通过直接或间接结合顺式作用元件而调节基因转录活性的蛋白质因子。
7、启动子:是RNA聚合酶特异性识别和结合的DNA序列。
8、增强子:位于真核基因中远离转录起始点,能明显增强启动子转录效率的特殊DNA序列。
它可位于被增强的转录基因的上游或下游,也可相距靶基因较远。
9、基因表达:是指生物基因组中结构基因所携带的遗传信息经过转录、翻译等一系列过程,合成特定的蛋白质,进而发挥其特定的生物学功能和生物学效应的全过程。
10、信息分子:调节细胞生命活动的化学物质。
其中由细胞分泌的调节靶细胞生命活动的化学物质称为细胞间信息分子;而在细胞内传递信息调控信号的化学物质称为细胞内信息分子。
11、受体:是存在于靶细胞膜上或细胞内能特异识别生物活性分子并与之结合,进而发生生物学效应的的特殊蛋白质。
12、分子克隆:在体外对DNA分子按照即定目的和方案进行人工重组,将重组分子导入合适宿主,使其在宿主中扩增和繁殖,以获得该DNA分子的大量拷贝。
13、蛋白激酶:是指能够将磷酸集团从磷酸供体分子转移到底物蛋白的氨基酸受体上的一大类酶。
14、蛋白磷酸酶:是具有催化已经磷酸化的蛋白质分子发生去磷酸化反应的一类酶分子,与蛋白激酶相对应存在,共同构成了磷酸化和去磷酸化这一重要的蛋白质活性的开关系统。
分子生物学复习资料一、名词解释1.表现型:是生物内在遗传因子的外在表现,是生物的一整套显而易见的遗传性状。
2.基因型:是某一生物个体全部基因组合的总称。
3.等位基因:基因以不同形式存在4.中心法则:5.核酸:是由众多核苷酸聚合而成的多聚核苷酸,包括RNA和DNA。
基本单位是核苷酸:有核糖核苷酸和脱氧核糖核苷酸。
6.核苷酸:是由含氮碱基、戊糖和磷酸三部分组成。
7.碱基:由嘌呤和嘧啶。
RNA(G、A、U、C),DNA(G、A、T、C)8.核酸的一级结构:是指构成一个核酸分子的各个核苷酸结构单元的排列次序。
9.RNA的二级结构:发夹结构的形成原因:自我配对,在不同区段的互补序列之间形成碱基配对10.正超螺旋:在一端使绳子向紧缩方向捻转后,将绳子松弛使其处于自然状态,则会产生一个左旋的超螺旋以解除外加的捻转造成的胁变,这样的超螺旋叫做正超螺旋。
(双螺旋dna处于拧紧状态时所形成的超螺旋)11.负超螺旋:在一端使绳子向松缠方向捻转后,将绳子绳子两端连接起来,则会产生一个右旋的超螺旋以解除外加的捻转造成的胁变,这样的超螺旋叫做正超螺旋12.核酸的变性:在物理和化学因素的作用下,维系核酸二级结构的氢键和碱基堆积力受到破坏,DNA 由双链解旋为单链的过程。
13.增色效应:由于DNA变性引起的光吸收增加,也就是变性后DNA 溶液的紫外吸收作用增强的效应。
14.核酸的溶解温度(Tm):热变性使DNA分子双链解开一半所需的温度称为溶解温度。
(GC含量越高,Tm值越高。
经验公式:Tm=69.3+0.41*(G+C)%)15.核酸的复性:变性DNA在适当条件下,.分开的两条互补单链还可以全部或部分重新形成双螺旋DNA结构的现象称为复性(退火)16.核酸的分子杂交:利用不同来源的核酸分子按照碱基互补配对的原则形成稳定的杂交双链分子。
(升温变性,缓慢退火复性)17.基因组:细胞或者生物体所携带的一套完整的单倍体序列,包括全套基因和基因间区域。
第一章1、分子生物学定义:从分子水平研究生物大分子的结构与功能从而阐明生命现象本质的科学,主要指遗传信息的传递(复制)、保持(损伤和修复)、基因的表达(转录和翻译)与调控。
2、Crick提出中心法则(P463)第二章1、染色体的结构和组成原核生物:●一般只有一条大染色体且大都带有单拷贝基因,除少数基因外(如rRNA基因)是以多拷贝形式存在。
●整个染色体DNA几乎全部由功能基因和调控序列所组成。
●几乎每个基因序列都与它所编码蛋白质序列呈线性对应关系。
真核生物:真核生物染色体中DNA相对分子质量一般大大超过原核生物,并结合有大量的蛋白质,结构非常复杂。
其具体组成成分为:组蛋白、非组蛋白、DNA。
2、组蛋白一般特性:进化上的保守性(不同种生物组蛋白的氨基酸组成是十分相似的。
对稳定真核生物的染色体结构起着重要的作用);无组织特异性;肽链氨基酸分布的不对称性(碱性氨基酸集中分布在N端的半条链上。
例如,N端的半条链上净电荷为+16,C端只有+3,大部分疏水基团都分布在C端);H5组蛋白的特殊性:富含赖氨酸(24%);组蛋白的可修饰性(包括甲基化、乙基化、磷酸化)。
3、变性:DNA双链的氢键断裂,最后完全变成单链的过程称为变性。
增色效应:在变性过程中,260nm紫外线吸收值先缓慢上升,当达到某一温度时骤然上升,称为增色效应。
4、复性:热变性的DNA缓慢冷却,单链恢复成双链。
减色效应:随着DNA的复性, 260nm紫外线吸收值降低的现象。
5、融解温度(Tm ):变性过程紫外线吸收值增加的中点称为融解温度。
生理条件下为85-95℃6、C值反常现象:C值是一种生物的单倍体基因组DNA的总量,一般情况,真核生物C 值是随着生物进化而增加,高等生物的C值一般大于低等生物,但是某些两栖类C值大于哺乳动物,这种现象叫C值反常现象。
