基于模糊控制的齿轮传动系统振动主动控制与仿真
- 格式:pdf
- 大小:381.58 KB
- 文档页数:6
基于UG的行星齿轮传动三维建模及运动仿真
刘宝波;徐更杰;初海宁
【期刊名称】《起重运输机械》
【年(卷),期】2008(000)009
【摘要】@@ 1 UG软件简介rnUG是美国UGS公司发布的CAD/CAE/CAM一体化的三维参数化设计软件,它在汽车、航空航天、通用机械等领域有广泛的应用.UG提供了一个基于过程的产品设计环境,使产品开发设计到加工和分析实现了数据的无缝集成.该软件不仅具有强大的实体造型、曲面造型、虚拟装配和产生工程图等设计功能,而且在设计过程中可以进行有限元分析、机构运动分析、动力学分析和仿真模拟,提高了设计的可靠性.且可用建立的三维模型直接生成数控代码,用于产品的加工,其后处理程序支持多种类型数控机床.另外,它所提供的二次开发语言UG/open GRIP,UG/openAP1简单易学,实现功能多,便于用户开发专用CAD系统.【总页数】4页(P51-54)
【作者】刘宝波;徐更杰;初海宁
【作者单位】军事交通学院科研部;军事交通学院科研部;军事交通学院科研部【正文语种】中文
【相关文献】
1.基于PTC Cre03.0的行星齿轮传动机构运动仿真 [J], 温开元;杨柳
2.基于UG的免烧型制砖机三维建模和运动仿真 [J], 刘琦;邵俊鹏
3.基于UG平台的卵形齿轮的三维建模与运动仿真 [J], 陈兆荣
4.基于UG的发动机曲柄连杆机构三维建模及运动仿真 [J], 孙慧;王峰
5.基于UG的复合轮系齿轮传动三维建模及运动仿真分析 [J], 黄跃娟;矫健;肖明喆因版权原因,仅展示原文概要,查看原文内容请购买。
传动与控制实验报告传动与控制实验报告引言在现代工程领域中,传动与控制技术是不可或缺的重要组成部分。
它们在各种机械系统中起到了至关重要的作用。
本实验旨在通过实际操作和观察,深入了解传动与控制的原理和应用。
实验一:传动系统的分析与设计在这个实验中,我们首先研究了不同类型的传动系统,如齿轮传动、皮带传动和链传动。
通过观察和测量不同传动系统的特点和性能,我们能够更好地理解它们的工作原理和适用范围。
我们选择了齿轮传动作为研究对象。
齿轮传动是一种常见且高效的传动方式,广泛应用于机械设备中。
我们首先测量了不同齿轮的模数、齿数和齿轮直径,并计算了它们的传动比。
通过观察齿轮的运动和传递力矩的情况,我们可以验证传动比的准确性,并评估齿轮传动的效率。
接下来,我们研究了皮带传动和链传动。
这两种传动方式都具有一定的弹性和缓冲作用,适用于需要减小冲击和噪音的场合。
我们测量了不同皮带和链条的长度、宽度和张力,并观察了它们的传动效果。
通过比较不同传动方式的特点和性能,我们可以选择最适合特定应用的传动系统。
实验二:控制系统的设计与优化在这个实验中,我们研究了控制系统的设计和优化方法。
控制系统是一种用于改变或维持物理系统状态的技术。
它可以通过传感器和执行器来实现对系统的监测和调节。
我们选择了PID控制器作为研究对象。
PID控制器是一种常用的反馈控制器,它可以根据误差信号来调整输出信号,从而实现对系统的控制。
我们首先设计了一个简单的PID控制器,并通过实验调整了控制参数。
通过观察系统的响应和稳定性,我们可以评估控制器的性能,并进行优化。
接下来,我们研究了先进的控制技术,如模糊控制和神经网络控制。
这些技术可以应对更加复杂和非线性的系统。
我们通过实验比较不同控制技术的性能和适用性,以便选择最合适的控制方法。
结论通过这次实验,我们深入了解了传动与控制技术的原理和应用。
我们通过实际操作和观察,对不同传动系统和控制器的特点和性能有了更加全面的了解。
