大肠杆菌、质粒和噬菌体
- 格式:ppt
- 大小:5.91 MB
- 文档页数:2
1、大肠杆菌DH5a菌株DH5a是世界上最常用的基因工程菌株之一。
由于DH5α是DNA酶缺陷型菌株,有利于基因克隆,保存质粒,但该菌株的蛋白酶没有缺陷,表达的蛋白容易被降解,因此通常不作为表达菌株。
E.coli DH5a在使用pUC系列质粒载体转化时,可与载体编码的β-半乳糖苷酶氨基端实现α-互补。
可用于蓝白斑筛选鉴别重组菌株。
基因型:F-,φ80dlacZΔM15,Δ(lacZYA-argF)U169,deoR,recA1,endA1,hsdR17(rk-,mk+),phoA,supE44,λ-,thi-1,gyrA96,relA12、大肠杆菌BL21(DE3) 菌株该菌株用于高效表达克隆于含有噬菌体T7启动子的表达载体(如pET系列)的基因。
T7噬菌体RNA聚合酶位于λ噬菌体DE3区,该区整合于BL21的染色体上。
该菌适合表达非毒性蛋白。
基因型:F-,ompT,hsdS(rBB-mB-),gal,dcm(DE3)3、大肠杆菌BL21(DE3) pLysS菌株该菌株含有质粒pLysS,因此具有氯霉素抗性。
PLysS含有表达T7溶菌酶的基因,能够降低目的基因的背景表达水平,但不干扰目的蛋白的表达。
该菌适合表达毒性蛋白和非毒性蛋白。
基因型:F-,ompT hsdS(rBB-mB-),gal,dcm(DE3,pLysS ,Camr4、大肠杆菌JM109菌株该菌株在使用pUC系列质粒载体进行DNA转化或用M13 phage载体进行转染时,由于载体DNA产生的LacZa多肽和JM09编码的LacZΔM15进行α-互补,从而显示β-半乳糖苷酶活性,由此很容易鉴别重组体菌株。
基因型:recA1,endA1,gyrA96,thi-1,hsdR17,supE44,relA1,Δ(lac-proAB)/F’[traD36,proAB+,lacIq,lacZΔM15]5、大肠杆菌TOP10菌株该菌株适用于高效的DNA克隆和质粒扩增,能保证高拷贝质粒的稳定遗传。
大肠杆菌感受态细胞的制备原理、步骤以及重组质粒转化一、目的1.了解感受态细胞生理特性及制备条件,掌握大肠杆菌感受态细胞制备方法。
2.掌握质粒DNA 转化大肠杆菌的方法,了解转化的条件和利用半乳糖苷酶基因插入失活选择重组质粒DNA 的原理。
二、原理(一)大肠杆菌感受态细胞制备的原理所谓感受态,是指细菌生长过程中的某一阶段的培养物,只有某一生长阶段中的细菌才能作为转化的受体,能接受外源DNA而不将其降解的生理状态。
感受态形成后,细胞生理状态会发生改变,出现各种蛋白质和酶,负责供体DNA 的结合和加工等。
细胞表面正电荷增加,通透性增加,形成能接受外来的DNA 分子的受体位点等。
本实验为了把外源DNA(重组质粒)引入大肠杆菌,就必须先制备能吸收外来DNA分子的感受态细胞。
在细菌中,能发生感受态细胞是占极少数。
而且,细菌的感受态是在短暂时间内发生。
目前对感受态细胞能接受外来DNA 分子的本质看法不一。
主要有两种假说:1、局部原生质体化假说――细胞表面的细胞壁结构发生变化,即局部失去细胞壁或局部溶解细胞壁,使DNA 分子能通过质膜进细胞。
证据有:(1)发芽的芽孢杆菌容易转化;(2)大肠杆菌的原生质体不能被噬菌体感染,却能受噬菌体DNA 转化;(3)适量的溶菌酶能提高转化率。
2、酶受体假说――感受态细胞的表面形成一种能接受DNA 的酶位点,使DNA分子能进入细胞。