7、核小体是由H2A、H2B、H3、H4各两个分子生成的八聚体和由大约200bpDNA组成的。
分子生物学一、名词解释1.ORF答:ORF是open reading frame的缩写,即开放阅读框架。
在DNA链上,由蛋白质合成的起始密码开始,到终止密码为止的一个连续编码列,叫做一个开放阅读框架。
2.结构基因答:结构基因(structural genes)可被转录形成mRNA,并翻译成多肽链,构成各种结构蛋白质或催化各种生化反应的酶和激素等。
3.断裂基因答:基因是核酸分子中贮存遗传信息的遗传单位,一个基因不仅仅包括编码蛋白质或 RNA 的核酸序列,还包括保证转录所必需的调控序列、位于编码区 5 ' 端与 3 ' 端的非编码序列和内含子。
真核生物的结构基因,由若干个编码区和非编码区互相间隔开但又连续镶嵌而成,去除非编码区再连接后,可翻译出由连续氨基酸组成的完整蛋白质,这些基因称为断裂基因(split gene)。
4.选择性剪接答:选择性剪接(也叫可变剪接)是指从一个mRNA前体中通过不同的剪接方式(选择不同的剪接位点组合)产生不同的mRNA剪接异构体的过程,而最终的蛋白产物会表现出不同或者是相互拮抗的功能和结构特性,或者,在相同的细胞中由于表达水平的不同而导致不同的表型。
5.C值答:基因组的大小通常以其DNA的含量来表示,我们把一种生物体单倍体基因组DNA的总量成为C值(C value)。
6.生物大分子答:生物大分子指的是作为生物体内主要活性成分的各种分子量达到上万或更多的有机分子。
常见的生物大分子包括蛋白质、核酸、脂类、糖类。
7.酚抽提法答:酚抽提法最初于1976年由Stafford及其同事提出,通过改良,以含EDTA、SDS及无DNA酶的RNA酶裂解缓冲液破碎细胞,经蛋白酶K处理后,用pH8.0的Tris饱和酚抽提DNA,重复抽提至一定纯度后,根据不同需要进行透析或沉淀处理获得所需的DNA样品。
8.凝胶过滤层析答:凝胶过滤层析也称分子排阻层析或分子筛层析,利用凝胶分子筛对大小、形状不同的分子进行层析分离,是根据分子大小分离蛋白质混合物最有效的方法之一。
第一章绪论1953年,Watson和Crick提出双螺旋模型。
1983年,美国遗传学家McClintock由于在50年代提出并发现了可移动的遗传因子而获得诺贝尔生理学奖或医学奖。
第二章染色体与DNA染色体组成:(1)组蛋白:H1、H2A、H2B、H3、H4。
(2)非组蛋白(3)DNA(4)RNA染色体包装:①核小体:200bp左右DNA分子盘绕在H2A、H2B、H3、H4各两分子生成的八聚体外,H1位于核小体外。
7②螺线管:染色细丝盘绕成而成,每一个螺旋包含6个核小体。
6③超螺旋:30个30nm螺线管缠绕而成。
40④染色体:超螺旋圆筒进一步压缩。
5真核生物基因组特点:①基因组庞大;②基因组存在大量重复序列;③大部分为非编码序列;④转录产物为单顺反子;⑤断裂基因,有内含子结构;⑥存在大量顺式作用元件;⑦存在大量的DNA多样性,包括单核苷酸多态性和串联重复序列多态性;⑧具有端粒结构。
C值:生物单倍体基因组DNA的总量。
原核生物基因组特点:①结构简练;②存在转录单元;③有重叠基因。
DNA的一级结构:4种核苷酸的连接及其排列顺序,表示该DNA分子的化学构成。
DNA的二级结构:两条多核苷酸链反向平行盘绕所生成的双螺旋结构。
①右手螺旋:A-DNA:与B-DNA比大沟变窄,小沟变宽。
每圈螺旋11个碱基对B-DNA:是大多数DNA的构象。
相邻碱基对平面之间的距离为0.34nm,即顺中心轴方向,每个0.34nm有一个核苷酸,以3.4nm为一个结构重复周期,双螺旋的直径为2.0nm。
②左手螺旋:Z-DNA:每圈螺旋含12对碱基,大沟平坦,小沟深而窄,核苷酸构象順反相间,螺旋骨架成呈Z字形。
DNA的变性:DNA溶液温度接近沸点或者pH较高时,DNA双链的氢键断裂,最后完全变成单链的过程。
复性是热变性的DNA经缓慢冷却,从单链恢复成双链的过程。
Tm值:DNA在260nm处吸光度最大。
将吸光度相对温度变化绘制曲线,吸光度增大到最DNA的解链温度(熔点)。
分⼦⽣物学复习资料第⼀章1、分⼦⽣物学定义:从分⼦⽔平研究⽣物⼤分⼦的结构与功能从⽽阐明⽣命现象本质的科学,主要指遗传信息的传递(复制)、保持(损伤和修复)、基因的表达(转录和翻译)与调控。
2、Crick提出中⼼法则(P463)第⼆章1、染⾊体的结构和组成原核⽣物:●⼀般只有⼀条⼤染⾊体且⼤都带有单拷贝基因,除少数基因外(如rRNA基因)是以多拷贝形式存在。
●整个染⾊体DNA⼏乎全部由功能基因和调控序列所组成。
●⼏乎每个基因序列都与它所编码蛋⽩质序列呈线性对应关系。
真核⽣物:真核⽣物染⾊体中DNA相对分⼦质量⼀般⼤⼤超过原核⽣物,并结合有⼤量的蛋⽩质,结构⾮常复杂。
其具体组成成分为:组蛋⽩、⾮组蛋⽩、DNA。
2、组蛋⽩⼀般特性:进化上的保守性(不同种⽣物组蛋⽩的氨基酸组成是⼗分相似的。