柔性齿轮运动特性及其振动抑制性能的实验研究目录一、内容概述 (2)1. 研究背景 (3)2. 研究意义 (4)3. 国内外研究现状综述 (5)二、柔性齿轮的理论基础与设计方法 (5)1. 柔性齿轮的定义与特点 (7)2. 柔性齿轮的基本结构与材料选择 (7)3. 柔性齿轮的设计方法与流程 (9)三、柔性齿轮运动特性的实验研究 (10)1. 实验设备与方案设计 (11)2. 实验原理与方法 (12)3. 实验结果与分析 (14)四、柔性齿轮振动抑制性能的实验研究 (14)1. 抑振算法的选择与实现 (16)2. 抑振装置的设计与搭建 (17)3. 实验方案与步骤 (18)4. 实验结果与分析 (19)五、柔性齿轮振动抑制性能的影响因素分析 (20)1. 齿轮结构参数对振动抑制性能的影响 (22)2. 振动频率对振动抑制性能的影响 (23)3. 刚度匹配对振动抑制性能的影响 (24)六、柔性齿轮振动抑制性能的优化设计 (25)1. 优化目标与方法 (27)2. 优化设计过程与结果 (28)3. 优化后柔性齿轮的性能测试与分析 (28)七、结论与展望 (30)1. 研究成果总结 (31)2. 存在问题与不足 (32)3. 后续研究方向与展望 (33)一、内容概述随着科学技术的不断发展,柔性齿轮作为一种具有广泛应用前景的传动装置,其运动特性及振动抑制性能的研究显得尤为重要。
本文通过实验方法,系统地研究了柔性齿轮的运动特性和振动抑制性能。
在柔性齿轮运动特性的研究中,我们重点关注了柔性齿轮的模态特性、频率响应和传动误差等方面。
通过实验获取了柔性齿轮在不同工况下的模态参数,分析了其固有频率和振型特点。
我们还对柔性齿轮的频率响应进行了测量,了解了其在不同激励下的动态性能表现。
我们还对柔性齿轮的传动误差进行了评估,找出了影响传动精度的主要因素。
在振动抑制性能的研究中,我们主要探讨了柔性齿轮的阻尼特性、减振结构和控制策略等方面的内容。
基于CFD的齿轮箱搅油损失仿真优化及实验研究齿轮传动机构作为电动汽车减速器的主要组成部分,其传动效率是衡量齿轮传动功耗损失的重要技术指标,随着现代机械装置传动效率的提高,齿轮的搅油损失逐渐成为了传动损失的重要组成部分。
齿轮转动过程中,润滑油与齿面接触产生摩擦阻力,进而导致了热量堆积,加快了齿轮磨损,缩短了齿轮使用寿命。
因此,为齿轮机构提供较为完善的润滑系统是非常必要的。
通过实验方法虽然可以直接对齿轮搅油损失影响因素进行分析,但是其成本较大,且不能详细的分析内部润滑油流动情况。
随着CFD仿真技术的成熟,采用数值仿真方法,可以弥补实验方法的不足。
本文基于国内外减速器等传动装置的研究背景,重点对齿轮传动过程中搅油损失影响因素进行仿真分析和实验验证,从而实现齿轮传动节能。
具体研究内容如下:(1)针对浸油润滑状态下的齿轮传动工况,建立齿轮箱内流域数值仿真模型。
应用该模型分析了不同转速和转向下齿轮外圆面、啮合区油液的飞溅变化,以及啮合点处的压力变化规律,并计算出齿轮阻力矩及搅油损失。
(2)结合流体力学π定理以及减速箱浸油润滑工况,以齿轮转速、半径以及润滑油粘性系数作为3个基本物理量纲,以及齿高、油液体积等6个派生量纲,结合数值仿真确定各量纲的待定系数,最后通过量纲分析法推导出外啮合齿轮副搅油损失理论公式。
(3)搭建减速箱实验台架,通过实验测量不同转速、转向、浸油深度以及润滑油粘度的齿轮搅油损失,并与齿轮副搅油损失计算模型进行对比,验证仿真分析的可靠性。
结合正交实验法对齿轮转速、浸油深度以及润滑油粘度对齿轮搅油损失影响比重进行分析,从而实现了齿轮传动的优化节能。
综上所示,本论文主要内容包括仿真分析、公式推导、实验验证以及参数优化。
通过分析齿轮转速、转向、浸油深度以及润滑油粘度对齿轮搅油损失的影响,从而实现对减速箱的优化设计。
基于模糊PID控制的永磁同步电动机控制系统设计与仿真分析1 引言永磁同步电机(PMSM)具有强耦合、参数时变、非线性等特点,且系统运行时受到不同程度的干扰,因此很难满足现代工业对高性能PMSM伺服系统的控制要求,尤其在精度、可靠性等性能上。
PMSM伺服系统是一个包含电流(转矩)环、速度环和位置环的三闭环控制系统。
采用矢量控制可改善系统内部电流(转矩)环的性能囝。
位置环和速度环实现系统的精确定位和对输入信号的快速跟踪。
速度控制器研究较多的控制策略有神经网络控制、滑模变结构控制、多种控制策略的复合控制等。
