教案25非参数检验
- 格式:docx
- 大小:22.73 KB
- 文档页数:4
常用的非参数检验(NonparametricTests)总结非参数检验(Nonparametric tests)是统计分析方法的重要组成部分,它与参数检验共同构成统计推断的基本内容。
参数检验是在总体分布形式已知的情况下,对总体分布的参数如均值、方差等进行推断的方法。
但是,在数据分析过程中,由于种种原因,人们往往无法对总体分布形态作简单假定,此时参数检验的方法就不再适用了。
非参数检验正是一类基于这种考虑,在总体方差未知或知道甚少的情况下,利用样本数据对总体分布形态等进行推断的方法。
由于非参数检验方法在推断过程中不涉及有关总体分布的参数,因而得名为“非参数”检验。
•两独立样本的非参数检验两独立样本的非参数检验是在对总体分布不甚了解的情况下,通过对两组独立样本的分析来推断样本来自的两个总体的分布等是否存在显著差异的方法。
独立样本是指在一个总体中随机抽样对在另一个总体中随机抽样没有影响的情况下所获得的样本。
SPSS中提供了多种两独立样本的非参数检验方法,其中包括曼-惠特尼U检验、K-S检验、W-W游程检验、极端反应检验等。
某工厂用甲乙两种不同的工艺生产同一种产品。
如果希望检验两种工艺下产品的使用是否存在显著差异,可从两种工艺生产出的产品中随机抽样,得到各自的使用寿命数据。
甲工艺:675 682 692 679 669 661 693乙工艺:662 649 672 663 650 651 646 652(1)曼-惠特尼U检验两独立样本的曼-惠特尼U检验可用于对两总体分布的比例判断。
其原假设:两组独立样本来自的两总体分布无显著差异。
曼-惠特尼U 检验通过对两组样本平均秩的研究来实现判断。
秩简单说就是变量值排序的名次,可以将数据按升序排列,每个变量值都会有一个在整个变量值序列中的位置或名次,这个位置或名次就是变量值的秩。
(2)K-S检验K-S检验不仅能够检验单个总体是否服从某一理论分布,还能够检验两总体分布是否存在显著差异。
⾮参数检验⽅法⾮参数检验的推断⽅法不涉及样本所属总体的分布形式,也不会使⽤均值、⽅差等统计量,⾮参数检验是通过研究样本数据的顺序和分布的性质来构成理论基础,下⾯介绍⼀些⾮参数检验经常使⽤的样本数据信息:1.顺序:将样本数据按照升序排列,可以得到X1≤X2≤X3≤Xi....≤Xn,其中Xi为第i个顺序量。
2.秩将样本数据按照升序排列,可以得到X1≤X2≤X3≤Xi....≤Xn,Ri为Xi在这⼀列数据中的位置,称为秩,R1,R2,R3...Rn为样本数据的秩统计量3.结如果样本数据中存在相同的值,那么在排序时就会出现秩相同的情况,这样的情况称为结,结的取值是对应的秩的均值。
注意是秩的均值⽽不是数据本⾝的均值。
⾮参数检验的统计理论都是根据上述概念计算⽽来,此外,和参数检验⼀样,当我们得到分析数据的时候,最先做的⼯作还是先通过图表和⼀些描述性统计量对数据整体进⾏探索性分析,掌握数据⼤致分布情况、有⽆极端值等,为后续正确选择分析⽅法打下基础。
================================================ ====⾮参数检验主要应⽤在以下场合:1.不满⾜参数检验的条件,且⽆适当的变换⽅法进⾏变换2.分布类型⽆法获知的⼩样本数据3.⼀端或两端存在不确定值,如>10004.有序分类变量求各等级之间的强度差别更进⼀步来讲,⾮参数检验可以做以下分析:⼀、单样本总体分布检验⼆、两独⽴样本差异性检验三、两配对样本差异性检验四、多个独⽴样本差异性检验五、多个相关样本差异性检验可以看出,以上应⽤除了第⼀点之外,其他都有对应的参数检验⽅法,这就要根据样本数据的实际情况来进⾏选择了:适合使⽤参数检验的优先使⽤参数检验,否则使⽤⾮参数检验。
================================================ =下⾯我们分别介绍⼀下上述应⽤对应的⾮参数检验⽅法⼀、单样本总体分布检验单样本总体分布检验主要⽤来检验某样本所在总体分布和某⼀理论分布是否存在显著差异,主要涉及的⾮参数检验⽅法有:1.卡⽅检验卡⽅检验可以检验样本数据是否符合某⼀期望分布或理论分布,这在卡⽅检验中有所介绍,在此不再多说2.⼆项分布检验⼆项分布检验主要⽤来检验样本数据是否符合某个指定的⼆项分布,该检验只适合⼆分类变量样本。