对稳定真核⽣物的染⾊体结构起着重要的作⽤);⽆组织特异性;肽链氨基酸分布的不对称性(碱性氨基酸集中分布在N端的半条链上。
例如,N端的半条链上净电荷为+16,C端只有+3,⼤部分疏⽔基团都分布在C端);H5组蛋⽩的特殊性:富含赖氨酸(24%);组蛋⽩的可修饰性(包括甲基化、⼄基化、磷酸化)。
3、变性:DNA双链的氢键断裂,最后完全变成单链的过程称为变性。
增⾊效应:在变性过程中,260nm紫外线吸收值先缓慢上升,当达到某⼀温度时骤然上升,称为增⾊效应。
4、复性:热变性的DNA缓慢冷却,单链恢复成双链。
减⾊效应:随着DNA的复性, 260nm紫外线吸收值降低的现象。
5、融解温度(Tm ):变性过程紫外线吸收值增加的中点称为融解温度。
⽣理条件下为85-95℃6、C值反常现象:C值是⼀种⽣物的单倍体基因组DNA的总量,⼀般情况,真核⽣物C值是随着⽣物进化⽽增加,⾼等⽣物的C值⼀般⼤于低等⽣物,但是某些两栖类C值⼤于哺乳动物,这种现象叫C值反常现象。
7、核⼩体是由H2A、H2B、H3、H4各两个分⼦⽣成的⼋聚体和由⼤约200bpDNA组成的。
分子生物学重点1.将外源基因导入的方法常用的基因工程真核细胞包括酵母细胞、动物细胞和植物细胞。
(1)外源基因导入酵母细胞:在对酵母细胞进行外源DNA转化时,一般先需要用酶将其细胞壁消化水解,变成原生质体。
蜗牛消化酶具有纤维素酶、甘露聚糖酶、葡萄糖酸酶以及几丁质酶等,对酵母菌细胞壁有良好水解作用。
原生质体在氯化钙和聚乙二醇存在下,重组DNA能容易地被宿主细胞吸收,转化的原生质体悬浮在营养瓶中,即可再生出新的细胞壁。
(2)外源基因导入动物细胞常用的方法有:1.磷酸钙共沉淀法。
2.DEAE-葡聚糖或聚阳离子,它们能结合DNA并促使细胞吸收;3.脂质体法4.脂质转染法5.电穿孔法6.显微注射法(3)外源基因导入植物细胞常用的方法有:1.转化法2.电穿孔和脂质体法3.显微注射法5.基因枪法4.农杆菌感染法:根瘤农杆菌的Ti质粒上有一段T-DNA ,又称转移DNA,能携带外源基因转移到植物细胞内,并整合到染色体DNA中,因此Ti质粒是目前植物基因工程中最常用的理想的基因载体。
2.核糖体活性中心(核糖体的活性位点)(1)mRNA结合位点(2)P位点(3)A位点(4)肽基转移酶活性位点(转肽酶中心)(5)5SrRNA位点(50S上)(6)E位点(50S上)与氨酰基-tRNA释放有关。
大小亚基在合成中的分工小亚基:对mRNA特殊序列的识别(SD序列)密码子与反密码子的相互作用。
大亚基:AA-tRNA,肽基-tRNA的结合,肽键的形成等。
3.凝胶电泳(操作的主要因素)技术原理流程图目的:分离不同的DNA分子电泳迁移率:电泳分子在电场作用下的迁移速度。
影响迁移率的因素:(1)与电场强度、电泳分子净电荷成正比;(2)与电泳分子的摩擦系数成反比分子摩擦系数为分子大小、极性、介质粘度的函数。
.DNA和RNA在电场中为多聚阴离子,电泳时向正极移动。
速度在于分子大小和构型。
.电泳介质:一般用琼脂糖和聚丙烯酰胺,浓度与所分离的DNA和RNA的大小有关。
《分子生物学》知识要点汇总1. 基因表达:转录+翻译。
2. 时间特异性、空间特异性,管家基因(组成性表达)3. 转录起始(基本控制点)4. 原核与真核区别:基因表达原核真核启动子o 因子识别-35 区TTGACA-10 区TATAAT -25 区TATA 盒TF- ⅡD 决定了聚合酶识别特异性特点操纵子模型具有普遍性顺式作用原件具有普遍性机制主要是负性调节(阻遏调节)主要是正性调节(诱导调节)结果转录衰减染色体结构改变原核生物:单复制子,多顺反子真核生物:多复制子,单顺反子1. 得:染色体分离、化学合成、基因组文库、cDNA 法、PCR 法。
2. 选:克隆载体(质粒、自我复制),表达载体(大肠杆菌)3. 接:DNA 连接酶,黏性末端连接准确性最高。
4. 转:重组质粒导入宿主细胞为转化,重组噬菌体导入大肠杆菌为转染。
5. 筛:载体遗传标志、标志补救、序列特异性(分子杂交、PCR、测序、RE 酶切)、亲和筛选1. RE:细菌产生,识别回文结构,切割双链DNA 得到黏性末端。
2. DNA 连接酶:目的基因+载体重组。
2. DNApol I 的大片段(Klenow):cDNA→dsDNA,标记3´-端。
3. 逆转录酶:mRNA→cDNA。
5. 多聚核苷酸激酶:5´-OH 末端磷酸化作标记探针。
6. 末端转移酶:3´-OH 末端加尾。
7. 碱性磷酸酶:切除末端磷酸基团。
1. 正常。
2. 获得启动子或增强子、染色体易位、基因扩增、点突变。
3. 产物:类别名称生长因子(本质是多肽)sis(过度表达)、int-2生长因子受体(本质蛋白质) fms、kit、her-2/erb-b2 (扩增)、EGFR/erb-b1细胞信号转导蛋白膜结合酪氨酸激酶src、abl(转位)细胞内酪氨酸激酶TRK细胞内丝/苏氨酸激酶 raf膜GTP 结合蛋白ras(点突变)转录因子fos、jun、myc(转位)细胞周期蛋白cyclin D4. 与肿瘤相关。
