xi R, i 1, 2, , n.
对于固定的 n ,我们称{FX (x1, x2, , xn;t1,t2, ,tn ),ti T}
为随机过程{X (t),t T}的 n 维分布函数族。
注:可以证明(柯尔莫哥洛夫),在一定条件下 ,随机过程的统计特性完全由它的有限维分布函 数族决定。
(二)二维随机过程的联合分布函数
p
2 (1, )
2 1 2
(0, 1 ) 4
1
2
三 随机过程的数字特征
1.单个随机过程的情况
① 函数 X (t) E[X (t)], t T
为{X(t),tT}的均值函数.
②
2 X
(t)
E[ X
2
(t )]
为{X(t),tT}的均方值函数.
③
2 X
(t
)
DX (t) D[ X (t)]
为{X(t),tT}的方差函数.
例3: 考虑抛掷一颗骰子的试验,(i)设 X是n 第n次 (n )1 抛掷的点数,对于n=1,2…的不同值, 是X不n 同的随机变量,因而 { Xn构, n成 1一} 随机过程,称为 贝努利过程或贝努利随机序列,(ii)设Xn是前n次
抛掷中出现的最大点数,
也{是X一n , n随机1}过程。
例 4 在时间 [0,t]内某地段出现的交通事故次数
2. n维分布函数族
对 任 意 正 整 数 n 可 取 定 t1,t2, ,tn T 则 (X (t1), X (t2 ), , X (tn )) 是一个n 维随机变量,他的分 布函数为
FX (x1, x2 , , xn; t1, t2, , tn )
P( X (t1) x1, X (t2 ) x2, , X (tn ) xn ),