证据是:(1)蛋白质合成的抑制剂如氯霉素,可以抑制转化作用;(2)细胞分裂过程中,一直有局部原生质化,但感受态只在生长对数期的中早期出现;(3)分离到感受态因子,能使非感受态细胞转变为感受细胞。
目前对感受态细胞的转化理论尚未有统一结论,但是许多实验室一直进行探索,试图从实验中获得明确回答。
有人根据pBR322 质粒DNA对E・co li K――12X1776菌株的转化结果,认为:近来,在许多研究室都发现CaCl2对受体菌处理,可提高转化效率几十倍,通常把细胞悬浮在pH6.0 的100mmol/L CaCl2中,在冰浴条件下,放置过夜,转化率转高,但一过24小时,转化率测恢复为原来的水平。
大肠杆菌的基本知识概述作者:肖安庆来源:《中学生物学》2010年第11期大肠杆菌是重要的模式生物,在高中生物学中有.多处知识涉及到,如原核生物的基本结构与分裂、T2’噬菌体侵染细菌实验、基因工程常见运载体、大肠杆菌的鉴定、微生物的酶合成调节等。
这些知识涉及点多,分布零散,缺乏系统性,下面就大肠杆菌的基本知识作简要概述。
1认识大肠杆菌的基本历程大肠杆菌是大肠埃希氏菌的俗称,属肠杆菌科埃希氏菌属,1885年埃舍利希氏首次发现。
在相当长的时间内,人们一直把它当作正常肠道菌群的组成部分,认为是非致病菌。
直到20世纪中叶,才认识到一些特殊血清型的大肠杆菌对人和动物有病原性,尤其对婴儿和幼禽,常引起严重腹泻和败血症。
根据不同的生物学特性,将致病性大肠杆菌分为5类:致病性大肠杆菌(EPEC)、肠产毒性大肠杆菌(ETEC)、肠出血性大肠杆菌(EHEC)、肠侵袭性大肠杆菌(EIEC)、肠黏附性大肠杆菌(EAEC)。
2大肠杆菌的基本结构2.1细胞壁大肠杆菌的细胞壁厚约11μm,分外膜和肽聚糖层。
外膜是大肠杆菌细胞壁的主要成分,占细胞壁干重80%,位于肽聚糖层的外侧,主要由磷脂、蛋白质和脂多糖组成。
脂多糖是革兰氏阴性细菌的内毒素,也是革兰氏阴性细菌细胞壁的特有成分,主要与抗原性、致病性及对噬菌体的敏感性有关。
肽聚糖层由1—2层网状的肽聚糖组成,占细胞壁干重的10%,是细菌特有的成分,由聚糖链、短肽和肽桥三部分组成。
由,脂蛋白将外膜和肽聚糖层连接起来,从而使大肠杆菌的细胞壁形成一个整体结构。
2.2细胞膜大肠杆菌的细胞膜与其他生物细胞膜的结构相似,但上面的蛋白质含量高、种类多,具有选择透性,可控制营养物质进出细胞。
大肠杆菌的细胞膜含有丰富的酶系,是大肠杆菌的能量转化的场所,参与细胞壁的合成。
2.3细胞质大肠杆菌的细胞质含有糖原颗粒、核糖体和质粒等结构。
2.3.1核糖体大肠杆菌的核糖体包含两个亚基,即50S亚基(23S rRNA、5S rRNA、34种蛋白质)和.30S亚基[16SrRNA、21种蛋白质(S1~S21)]。
高一生物基因工程生物技术的安全性和伦理问题试题答案及解析1.下列哪项不能作为转基因技术中常用的基因运载工具( )A.大肠杆菌B.质粒C.植物病毒D.噬菌体【答案】A【解析】作为运载体必须具备的特点是:能够在宿主细胞中复制并稳定地保存;具有多个限制酶切点,以便与外源基因连接;具有某些标记基因,便于进行筛选。
常用的运载体有质粒,动植物病毒,λ噬菌体衍生物等,大肠杆菌不能作为运载体。
2.生物学家能够通过基因工程技术生产人的血清蛋白,根据所学知识回答下列问题。
(1)在基因工程的操作中,“分子手术刀”是。
(2)“分子缝合针”是。
(3)“分子运输车”是。
(4)操作步骤:获取目的基因;构建基因表达载体;在基因表达载体的组成中,除了目的基因外,还必须有、和等。
然后把基因表达载体导入牛的,通过发育形成的牛体细胞中都含人的,成熟的牛产的奶中含有,证明基因操作成功。