分子生物学复习资料一、名词解释。
1、DNA结构的多态性:存在结构参数有一定差异的双螺旋DNA。
如B-DNA,A-DNA,Z-DNA。
2、熔解温度:变形过程紫外线吸收值增加的中点,即DNA双链中有一半发生变性的温度。
3、DNA变性:DNA双链的氢键断裂最后完全变为单链的过程。
(不涉及共价键的断裂)4、DNA复性:变性DNA在适当(一般低于Tm值20-25℃)条件下,两条链重新缔合成双螺旋结构的过程。
5、C值矛盾:C值是一种生物体的单倍体基因组DNA的总量,真核细胞基因组中在结构和功能很相似的同一类生物中它的C值也会出现很大的差异,出现C值和生物结构或组成的复杂性不一致的现象。
6、半保留复制:由亲代DNA生长子代DNA时,每个新形成的子代DNA中,一条链来自亲代DNA,而另一条链则是新和成的,这种复制方式称为~~7、半不连续复制:DNA复制时其中一条链的复制是连续的,而另一条子链的复制是不连续的。
8、前导链:DNA复制时,合成方向与复制叉移动方向一致并连续合成的链为前导链。
9、滞后链:合成方向与复制叉移动方向一相反,形成许多不连续的片段,最后再连成完整的DNA链为滞后链。
10、冈崎片段:前导链连续合成,而滞后链只能是断续的合成5’-3’的多个短片段,这些不连续的小片段称为冈崎片段。
11、转录:在RNA聚合酶的作用下,以DNA为魔板合成RNA的整个过程,包括起始、延伸、终止等步骤。
12、启动子:指被RNA聚合酶识别、结合并启动基因转录的一段DNA序列。
13、反式作用因子:能直接、间接辨认和结合转录上游区段DNA的蛋白质。
14、RNA拼接:一个基因的外元和内元共同转录在一条转录产物中,将内元去除而把外元连接起来形成成熟RNA分子的过程。
15、三联子密码:mRNA链上的核苷酸从一个特定的起始位点开始,按每三个核苷酸代替一个氨基酸的原则,依次合成一条多肽链的过程。
16、开放读码框:从mRNA 5’端起始密码子AUG到3’端终止密码子之间的核苷酸序列,各个三联体密码连接排列编码的一个蛋白质多肽链。
分子生物学复习资料(第一版)一名词解释1 Southern blot / Northern blot—DNA斑迹法 / RNA转移吸印技术。
是为了检测待检基因或其表达产物的性质和数量(基因拷贝数)常用的核酸分子杂交技术。
二者均属于印迹转移杂交术,所不同的是前者用于检测DNA样品;后者用于检测RNA样品。
2 cis-acting element / trans-acting factor—顺式作用元件 / 反式作用因子。
均为真核生物基因中的转录调控序列。
顺式作用元件是与结构基因表达调控相关、能被基因调控蛋白特异性识别和结合的特定DNA序列,包括启动子和上游启动子元件、增强子、反应元件和poly(A)加尾信号。
反式作用因子是能与顺式作用元件特异性结合、对基因表达的转录起始过程有调控作用的蛋白质因子,如RNA 聚合酶、转录因子、转录激活因子、抑制因子。
3VNTR / STR—可变数目串联重复序列 / 短串联重复。
均为非编码区的串联重复序列。
前者也叫高度可变的小卫星DNA,重复单位约9~24bp,重复次数变化大,变化高度多态性;后者也叫微卫星DNA,重复单位约2~6 bp,重复次数约10~60次,总长度通常小于150bp 。
(参考第7题)4 viral oncogene / cellular oncogene—病毒癌基因 / 细胞癌基因。
病毒癌基因指存在于逆转录病毒中、体外能使细胞转化、体内能导致肿瘤发生的基因;细胞癌基因也叫原癌基因,指存在于细胞内,与病毒癌基因同源的基因序列。
正常情况下不激活,与细胞增殖相关,是维持机体正常生命活动所必须的,在进化上高等保守。
当原癌基因的结构或调控区发生变异,基因产物增多或活性增强时,使细胞过度增殖,从而形成肿瘤。
第1 页/共16 页5 ORF / UTR—展开阅读框 / 非翻译区。
均指在mRNA中的核苷酸序列。
前者是特定蛋白质多肽链的序列信息,从起始密码子开始到终止密码子结束,决定蛋白质分子的一级功能;后者是位于前者的5'端上游和3'端下游的、没有编码功能的序列,主要参加翻译起始调控,为前者的多肽链序列信息改变为多肽链所必须。
《分子生物学》复习题1、染色体:是指在细胞分裂期出现的一种能被碱性染料强烈染色,并具有一定形态、结构特征的物体。
携带很多基因的分离单位。
只有在细胞分裂中才可见的形态单位。
2、染色质:是指细胞周期间期细胞核内由DNA、组蛋白、非组蛋白和少量RNA组成的复合结构,因其易被碱性染料染色而得名。
3、核小体:染色质的基本结构亚基,由约200 bp的DNA和组蛋白八聚体所组成4、C值谬误:一个有机体的C值与它的编码能力缺乏相关性称为 C值矛盾5、半保留复制:由亲代DNA生成子代DNA时,每个新形成的子代DNA中,一条链来自6、亲代DNA,而另一条链则是新合成的,这种复制方式称半保留复制6、DNA重组技术又称基因工程,目的是将不同的DNA片段(如某个基因或基因的一部分)按照人们的设计定向连接起来,在特定的受体细胞中与载体同时复制并得到表达,产生影响受体细胞的新的遗传性状。