其算法都比较复杂,不利于电机数字化控制的实时性。
模糊控制采用以系统误差和误差变化为输入语句变量的二维模糊控制器结构形式,能够处理受控对象的不确定特性,具有实现方法简易、运算快速、实时性强等特点,系统能够获得良好的动态特性.但静态特性不能令人满意。
将模糊控制与PID控制相结合,设计模糊PID速度控制器,使系统既具有模糊控制灵活而适应性强的优点,又具有PID控制精度高的特点。
系统仿真及实验结果表明该控制策略具有良好的控制效果。
2 模糊PID控制器的设计2.1 控制器结构设计应用于速度环的模糊PID控制器采用广泛应用的二维模糊控制器,其一个输入变量是电机输出转速反馈值与给定转速间的误差E。
另一个输入变量是转速误差的变化率EC,即单位时间内转速误差的差值。
输出端设计为多输出,由于模糊PID控制器是在传统PID 控制的基础上加入了模糊控制,故只需在传统PID调节参数的基础上稍作修正即可,于是取传统PID控制器的3个参数P,I,D的修正值△Kp,△Ki;△Kd作为模糊控制器的输出。
2.2 确定隶属度函数记E,EC,△Kp,△Ki,△Kd的模糊变量为e,ec,kp,ki,kdo如模糊子集为(NB(负大),NM(负中),NS(负小),ZO(零),PS(正小),PM(正中),PB(正大)}。
选择输入量e,ec隶属度函数为高斯型。
基于模糊Smith控制的时滞系统设计与仿真摘要今天的工业生产在面对日益复杂的控制问题伴随着科技的进步状态,时间延迟,但是,很难避免工业控制的内在特征, 它不仅降低了系统的稳定性,也严重影响工业生产过程的质量控制,模糊控制作为一种基于模型参数的控制方法的研究成为了一个热点。
MATLAB在本文中结合了模糊控制和Smith控制,即模糊—Smith控制,不仅补偿滞后的缺点,也较强的适应控制对象的参数变化,具有一定的实际应用前景。
大时滞工业生产过程中经常运用于冶金、炼油、化工、电力、航空航天和经济管理中,还在大时滞工业过程估计控制系统以传统的史密斯为主, Smith预测控制是延时控制最有效的控制方法,它不仅克服控制系统中的各类缺陷,也可以使模糊控制和Smith预估器相结合,对于模糊控制应用于纯时滞系统在某种程度上是更成功的。
关键词:模糊控制; Smith控制; 时滞系统; MATLAB。
Based on the fuzzy - Smith control design and simulation oftime-delay systemsAbstractIn today's industrial production in the face of increasingly complex control problems along with the progress of science and technology condition, time delay, but it is hard to avoid the inherent characteristics of the industrial control, it not only reduces the system's stability andserious influence the industrial process control 's quality , fuzzy control, as a kind of control method based on model parameters become a hot spot of research. MATLAB in this paper combines fuzzy control and control become blurred - Smith. Smith control, not only compensate the disadvantage of lag, and to adapt to changes in the parameters of the controlled object, has a