【答案】(1)限制酶(2)DNA连接酶(3)基因进入受体细胞的载体(或运载体)(4)启动子终止子标记基因受精卵血清蛋白基因人的血清蛋白【解析】基因工程至少需要三种工具:限制性核酸内切酶(限制酶)、DNA连接酶、运载体,其中限制酶是“分子手术刀”,DNA连接酶是“分子缝合针”,运载体是“分子运输车”。
基因表达载体的组成:目的基因+启动子+终止子+标记基因。
受体细胞是动物细胞时,往往采用受精卵作为受体细胞,因为其全能性最高。
将人的血清白蛋白基因导入牛的受精卵,该受精卵通过发育形成的牛体细胞中都含人的血清蛋白基因,该基因在牛体内表达,所以成熟的牛产的奶中含有人的血清蛋白。
【考点】本题考查基因工程的工具和步骤。
点评:本题意在考查考生的识记能力,属于容易题。
3.下图是基因工程中某种基本工具作用示意图,此工具是A.限制性核酸内切酶B.DNA连接酶C.质粒D.运载体【答案】A【解析】据图分析,该种限制性核酸内切酶能专一识别GAATTC序列,并在G和A之间将这段序列切开,产生两个带有黏性末端的DNA片段;故选A。
如何构建一个大肠杆菌高效表达的分子克隆?影响基因在大肠杆菌中表达的因素是多方面的,以下我就从载体选择、启动子、终止子、核糖体结合位点、密码子、质粒拷贝数、表达产物的稳定性、受体细胞代谢等方面说明构建大肠杆菌高效表达的方法。
一、表达载体表达载体应具有以下条件:1、能够独立复制。
根据载体复制的特点,可分为严谨型和松弛型。
严谨型载体伴随宿主染色体的复制而复制,在宿主中拷贝数很少(1~3个);松弛型的复制而不依赖于宿主染色体,在宿主细胞中的拷贝数可多达3000个。
2、应具有灵活得多克隆位点和方便的筛选标记,便于外源基因的克隆、鉴定和筛选。
而且多克隆位点应位于启动子序列之后,以使外源基因表达。
3、应具有很强的启动子,能被大肠杆菌的RNA聚合酶识别。
4、应具有使启动子受抑制的阻遏子,只有在受到诱导时才能进行转录。
阻遏子的阻遏作用可由物理(如温度)、化学(如IPTG、IAA等)因素进行调节,这样可人为地选择启动子启动转录mRNA的时机。
因外源基因的高效表达往往会抑制宿主细胞的生长、增殖。
而阻遏子可使宿主细胞免除此不良影响。
例如可使宿主细胞快速生长增殖到相当量,再通过瞬时消除阻遏,使所表达的蛋白质在短时间内大量积累,同时可减少表达产物的降解。
5、应具有很强的终止子,以便使RNA聚合酶集中力量转录克隆的外源基因,而不转录其他无关基因。
同时强终止子所产生的mRNA较为稳定。
诱导表达时,由于强终止子所致的高水平转录反过来会影响质粒DNA自身的复制,从而引起质粒的不稳定或脱质粒现象。
因此在外源基因的下游安置强终止子可以克服由质粒转录引起的质粒不稳定。
6、所产生的mRNA必须有翻译的起始信号,即起始密码AUG和SD序列。
二、启动子启动子是表达载体最重要的组成成分,这是因为启动子控制了基因表达的第一个阶段,决定了mRNA合成的速度。
启动子是在转录水平上影响基因表达。
转录的最大速率取决于启动子中碱基的组成,往往会因为一个碱基的不同,启动子效率可能提高上千倍。
生命科学学院病毒生物学λ噬菌体综述摘要:噬菌体是一类温和噬菌体,它们感染大肠杆菌后能进行溶菌性生长(Lytic growth)和溶源性生长(Lysogenic growth)。
其溶源特性对基因重组与遗传工程研究有很大帮助。
本文就λ噬菌体的基因组结构、溶关键词:λ噬菌体溶原性溶菌性基因克隆引言:大肠杆菌噬菌体λ为长尾噬菌体科,是一类中等大小的大肠杆菌病毒,其基因组为双链线状DNA,由48502对碱基组成,分子量3.2×107 ,约50个基因,特点是相关基因成簇排列,形成若干个操纵子。