7、半不连续复制:DNA复制时其中一条子链的合成是连续的,而另一条子链的合成是不连续的,故称半不连续复制。
8、引发酶:此酶以DNA为模板合成一段RNA,这段RNA作为合成DNA的引物(Primer)。
实质是以DNA为模板的RNA聚合酶。
9、转坐子:存在与染色体DNA上可自主复制和位移的基本单位。
10、多顺反子:一种能作为两种或多种多肽链翻译模板的信使RNA,由DNA链上的邻近顺反子所界定。
11、基因:产生一条多肽链或功能RNA所必需的全部核甘酸序列。
12、启动子:指能被RNA聚合酶识别、结合并启动基因转录的一段DNA序列。
13、增强子:能强化转录起始的序列14、全酶:含有表达其基础酶活力所必需的5个亚基的酶蛋白复合物,拥有σ因子。
(即核心酶+σ因子)15、核心酶:仅含有表达其基础酶活力所必需亚基的酶蛋白复合物,没有σ因子。
16、核酶:是一类具有催化功能的RNA分子17、三元复合物:开放复合物与最初的两个NTP相结合,并在这两个核苷酸之间形成磷酸二酯键后,转变成包括RNA聚合酶,DNA和新生的RNA的三元复合物。
分⼦⽣物学复习资料第⼀章绪论1.经典的⽣物化学和遗传学(现代⽣物学的两⼤⽀柱)进化论和细胞学说相结合,产⽣了作为主要实验科学之⼀的现代⽣物学,⽽以研究动、植物遗传变异规律为⽬标的遗传学和以分离纯化、鉴定细胞内含物质为⽬标的⽣物化学则是这⼀学科的两⼤⽀柱。
2.孟德尔的遗传学规律最先使⼈们对性状遗传产⽣了理性认识,⽽Morgan的基因学说则进⼀步将“性状”与“基因”相耦联,成为分⼦遗传学的奠基⽯。
3.证明DNA是遗传物质的两个著名实验:1、Avery的肺炎链球菌转化实验——DNA是遗传信息的载体;2、Hershey和Chase的噬菌体侵染细菌实验—DNA是可以进⼊寄主细胞的转染因⼦。
4.分⼦⽣物学定义从分⼦⽔平研究⽣物⼤分⼦的结构与功能从⽽阐明⽣命现象本质的科学,主要指遗传信息的传递(复制)、保持(损伤和修复)、基因的表达(转录和翻译)与调控。
5.⼈类基因组计划牵头单位:美国能源部、美国国家卫⽣研究所参加国:美国、英国、德国、法国、⽇本、中国启动时间:1990年⼈类基因组计划最初的⽬标:价值达30亿美元的⼈类基因组计划。
要测定30亿个碱基对的排列顺序,确定基因在染⾊体上的位置,破译⼈类全部遗传信息。
⼈类基因组计划与曼哈顿原⼦弹计划和阿波罗计划并称为三⼤科学计划。
2001年中、美、⽇、德、法、英6国科学家联合公布了⼈类基因组图谱及初步分析结果。
2003年4⽉14⽇,美国联邦国家⼈类基因组研究项⽬负责⼈弗朗西斯·柯林斯博⼠在华盛顿宣布,美、英、⽇、法、德和中国科学家经过13年努⼒共同绘制完成了⼈类基因组序列图,⼈类基因组计划所有⽬标全部实现。
中国贡献:作为参与这⼀计划的唯⼀发展中国家,我国于1999年跻⾝⼈类基因组计划,承担了1%的测序任务。
6.DNA重组技术是20世纪70年代初兴起的技术科学,⽬的是将不同DNA⽚段(基因或基因的⼀部分)按照⼈们的设计定向连接起来,在特定的受体细胞中与载体同时复制并得到表达,产⽣影响受体细胞的新的遗传性状。
第二章基因【目的要求】掌握:基因的概念及结构特点;结构基因;基因转录调控相关序列;顺式作用元件;多顺反子,单顺反子。
一、基因:是负责编码RNA或一条多肽链的DNA片段,包括编码序列、编码序列外的侧翼序列及插入序列。
二、结构基因:基因中编码RNA或蛋白质的DNA序列成为结构基因。
三、基因转录调控相关序列:1原核生物基因的调控序列中最基本的是启动子和终止子,有些基因中还有不同的调节蛋白结合位点或操纵元件。
操纵元件:是一段能够被不同基因表达调控蛋白识别和结合的DNA序列,是决定基因表达效率的关键元件。
2真核生物基因中的调控序列一般被称为顺式作用原件,包括启动子和上游启动子元件、增强子、反应元件和poly(A)加尾信号。
启动子和上游启动元件:TATA盒-TFIID-RNA聚合酶复合物(启动转录);CAA盒-CTF(决定转录的效率);GC盒-Sp1(促进转录)。
增强子:可特异性的与转录因子结合,增强转录因子的活性。
四、顺式作用元件:真核生物基因中的调控序列一般被称为顺式作用原件。
包括启动子和上游启动子元件、增强子、反应元件和poly(A)加尾信号。
五、多顺反子:原核生物的结构基因多转录为多顺反子mRNA,即每一个mRNA分子带有几种蛋白质的遗传信息(来自几个结构基因),利用共同的启动子及终止信号,组成“操纵子”的基因表达调控单元。
转录出来的mRNA分子可以编码几种不同的、但是多为功能相关蛋白质。
六、单顺反子:真核生物结构基因转录为单顺反子mRNA,即一个编码基因转录生成一个mRNA分子、经翻译生成一条多肽链,基本上没有操纵子的结构。