certain practical application prospect. Large time delay is often used in the process of industrial chemical, oil refining, metallurgy, electric power, aerospace, economic management and traffic system. Also in large industrial processes with time-delay estimation control system is given priority to with the traditional Smith, Smith predictive control is the most classical and most mature time delay control method, it not only make the set value input zero steady-state error and external disturbance, also can be combined with fuzzy control and Smith estimatesKey words: Fuzzy Control; Matlab; Delays; Smith control 目录摘要ⅠAbstract Ⅱ目录Ⅲ1引言11.1选题的背景及意义12绪论22.1 研究的内容及方法22.2研究的可行性22.3研究的目标及意义43模糊-Smith控制43.1时滞53.2模糊控制53.3 Smith控制63.4史密斯(Smith)预估器73.5模糊-Smith控制94 MATLAB软件仿真134.1 MATLAB与其特点134.2模糊-Smith控制的MATLAB仿真134.3仿真结果分析185结论19参考文献19致谢201引言1.1选题的背景及意义对于今天的工业生产在面对日益复杂的控制问题伴随着科技的进步状态,时间延迟,但是,很难避免工业控制的内在特征, 它不仅降低了系统的稳定性,也严重影响工业生产过程的质量控制,模糊控制作为一种基于模型参数的控制方法的研究成为了一个热点。
三自由度齿轮转子轴承系统的间隙非线性模型及方程一个典型的单级齿轮转子一轴承传动系统包括箱体、滚子轴承、支撑轴、齿轮副等零部件,如图2.1所示。
在进行传动分析时,为了使问题简化,箱体被看作是固定的;忽略原动部件惯性载荷的影响,即假设这样的惯性元件是通过柔性的联轴器与齿轮箱联接。
同时假设系统关于齿轮平面对称,故系统的轴向运动可以忽略不计。
该系统的运动微分方程可写成如一般的形式为[]{''()}[]{'()}[]{(())}{()}M x t C x t K f x t F t ++= (2.1)式中[]M 表示时不变的质量矩阵,()x t 表示位移向量[]C 为时不变的阻尼矩阵,即不考虑轮齿分离及时变的啮合特性对啮合阻尼的影响。
刚度矩阵[]K 为周期时变矩阵:[()][(2/)]h K t K t πω=+,h ω为齿轮啮合的基频。
(())f x t 为间隙非线性函数,本文用分段函数如图2所示(包含轴承径向间隙和齿侧间隙),{()}F t 为系统激励力向量。
1. 数学模型的建立:使用集中质量法建立如图1.2所示的单级齿轮传动的动力学模型,认为系统由只有弹性而无质量的弹簧和只有质量而无弹性的质量块组成,则式((1.1)表示的多自由度系统的可简化形式为三自由度非线性齿轮传动系统模型,包括齿轮惯量1I 和2I ,齿轮质量1m 和2m ,基圆直径1d 和2d ,如图3所示。
齿轮啮合由非线性位移函数h f 和时变刚度h k ,线性粘性阻尼h C 描述。
轴承和支撑轴的模型则由等效的阻尼元件和非线性刚度元件表述。
阻尼元件具有线性粘性阻尼系数1C 和2C ,非线性刚度元件由近似分段线性的间隙型非线性力一位移函数1f 和2f ,以及相应的刚度参数1k 和2k 确定。