基因组两端为粘性末端,中间有相当长的DNA片段是裂解生长非必需的,这就为其作为外源基因的克隆载体提供了方便。
λ噬菌体由头和尾构成,其基因组组装在头部蛋白质外壳内部,其序列已被全部测出。
感染时吸附位点为细胞壁。
属温和性感染;感染的DNA环化并整合于宿主基因组中。
以θ环双向复制,然后通过滚环机制单向复制。
用于感染大肠杆菌的λ噬菌体改造成的载体应用最为广泛。
1、The discovery of bacteriophage lambda1951年J. Lederberg的妻子Esther Lederberg第一个证明了 J. Lederberg和Tatum用来杂交的K-12中有原噬菌体,并命名为λ,经10年的研究搞清了溶原化的实质。
从此之后,λ噬菌体被广泛用于模式物种;1962年Esther Lederberg的同事并且还是她最好的朋友Allan Campbell首次发现了λDNA整合到细菌DN A的机制;之后由λ噬菌体改造后的载体广泛的用于基因工程。
2、The characteristics of bacteriophage lambda2.1、结构特点:λ为大肠杆菌温和性噬菌体,属长尾噬菌体科,头壳为直径约50nm的二十面体,其内包裹一长线状双链DNA分子(46500bp),因分子两端各有一含12个核苷酸的黏性末端,故又可黏合成环状分子。
第二章 DNA重组克隆的单元操作练习题噬菌体载体(练习题)一、填空题1.噬菌体之所以被选为基因工程载体,主要有两方面的原因:一是;二是。
2.第一个报道的全测序的单链DNA 噬菌体是φX174,DNA 长5386 个碱基对,共个基因,为一环状DNA 分子,基因组的最大特点是。
3.λ噬菌体的基因组DNA 为kb,有多个基因。
在体内,它有两种复制方式,扩增时(早期复制)按复制,成熟包装(晚期复制)则是按复制。
它有一个复制起点,进行向复制。
λ噬菌体的DNA 既可以以线性存在又可以环状形式存在,并且能够自然成环。
其原因主要是在λ噬菌体线性DNA 分子的两端各有一个个碱基组成的天然黏性末端。
这种黏性末端可以自然成环。
成环后的黏性末端部位就叫做位点。
4.根据噬菌体的包装能力,将野生型λ噬菌体的基因组DNA 改造成插入型载体,该载体的最小分子大小约为kb,插入的外源片段最大不超过kb。
5.野生型的M13 不适合用作基因工程载体,主要原因是和。
6.黏粒(cosmid)是质粒—噬菌体杂合载体,它的复制子来自、COS 位点序列来自,最大的克隆片段达到kb。
7.有两类改造型的λ噬菌体载体,即插入型和取代型。
从酶切点看,插入型为个,取代型为个。
8.野生型的丸噬菌体DNA 不宜作为基因工程载体,原因是:(1) (2) (3) 。
9.M13 单链噬菌体的复制分为三个阶段:(1) (2) (3) 。
10.噬菌粒是由质粒和噬菌体DNA 共同构成的,其中来自质粒的主要结构是,而来自噬菌体的主要结构是。
11 .M13 单链噬菌体基因2 和基因4 之间的IG 区有三个最重要的功能,即(1)(2) (3) 。
12.野生型的M13 有10 个基因,分为三个功能集团,其中与复制有关的两个基因是:和。
13.以λ噬菌体载体和黏粒载体构建文库时,起始DNA 的长度是不同的,前者为kb,后者为kb。
14.λ噬菌体载体由于受到包装的限制,插入外源DNA 片段后,总的长度应在噬菌体基因组的的范围内。
基因载体名词解释基因载体是指用于携带、传递和复制基因的分子或生物体。