转录生成的mRNA前体中既有编码序列(外显子),又有间隔序列(内含子),需要进行转录后的剪切加工以及各种修饰,形成成熟的mRNA。
1熟悉:基因型;表现型;基因突变;;外显子;内含子;选择性剪接。
一、基因型:指逐代传递下去的成对因子的集合,因子中一个来源于父本,另一个来源于母本。
分子生物学详细知识点1.DNA和RNA:DNA(脱氧核糖核酸)和RNA(核糖核酸)是生物体内的两种核酸,DNA是多聚核苷酸的长链,包含编码基因信息,RNA是DNA的转录产物,在蛋白质合成中起着重要作用。
2.基因表达调控:基因表达调控是指在细胞中控制基因转录和翻译的过程。
包括转录因子的结合、启动子的甲基化、组蛋白修饰等。
3.蛋白质合成:蛋白质合成是指通过翻译过程将mRNA上的信息编码转化为氨基酸序列的蛋白质。
主要包括mRNA的翻译、氨基酸激活、核糖体的结合等步骤。
5. PCR技术:聚合酶链式反应(Polymerase Chain Reaction,PCR)是一种体外扩增DNA的方法,通过反复循环的变性、退火和延伸步骤,迅速扩增目标DNA序列。
6.基因突变:基因突变是指DNA序列的改变,包括点突变、插入和缺失等。
可以导致蛋白质的结构和功能的改变,从而影响生物体的表型。
7.基因组学:基因组学是研究基因组结构、功能和演化的学科。
包括基因组测序、基因注释、功能基因组学等内容。
8.蛋白质结构与功能:蛋白质的结构决定其功能,分子生物学研究了蛋白质的二级结构、三级结构和四级结构等方面,以及蛋白质与其他分子(如DNA、RNA、小分子)的相互作用。
9.克隆基因和表达蛋白:分子生物学通过克隆目标基因,将其插入表达载体中,转化至宿主细胞中,使目标基因在宿主中表达,并得到目标蛋白质。
10.分子进化:分子进化研究基因组的演化和多样性。
包括跨物种比较基因组、遗传多态性、分子标记等内容。
11. RNA干扰:RNA干扰是一种通过RNA分子抑制目标基因表达的现象。
包括小干扰RNA(siRNA)和微小RNA(miRNA),通过与mRNA结合形成双链结构,进而降解或抑制mRNA的翻译。
通过以上的介绍,可以看出分子生物学可以研究生命体内分子的结构、功能和相互作用等方面,对于深入了解生命现象的本质和基础具有重要意义。
分子生物学一、名词解释1.ORF 答:ORF是open reading frame的缩写,即开放阅读框架。
在DNA链上,由蛋白质合成的起始密码开始,到终止密码为止的一个连续编码列,叫做一个开放阅读框架。
2.结构基因答:结构基因(structural genes)可被转录形成mRNA,并翻译成多肽链,构成各种结构蛋白质或催化各种生化反应的酶和激素等。
3.断裂基因答:基因是核酸分子中贮存遗传信息的遗传单位,一个基因不仅仅包括编码蛋白质或RNA 的核酸序列,还包括保证转录所必需的调控序列、位于编码区 5' 端与 3' 端的非编码序列和内含子。
真核生物的结构基因,由若干个编码区和非编码区互相间隔开但又连续镶嵌而成,去除非编码区再连接后,可翻译出由连续氨基酸组成的完整蛋白质,这些基因称为断裂基因(split gene)。
4.选择性剪接答:选择性剪接(也叫可变剪接)是指从一个mRNA前体中通过不同的剪接方式(选择不同的剪接位点组合)产生不同的mRNA剪接异构体的过程,而最终的蛋白产物会表现出不同或者是相互拮抗的功能和结构特性,或者,在相同的细胞中由于表达水平的不同而导致不同的表型。
5.C值答:基因组的大小通常以其DNA的含量来表示,我们把一种生物体单倍体基因组DNA的总量成为C值(C value)。
6.生物大分子答:生物大分子指的是作为生物体内主要活性成分的各种分子量达到上万或更多的有机分子。
常见的生物大分子包括蛋白质、核酸、脂类、糖类。
7.酚抽提法答:酚抽提法最初于1976年由Stafford及其同事提出,通过改良,以含EDTA、SDS及无DNA酶的RNA酶裂解缓冲液破碎细胞,经蛋白酶K处理后,用pH8.0的Tris饱和酚抽提DNA,重复抽提至一定纯度后,根据不同需要进行透析或沉淀处理获得所需的DNA样品。
8.凝胶过滤层析答:凝胶过滤层析也称分子排阻层析或分子筛层析,利用凝胶分子筛对大小、形状不同的分子进行层析分离,是根据分子大小分离蛋白质混合物最有效的方法之一。
分子生物学复习资料(第一版)一名词解释1 Southern blot / Northern blot—DNA斑迹法 / RNA转移吸印技术。
是为了检测待检基因或其表达产物的性质和数量(基因拷贝数)常用的核酸分子杂交技术。
二者均属于印迹转移杂交术,所不同的是前者用于检测DNA样品;后者用于检测RNA样品。
2 cis-acting element / trans-acting factor—顺式作用元件 / 反式作用因子。
均为真核生物基因中的转录调控序列。
顺式作用元件是与结构基因表达调控相关、能被基因调控蛋白特异性识别和结合的特定DNA序列,包括启动子和上游启动子元件、增强子、反应元件和poly (A)加尾信号。