同时考虑因输入扭矩波动引起的低频外激励和静态传动误差()e t 导致的高频内部激励,忽略输出扭矩的波动,即认为:111()()m a T t T T t =+ 22()m T t T =式中:1()T t 为输入扭矩1m T 为输入扭矩均值1()a T t 为输入扭矩变化部分2m T 为输出扭矩均值并假设在支承上均作用有外径向预载力1F 和2F 。
名词解释主动隔振主动隔振是一种机械振动控制技术,旨在减少或消除机械系统中的振动干扰。
它通过采取一系列措施来抑制或隔离振动源,从而实现对机械系统的振动控制。
主动隔振技术广泛应用于航空航天、汽车、船舶、建筑、电子设备等领域,对提高机械系统的性能和可靠性具有重要意义。
在传统的机械系统中,振动是不可避免的。
机械系统中的振动源可以是内部的,如发动机、电机、齿轮传动等;也可以是外部的,如道路不平整、风力等。
这些振动源会导致机械系统产生噪音、疲劳、损坏等问题,降低系统的性能和寿命。
主动隔振技术通过采用先进的传感器、执行器和控制算法,实时监测和响应机械系统的振动状态,并采取相应的控制策略来减少或消除振动。
具体来说,主动隔振技术包括以下几个方面:1. 振动传感器:主动隔振系统需要安装振动传感器来实时监测机械系统的振动状态。
传感器可以采集机械系统的振动信号,并将其转换为电信号进行处理。
2. 控制算法:主动隔振系统需要采用先进的控制算法来分析振动信号,并根据分析结果制定相应的控制策略。
常用的控制算法包括PID控制、自适应控制、模糊控制等。
3. 执行器:主动隔振系统需要安装执行器来实施控制策略。
执行器可以根据控制算法的输出信号,对机械系统施加力或扭矩,从而减少或消除振动。
4. 控制系统:主动隔振系统需要一个完善的控制系统来实现传感器、执行器和控制算法之间的协调工作。
控制系统可以采用硬件控制器或软件控制器,实现对主动隔振系统的实时监测和控制。
主动隔振技术的应用可以大大改善机械系统的性能和可靠性。
首先,主动隔振技术可以有效减少机械系统的振动干扰,提高系统的运行稳定性和精度。
其次,主动隔振技术可以降低机械系统的噪音水平,改善工作环境和人员健康。
此外,主动隔振技术还可以延长机械系统的使用寿命,减少维修和更换成本。
在航空航天领域,主动隔振技术被广泛应用于飞机、火箭等载具中。
通过减少飞行器在起飞、着陆和飞行过程中产生的振动,可以提高飞行器的稳定性和安全性。
基于传动机理分析的行星齿轮箱振动信号仿真及其故障诊断一、本文概述随着现代工业技术的飞速发展,行星齿轮箱作为机械设备中的关键部件,其性能的稳定性和可靠性对于设备的整体运行具有至关重要的作用。
然而,由于行星齿轮箱结构的复杂性和工作环境的恶劣性,其故障诊断一直是机械故障诊断领域的难点和热点。
为了更深入地理解行星齿轮箱的故障机理,提高故障诊断的准确性和效率,本文开展了基于传动机理分析的行星齿轮箱振动信号仿真及其故障诊断研究。
本文首先介绍了行星齿轮箱的基本结构和传动原理,分析了其振动信号的特点和产生机理。
在此基础上,建立了行星齿轮箱的振动信号仿真模型,通过仿真模拟,深入探讨了不同故障类型对振动信号的影响规律。
结合现代信号处理和机器学习技术,提出了一种基于振动信号分析的行星齿轮箱故障诊断方法,实现了对故障类型的准确识别和故障程度的定量评估。
本文的研究不仅有助于深化对行星齿轮箱故障机理的理解,也为实际工程中的故障诊断提供了有力的理论支持和技术手段。
通过振动信号仿真和故障诊断方法的结合,可以有效提高行星齿轮箱故障诊断的准确性和效率,为保障设备的安全稳定运行提供有力保障。
二、行星齿轮箱传动机理分析行星齿轮箱是一种广泛应用于各种工业设备中的复杂传动机构,其独特的传动方式和结构特点使得其振动信号具有独特的特征。
为了准确模拟行星齿轮箱的振动信号并进行故障诊断,首先需要深入理解其传动机理。
行星齿轮箱的核心部件是行星轮系,它由一个中心太阳轮、多个行星轮以及一个内齿圈组成。
行星轮通过行星架与太阳轮和内齿圈同时啮合,形成了一种独特的传动方式。
在行星齿轮箱工作过程中,由于齿轮之间的啮合作用,会产生动态载荷和振动。