在基因工程和生物技术领域,基因载体通常是指能够容纳外源DNA序列的DNA分子或细胞,常被用于基因克隆、基因表达、基因转移等实验和应用中。
常见的基因载体包括质粒、噬菌体、噬菌体样粒子、大肠杆菌、酵母、昆虫细胞等。
这些载体被广泛用于基因工程实验和技术,在研究和应用中起到了至关重要的作用。
质粒是最常用的基因载体之一,是一种小型环状DNA分子,可以自主复制和传递,对于分子克隆和基因表达都非常有用。
质粒通常具有选择性标记基因(如抗生素抗性基因),可以通过选择性培养来筛选出带有目标基因的质粒。
此外,质粒还可以携带其他附加基因元件,如启动子、终止子、启动子和信号序列等,在基因表达中发挥重要作用。
另一种常见的基因载体是噬菌体,是一种感染细菌的病毒。
噬菌体可以携带外源DNA序列,并在细菌中进行复制和表达。
噬菌体可以用于高效地产生大量目标蛋白,因此在基因表达和蛋白生产中具有广泛应用。
此外,还有噬菌体样粒子,它是由噬菌体的基因组包裹在蛋白质壳中构成的粒子,可以携带大片的外源DNA序列,并在细胞中进行复制和表达,常用于基因克隆和基因转移实验。
在真核生物中,常用的基因载体包括酵母和昆虫细胞。
酵母是一种单细胞真核生物,具有较高的基因组稳定性和蛋白表达能力,在基因工程和蛋白生产中被广泛运用。
昆虫细胞也具有较高的蛋白表达能力,被广泛用于重组蛋白的产生和应用。
总的来说,基因载体是在基因工程和生物技术领域中不可或缺的工具,能够携带外源DNA序列,并在细胞中进行复制、传递和表达。
基因载体的选择和设计对于实现特定的实验目标和应用需求至关重要。
医学微生物学名词解释1 医学微生物学:主要研究与人类疾病有关的病原微生物的生物学性状、致病与免疫机制、特异性诊断及防治措施等,是基础医学的一门重要学科。
2 荚膜:是某些细菌在细胞壁外包绕的一层厚度0.2um以上,在普通光学显微镜下即可观察到的,与四周界限分明的黏液性物质。
3 芽胞:是某些细菌在一定环境条件下,细胞质、核质逐渐脱水浓缩,在菌体内形成折光性强的圆形或椭圆形的小体。
4 质粒:是细菌核质外的环形闭合双链DNA分子,携有遗传信息,可控制细菌某些特定的遗传性状,可自我复制、自我转移及丢失。
5 鞭毛:是细菌的运动器官,是从细胞膜长出,伸到细胞壁外面的细长呈波状弯曲的丝状物。
6 中介体:是细菌部分细胞膜向胞质内凹陷折叠成囊状物,多见于革兰阳性菌,参与细菌的分裂。
7 菌毛:是某些菌体表面上的一种比鞭毛更细、更短而直硬的蛋白性丝状物。
8 L型细菌:在某些情况下,细菌细胞壁受损后,细菌不一定死亡而成为细胞壁缺陷的细菌,去除诱因后可回复为原菌。
9 内毒素:即革兰阴性菌细胞壁的脂多糖,其毒性成分为脂质A,菌体死亡裂解后才能释放出来。
10 外毒素:是由多数革兰阳性菌和少数革兰阴性菌在生长代谢过程中释放至菌体外、具有毒性作用的蛋白质。
11 菌落:是单个细菌在固体培养基上生长繁殖形成肉眼可见的细菌集团。
12 培养基:是指将细菌生长繁殖所需要的各种营养物质,按照一定的比例,合理调配而成的培养基质。
13 抗生素:是某些微生物代谢过程中产生的一种能选择抑制或杀死其他生物细胞的物质。
14 纯培养:挑选一个菌落,移种到另一个培养基中,生长出来的细菌均为纯种,即纯培养。
15 热原质:是许多革兰阴性菌和少数革兰阳性菌在代谢过程中合成的一种物质,将极微量注入人或动物体内即可引起发热反应。
16 菌苔:在固体培养基上,菌落生长过分密集而形成片状,称菌苔。
17 噬菌体:是侵染细菌、放线菌或真菌等微生物的病毒,具有病毒的基本特性,可分为毒性噬菌体和温和噬菌体。