反式作用因子是能与顺式作用元件特异性结合、对基因表达的转录起始过程有调控作用的蛋白质因子,如RNA聚合酶、转录因子、转录激活因子、抑制因子。
3VNTR / STR—可变数目串联重复序列 / 短串联重复。
均为非编码区的串联重复序列。
前者也叫高度可变的小卫星DNA,重复单位约9~24bp,重复次数变化大,变化高度多态性;后者也叫微卫星DNA,重复单位约2~6 bp,重复次数约10~60次,总长度通常小于150bp 。
(参考第7题)4 viral oncogene / cellular oncogene—病毒癌基因 / 细胞癌基因。
病毒癌基因指存在于逆转录病毒中、体外能使细胞转化、体内能导致肿瘤发生的基因;细胞癌基因也叫原癌基因,指存在于细胞内,与病毒癌基因同源的基因序列。
正常情况下不激活,与细胞增殖相关,是维持机体正常生命活动所必须的,在进化上高等保守。
当原癌基因的结构或调控区发生变异,基因产物增多或活性增强时,使细胞过度增殖,从而形成肿瘤。
5 ORF / UTR—开放阅读框 / 非翻译区。
均指在mRNA中的核苷酸序列。
前者是特定蛋白质多肽链的序列信息,从起始密码子开始到终止密码子结束,决定蛋白质分子的一级功能;后者是位于前者的5'端上游和3'端下游的、没有编码功能的序列,主要参与翻译起始调控,为前者的多肽链序列信息转变为多肽链所必需。
6 enhancer / silencer—增强子 / 沉默子。
均为顺式作用元件。
前者是一段含多个作用元件的短DNA序列,可特异性与转录因子结合,增强基因的转录活性,可以位于基因任何位置,通常在转录起始点上游-100到-300个碱基对处;后者是前者内含的负调控序列,结合特异蛋白因子时,对基因转录起阻遏作用。
7 micro-satellite / minisatellite—微卫星DNA / 小卫星DNA 。
卫星DNA是出现在非编码区的串联重复序列,特点是有固定重复单位且重复单位首尾相连形成重复序列片段,串联重复单位长短不等,重复次数大小不一。
微卫星DNA即STR;小卫星DNA分为高度可变的小卫星DNA(即VNTR)和端粒DNA。
(参考第3题)8 SNP / RFLP—单核苷酸多态性 / 限制性片段长度多态性。
前者是指在基因组水平上由单个核苷酸的变异所引起的DNA序列多态性,它是人类遗传变异中最常见的一种,占所有已知多态性的90%以上;后者是由于高度重复序列中的无间隔反向重复序列容易形成也容易突变产生或缺失一个酶切位点,所造成的限制性片段长度多态性,如果用同一种限制性内切酶消化不同个体的同一段DNA,由于碱基组成的变化而改变限制性内切酶识别位点,会产生长度不同的DNA片段。
9 cloning vector / expressing vector—克隆载体 / 表达载体。
载体是与外源性DNA片段在体外连接构成重组分子,然后导入宿主细胞,使外源性DNA扩增或表达的分子。
克隆载体是用于克隆和扩增特定DNA片段的载体;表达载体是用于表达外源基因的载体。
10 optional exon / optional intron—外显子选择 / 内含子选择。
均属于mRNA的选择剪接方式。
选择剪接指参加拼接的外显子可以不按其在基因组的线性分布次序拼接,内含子也可以不被切除而保留的剪接方式。
外显子选择指在不同剪接方式中,某个或某几个外显子可以在成熟mRNA中保留,也可以通过剪接过程被去掉;内含子选择指在不同剪接方式中,内含子可以被完全去掉,也可以有一个内含子被保留在成熟mRNA中。
11 promoter / terminator—启动子 / 终止子。
均为真核生物基因两侧不能被转录且对基因表达、调控有重要作用的序列。
启动子是能与RNA聚合酶结合并起始转录的核苷酸序列,包括TATA盒、CAAT盒、GC盒一组序列,一般位于基因转录起始点上游-100~-200碱基对范围;终止子是提供转录停止信号的DNA序列,当mRNA转录到此部位后,产生poly(U),被结合在RNA聚合酶上的延长因子识别并与其结合,促使RNA聚合酶与DNA模板解离,终止转录。
12 leader sequence / SD sequence—前导序列 / SD序列。
前导序列指位于基因5'端、第一个外显子上游的序列,也叫5'端序列,在加工过程中通常被最先剪切去除;SD序列指位于原核生物mRNA5'端,与核糖体16S rRNA结合的序列,一般位于mRNA的起始密码AUG的上游5~10个碱基处,并且同16S rRNA 3'端的序列互补,其顺序及位置影响翻译起始效率。
13 gene / genome—基因 / 基因组。
基因是负责编码RNA或一条多肽链的DNA片段,即携带有遗传信息的DNA序列,是控制性状的基本遗传单位;基因组是一个细胞或病毒的全部遗传信息,真核生物基因组是一套完整单倍体DNA和线粒体DNA全部序列,某些病毒基因组由RNA组成。
14 operon / operator—操纵子 / 操纵元件。