太阳轮作为动力输入端,其旋转驱动行星轮进行公转和自转。
行星轮在公转过程中,通过与内齿圈的啮合,将动力传递到输出端。
这种传动方式使得行星齿轮箱具有较高的传动比和紧凑的结构,但同时也带来了振动和噪声问题。
在行星齿轮箱的传动机理中,齿轮啮合是一个关键因素。
在控制工程中,PID控制和模糊控制都是常见的控制方法。
每种方法都有其优点和局限性。
在一些特定的应用中,我们可能需要结合多种控制方法来实现更好的控制效果。
基于模糊PID和滑膜控制的复合控制方法就是其中一种。
1. 概述模糊PID和滑膜控制模糊PID控制是PID控制和模糊控制相结合的一种控制方法。
它在传统的PID控制基础上,增加了模糊控制的思想,使控制系统更具智能化和鲁棒性。
而滑膜控制是一种基于理想转移函数的控制方法,通过引入滑膜面的概念,能够有效地克服系统参数变化和外部扰动的影响。
2. 模糊PID和滑膜控制的优势通过将模糊控制和滑膜控制相结合,可以充分发挥两种控制方法的优势。
模糊控制能够处理系统非线性和不确定性问题,而滑膜控制能够应对系统的参数变化和外部扰动。
基于模糊PID和滑膜控制的复合控制方法能够在复杂的控制环境中取得良好的控制效果。
3. 深入探讨基于模糊PID和滑膜控制的复合控制方法在实际应用中,基于模糊PID和滑膜控制的复合控制方法可以通过以下步骤来实现:3.1 模糊PID控制器设计需要设计模糊PID控制器,通过模糊化和解模糊化的过程,将模糊控制引入到传统的PID控制中。
这样可以使控制系统具有更好的适应性和鲁棒性。
3.2 滑膜面设计接下来,设计滑膜面,通过引入滑膜面的概念,可以将系统的动态响应特性进行调整,以应对系统的参数变化和外部扰动。
3.3 复合控制器设计将模糊PID控制器和滑膜面结合起来,形成基于模糊PID和滑膜控制的复合控制器。
这样的控制器能够充分发挥模糊控制和滑膜控制的优势,实现更好的控制效果。
4. 个人观点和理解在我看来,基于模糊PID和滑膜控制的复合控制方法是一种在特定应用中非常实用的控制方式。
它能够充分发挥模糊控制和滑膜控制的优势,解决传统PID控制难以处理的复杂问题。
通过合理的设计和参数调节,可以使复合控制器在实际控制系统中取得良好的效果。
总结:基于模糊PID和滑膜控制的复合控制方法能够充分发挥模糊控制和滑膜控制的优势,解决传统PID控制难以处理的复杂问题。
齿轮传动系统动力学性能仿真和应用1.概述近年来,齿轮传动系统的NVH、疲劳耐久性能分析面临巨大的挑战。
这个挑战的关键之一是如何高效、精确的模拟齿轮啮合的非线性动力学系统。
想要精确地建立变速箱多体动力学参数化模型往往是一个比较繁琐的过程。
通常需要几天甚至更长时间来准备模型,然后模拟齿轮系统非线性动力学,以获得变速箱系统实际工作过程的载荷,并使用预测的载荷进行系统的NVH、耐久性性能分析,从而进一步优化这些属性。
如图1所示,本文介绍了变速箱多体动力学建模工具Transmission Builder,它改变了CAE工程师建立变速器多体动力学仿真模型的传统方式,同时显著提高了建模效率。
西门子工业软件的开发团队在齿轮传动系统数值方法方面投入了大量的精力,设计了一种新的求解模块,使用户能够根据齿轮接触的三个不同精细化级别(标准、解析和高级)进行动态多体动力学仿真。
图1 基于Simcenter 3D Transmission Builder的变速箱多体动力学建模流程2. 背景:变速箱多体动力学仿真齿轮传动系统的基本部件是齿轮,轴承、轴及壳体。
研究表明,变速箱传递误差大约70%的能量损失发生在齿轮系,30%在轴承上。
因此,变速箱分析的主要的挑战在于如何以高效的方式模拟齿轮啮合以及整个系统的动力学特性。
通常,我们可以以三种方式进行变速箱的机械系统动力学仿真。
第一种,齿轮传动系统行业软件,其主要是针对变速箱的设计,这类软件集成了大量齿轮行业标准和经验公式,可用于设计过程的校核,但具有一定的局限性,比如说不能用于齿轮系统瞬态分析、不能考虑系统级特性、不能与1D仿真软件联合仿真等等;第二种方式是采用非线性有限元工具。