非参数检验-知识点思政案例非参数检验,这可是统计学里的一块“硬骨头”呢!不过别怕,咱们一起来把它“啃”下来。
咱先来说说啥是非参数检验。
想象一下,你手里有一堆数据,这些数据可不是那种规规矩矩、整整齐齐的,它们有点“调皮捣蛋”,不符合常见的分布规律,比如正态分布。
这时候,参数检验可能就不太好使了,就得请出非参数检验这位“大神”。
比如说,你想比较两个班级学生的成绩,但是这些成绩的分布乱七八糟,参数检验在这时候就傻眼啦,非参数检验却能大显身手。
它不依赖于那些严格的分布假设,就像一个不拘小节的大侠,能应对各种复杂的数据情况。
那非参数检验都有哪些招式呢?比如说,有秩和检验,这就像是给数据排个队,然后根据它们的顺序来判断差异。
还有符号检验,就好像给数据贴上正负的标签,通过标签的数量来看有没有不同。
再来讲个思政的例子。
就好比在一个团队合作的项目中,大家的贡献不能简单地用一些明确的指标来衡量。
这时候,非参数检验的思路就能派上用场啦。
不能只看表面的数字,要综合各种因素,去发现那些隐藏在背后的价值和努力。
比如说,有的同学虽然表面上完成的任务数量不多,但是他们提出的创新想法可能对整个项目有着至关重要的作用。
这就像非参数检验中那些看似不起眼的数据,其实蕴含着重要的信息。
再比如说,在社会发展中,不能仅仅以经济增长的数字来判断一个地区的发展水平,还要考虑到环境、文化、社会公平等多方面的因素。
这不也是一种非参数检验的思维吗?咱们学习非参数检验,可不能光是死记硬背那些公式和方法,得真正理解它背后的思想。
就像练武,招式是次要的,内功心法才是关键。
非参数检验就像是一把灵活的钥匙,能打开那些常规方法打不开的锁。
它教会我们要全面、灵活地看待问题,不被表面的现象所迷惑。
总之,非参数检验虽然有点复杂,但只要咱们用心去学,去体会,就能掌握它的精髓,用它来解决更多实际的问题。
相信大家都能在这个知识的海洋里畅游,收获满满的智慧!。
非参数检验方法一、什么是非参数检验非参数检验(Nonparameteric Tests)是指检验假设(比如均值、方差、分布类型)不依赖样本参数的方法,也可以称为不参数检验,将数据的描述性统计量和判别量作为假设检验的基本工具,而不主张假设服从某个具体的概率分布。
二、非参数检验的优点1、可以使用描述性统计量作为假设检验的基本工具,而不主张数据服从某个具体的概率分布,使得检验更加简单。
2、非参数检验的统计量倪比较有针对性,无论样本量大小,无论是否假定样本服从某个具体概率分布,它都能比较有效计算统计量的有效性、准确性。
3、非参数检验的抽样复杂度较低,当数据量较小时,可以获得较精确的结果。
4、非参数检验可以应用于连续变量或离散变量检验假设,使得非参数检验成为一种常见的统计检验方法。
三、常见的非参数检验方法1、Wilcoxon符号秩检验:Wilcoxon符号秩检验是用于比较两组数据之间不同水平上的秩和的检验,它的统计量是组间的秩和比,假设多个样本的总体服从同一分布,可以用来检验两组数据间的均值或中位数的差异性,即表明两个样本的分布是否有差异。
2、Kruskal-Wallis H检验:Kruskal-Wallis H检验是一种无序秩检验,它能检验总体中多组数据间的均值或中位数的比较,即用来检验多个样本构成的总体是否服从同一分布,要求多组样本的体积相等。
3、Friedman检验:Friedman检验是一种用于多个样本比较的非参数检验,它的检验统计量是秩求和检验,可以检验多个样本构成的总体是否服从相同的分布,从而比较多个样本之间的均值,中位数或众数相对应的所有统计量。
4、Spearman秩相关系数:Spearman秩相关系数是一种测量两个变量相关性程度的方法,它不要求变量服从某种分布,仅要求变量是分类变量或连续变量。
5、Cochran Q检验:Cochran Q检验是变量若干观测值服从同一分布的依赖性检验,可以检验多组数据的差异性是否具有统计学意义,一般用于比较不同实验组间的得分或响应相对于对照组的得分或响应的差异性。