操纵子是指按功能相关性成簇排列的结构基因,连同上游调控区和下游转录终止信号,共同组成的一个基因表达协同单位;操纵元件是一段能被不同基因表达调控蛋白识别和结合的DNA序列,是决定基因表达效率的关键元件。
15 gene rearrangement / gene replacement—基因重排 / 基因置换。
基因重排是DNA水平调控的重要方式之一,指某些基因片段改变原来存在顺序,通过调整有关基因片段的衔接顺序,再重排位一个完整的转录单位;基因置换是重要的基因治疗方式,指将特定的目的基因导入特定的细胞,通过定位重组,以导入的正常基因置换基因组内原有的缺陷。
16 domain / motif—结构域(功能域) / 基序(模序)。
17 receptor / adaptor—受体 / 衔接蛋白。
受体是信息分子的接收分子,是存在于细胞表面的或细胞内的蛋白分子,其作用是识别配体并将配体信号进行转换,使之成为细胞内分子可以识别的信号并传递至其他分子引起细胞应答;衔接蛋白是信号转导通路中不同信号转导分子的接头,可将位于其上游与下游的信号转导分子连接起来。
18 initiator caspase / effector caspase—起始者胱天蛋白酶 / 效应者胱天蛋白酶。
胱天蛋白酶是哺乳动物细胞凋亡的关键酶。
起始者胱天蛋白酶有较长原域,位于胱天蛋白酶级联活化途径上游,通过蛋白质相互作用自我激活;效应者胱天蛋白酶有较短原域,位于胱天蛋白酶级联活化下游,前体能被起始者胱天蛋白酶切割而活化,活化后能切割底物从而导致凋亡。
19 transfection / transformation—转染 / 转化。
均为重组DNA常用方法。
前者指真核细胞主动摄取或被动导入外源性DNA片段而获得新表型的过程;后者指将质粒或其他外源DNA 导入处于感受态的宿主菌并使其获得新表型的过程。
20 gene family / gene superfamily—基因家族 / 基因超家族。
基因家族指核苷酸序列或编码产物结构具有一定程度同源性的基因,其编码产物常常有相似功能;超基因家族是由多基因家族及单基因组成的更大的基因家族,它们结构有程度不等的同源性,但功能不一定相同。
二问答1 基因的基本概念。
答:基因的基本概念包括基因,基因组,结构基因,模板链,编码链,外显子,内含子,顺式作用元件,反式作用元件,启动子,增强子,终止子等。
(参考名词解释)结构基因—基因中编码RNA或蛋白质的DNA序列。
模板链/编码链—结构基因双链中一条作为合成RNA的模板链,另一条为编码链。
外显子/内含子—编码序列 / 非编码序列。
2 基因的组织结构。
答:原核生物基因结构简单,通常是一条双链环状DNA分子,有操纵子结构。
真核生物基因结构复杂,包括染色体DNA和线粒体DNA。
染色体DNA位于细胞核内,双链盘绕在以组蛋白分子为核心的结构表面构成核小体,核小体组成染色单体;线粒体DNA 是闭环双链分子,位于核外。
病毒基因可以由DNA或RNA组成。
RNA病毒基因有单双链和正负链之分,DNA病毒基因有环状DNA和线性DNA之分。
3 原核生物、真核生物、人类基因组结构特点。
答:原核生物的基因组结构特点:①环状双股链,②有操纵子结构,③序列连贯,无内含子,④大多为结构基因,⑤无重叠序列,⑥大多为单拷贝。
真核生物基因组结构特点:①基因组大,②核内染色体,③体细胞基因组为双倍体,④大量重复序列,⑤结构基因不连续,⑥断裂基因,含外显子与内含子,⑦绝大多数为非编码序列。
人类基因组结构特点:人类基因组除包括真核生物基因组结构特点外,数量更大,非编码序列更多。
与细菌基因组相比,基因组大1000倍,基因数目多20倍,非编码序列为10000倍。
4 重复序列种类、特征,人类基因多态性。
答:重复序列大部分是非编码序列,功能主要与基因组稳定性、组织形式及基因表达调控有关。
根据重复序列出现频率不同,可分为高重复序列DN A(>105)、中重复序列DN A(10~105)、单拷贝或低重复序列DNA(<10)。
高重复序列可以集中在某一区域串联排列。
典型高重复序列DNA有卫星DNA和反向重复序列。
卫星DNA出现在非编码区呈串连重复排列,按照串连重复单位和重复次数,分为大卫星DN A、小卫星DN A、微卫星DNA。
反向重复序列指两个顺序相同的拷贝在DNA链上反向排列,中间可以有间隔序列,也可以串联(回文结构)。
中重复序列散在分布于基因组中,常与单拷贝基因间隔排列。
人类基因多态性是指人类个体之间基因组DNA的差异,这些差异产生的主要原因是基因组序列的变异。
变异是生物遗传基本特征之一,也是生物进化和适应环境的必然结果。
基因多态性造成了生物特别是人类在生理及病理条件下对疾病、环境及应激的易感性、对环境、毒素、药物的耐受性和反应性的千差万别。
5 病毒基因组、原核生物基因组、真核生物基因组核酸复制特点。
答:DN A复制基本特点:①复制都有固定起始点,②复制过程中形成复制泡和复制叉,③复制基本单位是复制子,④复制是半保留复制,保证遗传信息忠实传递,⑤复制是半不连续复制,克服了DN A空间结构对DN A新链合成的制约。