这种方式一方面计算成本太高,另外对于齿轮的某一些特性难以模拟,比如说轮齿微观修型、齿轮啮合表面油膜等;第三种方式是采用通用多体动力学仿真工具(比如说Simcenter 3D Motion),所建立的多体模型除了常规的多体动力学建模元素以外,必须包含精确的齿轮啮合力算法,以准确捕捉到齿轮非线性动力学产生的载荷,从而进一步分析齿轮传动系统的NVH以及结构耐久性能。
《机电传动控制》笔记第一章引言1.1 研究背景与意义随着工业自动化技术的迅猛进步,机电传动控制作为机械工程与电气工程交叉领域的关键技术,已广泛应用于各类生产制造系统和设备中。
其对于提升生产效率、降低能源消耗以及确保产品质量具有显著的影响。
因此,对机电传动控制的基础理论、关键技术及其应用进行深入的研究,不仅有助于推动工业自动化的发展,还能为产业升级提供有力的技术支持。
机电传动控制课程作为测控技术与仪器、机械电子工程等专业的核心课程,其教学内容与实践环节对于培养学生的工程实践能力和创新思维至关重要。
在当前的教学过程中,仍存在一些问题,如课程内容的广泛性与深度难以平衡,理论教学与实践教学脱节等。
因此,需要结合新工科背景下工科教育的变革要求,对机电传动控制课程进行教学改革,以优化课程教学体系,提高教学效果[1]。
在工程教育认证的背景下,机电传动控制课程的教学也需要进行相应的改革,以满足专业认证的要求。
这不仅包括课程内容的优化和更新,还包括教学方法和手段的改进,以及对学生学习效果的有效评价。
通过这些改革措施,可以进一步提升机电传动控制课程的教学质量,为学生的全面发展提供有力的保障[2][3][4]。
随着数字化技术的不断发展,机电传动控制领域也面临着新的挑战和机遇。
数字化技术的应用不仅可以提高机电传动系统的控制精度和效率,还可以为系统的故障诊断和预防性维护提供新的解决方案。
因此,在机电传动控制课程的教学中,也需要注重数字化技术的融入,培养学生掌握现代控制技术的能力[5]。
对机电传动控制进行深入的研究和教学改革,不仅有助于推动工业自动化和产业升级,还能为培养高素质的工程技术人才提供有力的支持。
通过优化课程体系、改进教学方法和手段、融入数字化技术等措施,可以进一步提升机电传动控制课程的教学效果和质量,为学生的未来发展奠定坚实的基础。
1.2 国内外研究现状1.2.1 国外研究现状在机电传动控制领域,国外的研究起步时间较早,技术积淀深厚,因此其技术成熟度相对较高。
摘要随着工业自动化水平的迅速提高,计算机广泛的应用于工业领域中。
本课题研究的是齿轮齿条传动三维模型及控制系统设计,包括齿轮齿条传动的三维建模和运动仿真、三菱PLC控制程序的设计和组态软件的监控。
本课题选用UG软件对齿轮齿条传动系统的进行三维建模,进行三维运动仿真,同时生成运动画面的视频,并且实现了运动仿真分析其运功情况,齿轮齿条传动具有机构结构简单,传动效率高,齿轮传动平稳,传动比精确,工作可靠、效率高、寿命长,使用的功率、速度和尺寸范围大等特点;运用三菱PLC来实现对齿轮齿条传动系统的控控制;运用组态软件实现监控,通过动态直观的现场状态显示界面,方便快捷的对系统运行状态进行实时监控,同时完成变量报警、操作记录、趋势曲线等监视功能,并生成历史数据文件。
关键词:齿轮齿条、UG、运动仿真、三菱PLC、组态软件AbstractWith the rapid increasing standard of automation, computers are widely used in the industrial field. This project studies on rack and pinion mechanical systems and control systems’ designing. It includs rack and pinion’s 3D modeling and motion simulation; MITSUBISHI PLC control program design and