非参数检验参数检验方法,尤其是对计量资料,需要对研究的总体作一些比较严格的假定。
例如t检验法要求总体分布是正态分布等。
在实际工作中的许多资料不符合这种要求,因此以上的参数检验方法的使用受到了限制。
近代统计学家发明了对总体分布不必作限制性假定的检验技术,这种技术称为非参数检验(Nonparametric tests)。
非参数检验法是指在总体不服从正态分布或分布情况不明时,用来检验数据资料是否来自相同总体假设的一类检验方法。
由于它的假定前堤比参数检验方法少的多,而且在收集资料方面也十分简单,例如可以用“等级”或“符号”来评定观察的结果等,故这类方法在实际中有着广泛的应用。
第一节两相关样本的显著性检验1.1 符号检验法在配对实验中,将每对(或同一)实验单位(或先后)给予两种不同的处理,比较两种处理的效果有无差异或比较一组实验单位处理先后有无不同。
凡配对计量资料不服从正态分布要求时,可选用符号检验法(Sign test)。
例题1 有x,y 12对数据,它们的数值及相差符号由表1给出。
表1 本例的数据资料序号 1 2 3 4 5 6 7 8 9 10 11 12X 3 1 6 3 2 1 4 7 3 8 4 5Y 2 4 4 7 2 2 2 5 3 6 2 2 问这两个序列数值的差异是否具有显著性(α=0.05)?1.2 符号秩和检验法符号检验中只考虑配对数据x i-y i的符号,计算十分简便,但因没有考虑到x i-y i 差值的大小,因此对资料的利用不够充分,检验的灵敏度也不够好。
符号秩和检验法是上述方法的改进,由于关注到了差值的大小,故效果较好。
凡配对计量或计数的资料,可选用符号秩和检验法(Wilcoxon法)。
例题2 为研究长跑运动对增强普通高校学生的心功能效果,对某学院15名男生进行实验,经过5个月的长跑锻炼后观察其晨脉变化情况。
锻炼前后的晨脉数据如下。
问锻炼前后晨脉间的差异有无显著性(α=0.05)?表2 长跑锻炼前后的晨脉数、差值及其秩次序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 前70 76 56 63 63 56 58 60 65 65 75 66 56 59 70 后46 54 60 64 48 55 54 45 51 48 56 48 64 50 54 差值22 22 -4 -1 15 1 4 15 14 17 19 18 -8 9 16 秩次14.5 14.5 –3.5 –1.5 8.5 1.5 3.5 8.5 7 11 13 12 -5 6 101.3 用spss对两相关样本进行非参数检验spss软件包的Nonparametric Tests过程为两相关样本通常提供了3种非参数检验方法,它们是:Sign 检验,用于对两相关样本的总体做符号检验。
非参数检验非参数检验是一种统计方法,用于比较两组或多组数据的差异或关联性,它并不依赖于数据的分布假设。
相比于参数检验,非参数检验通常更为灵活,可应用于各种数据类型和样本量,尤其在数据不满足正态分布的情况下表现优势。
本文旨在介绍非参数检验的基本原理、应用领域以及常见方法。
首先,非参数检验的基本原理是依赖于样本中的秩次,即将原始数据转化为秩次数据进行统计分析。
秩次是数据在全体中的相对位置,将数据转化为秩次可以消除异常值对统计结果的影响,并使数据的分布不再成为限制因素。
非参数检验的应用领域广泛,包括但不限于以下几个方面。
一、假设检验非参数检验可用于假设检验,比如检验两组样本的中位数是否存在差异。
常见的方法有Wilcoxon符号秩检验、Mann-Whitney U检验等。
在实际应用中,如果数据的分布无法满足正态分布假设,非参数检验则是一种理想的选择。
二、相关性分析非参数检验可用于判断两个变量之间的关联性。
常见的方法有Spearman秩相关系数检验、Kendall秩相关系数检验等。
这些方法的核心思想是将原始数据转化为秩次数据,通过秩次数据之间的比较来判断两个变量之间是否存在显著相关。
三、分组比较非参数检验可用于比较多个样本之间的差异。