configuration of software’s monitoring. This project using UG to proceed three-dimensional modeling, 3D motion simulation and generating motion pictures of gear and rack. Moreover, achieve analyzing movement states by using motion simulation. The mechanical structure of rack and pinion transmission system has the characteristics which has simple structure, high transmission efficiency, smooth gear transmission, exact transmission ratio, reliable, high efficiency, long life-span and can adapt to a large range of power, velocity and size. Realize the control of rack and pinion transmission system by using MITSUBISHI PLC. Put to effect of monitoring by using configuration software. And proceed real-time monitoring system running state conveniently through the dynamic and direct-viewing locale status display interface. At the meantime, accomplished the monitoring function such as variable warning, operation recording, trend curve making. And can generate historical file of data.Keyword: rack and pinion, UG, Motion Simulation, MITSUBISHI PLC, configuration software目录第一章前言 (1)1.1选题背景 (1)1.2研究意义 (2)1.3本文的研究内容和解决的问题 (3)第二章齿轮齿条传动系统的三维建模 (5)2.1齿轮齿条的建模和装配 (6)2.1.1齿轮和齿条的建模 (6)2.1.2齿轮齿条的装配 (8)2.2齿轮齿条的运动仿真 (10)2.3齿轮齿条传动系统的校核 (13)2.3.1齿轮齿条传动系统的基本结构 (13)2.3.2齿轮齿条传动系统的选择 (14)2.3.3按齿面接触强度校核 (15)2.3.4按齿根弯曲强度强度校核 (17)2.4电动机的选择和设计 (19)第三章控制系统设计 (21)3.1FX2N型PLC简介 (21)3.2程序设计 (22)第四章组态软件监控 (24)4.1组态王的软件介绍 (24)4.2组态王监控的实现 (24)4.3创建新工程 (25)4.4定义硬件设备和添加工程变量 (26)4.5制作图形画面并定义动画连接 (30)4.5.1新建画面 (30)4.5.2制作报警系统 (33)4.5.3制作实时趋势曲线和历史趋势曲线 (35)4.5.4制作日历控件 (37)4.5.4制作主监控画面 (39)4.5.5运行系统 (40)第五章结论与展望 (41)5.1结论 (41)5.2技术经济性分析 (41)5.3进一步研究的展望 (41)参考文献 (42)致谢 (44)附录 (45)声明 (54)第一章前言1.1选题背景齿轮齿条机构结构简单,传动效率高,广泛应用于矿山机械、工程机械和汽车制造等行业。