常见的方法有Kruskal-Wallis检验、Friedman检验等。
这些方法可用于比较三个以上的样本组之间的差异,而不依赖于数据的分布假设。
在实际应用中,非参数检验需要注意以下几个问题。
一、样本容量非参数检验对样本容量的要求相对较低,适用于小样本和大样本。
然而,在样本容量较小的情况下,非参数检验可能会产生较大的误差,因此应根据实际情况选择合适的方法。
二、数据类型非参数检验可应用于各种数据类型,包括连续型数据和离散型数据。
但对于有序分类数据、定序数据和名义数据,非参数检验相较于参数检验有更好的适用性。
三、分布假设非参数检验不需要对数据的分布做出假设,这使得它更加灵活。
但是,如果数据满足正态分布假设,参数检验也是一种较为有效的选择。
参数、非参数检验操作步骤参数检验非参数检验对象针对参数做的假设针对总体分布情况做的假设使用范围等距数据和比例数据(度量)定类数据和定序数据(名义和有序)分布正态分布正态、非正态分布内容Means检验单样本T检验独立样本T检验配对样本T检验卡方检验(均匀分布)二项分布检验(两个变量)游程检验(随机分布)K-S检验(正态分布检验)参数检验一Means过程Means过程用于统计分组变量的的基本统计量,这些基本统计量包括:均值(Mean)、标准差(Standard Deviation)、观察量数目(Number of Cases)、方差(Variance)。
1数据编辑窗口输入分析的数据2 分析→比较均值→均值因变量、自变量的选择可根据实际情况。
“选项”3 结果分析P<0.05,拒绝原假设,显著性强。
结果报告,分别给出暴雨前和暴雨后卵量的统计量:暴雨前有13个样本,平均数122.3846,标准差15.95065,方差254.423; 暴雨后有13个样本,平均数104.4615,标准差15.10858,方差228.269;总体26个样本,平均数113.4231,标准差17.75426,方差315.214。
方差分析表,共有六列,第一列说明方差的来源,Between Groups是组间的,Within Groups 组内的,Total 总的。
第二列为平方和,其大小说明了各方差来源作用的大小。
第三列为自由度。
第四列为均方,即平方和除以自由度。
第五列F值是F统计量的值,其计算公式为模型均方除以误差均方,用来检验模型的显著性。
第六列是F统计量的显著值,由于这里的显著值0.007小于0.05,所以模型是显著的,降雨对卵量有显著影响。
二单一样本的T检验T检验是检验单个变量的均值与指定的检验值之间是否存在显著差异。
如:研究人员可能想知道一组学生的IQ平均分与100分的差异。
1 分析→比较均值→单一样本的T检验检验值中输入用于比较的均值(一般题目中会提供)。
非参数检验操作方法
非参数检验操作方法是一种统计方法,用于分析两个或多个样本之间的差异,而不需要对总体的参数做出假设。
非参数检验方法主要包括:
1. Wilcoxon符号秩检验:用于比较两个相关样本的差异,不需要假设数据服从正态分布。
2. Mann-Whitney U检验:用于比较两个独立样本的差异,也不需要假设数据服从正态分布。
3. Kruskal-Wallis检验:用于比较三个或更多独立样本的差异,同样不需要假设数据服从正态分布。
4. Friedman检验:用于比较三个或更多相关样本的差异,同样不需要假设数据服从正态分布。
5. McNemar检验:用于比较两个配对样本之间的差异,可以用于分析二分类变量。
这些方法的共同特点是不需要对数据的分布做出具体的假设,更加灵活地适用于各种类型的数据。
这些非参数检验方法通常通过对样本观测值的秩进行比较来确
定差异的统计显著性。
非参数检验的概念与过程导言在统计学中,非参数检验是一种不依赖于总体分布假设的方法,用于对数据进行统计推断。
与参数检验相比,非参数检验更加灵活,适用于各种数据类型和样本量的情况。
本文将介绍非参数检验的基本概念及其应用过程。
什么是非参数检验?在传统的统计推断中,我们通常需要假设数据的总体分布满足某种特定的参数化模型(如正态分布)。
然而,在实际应用中,我们并不总是了解或能够准确描述数据的分布。
此时,非参数检验成为一种有力的工具。
非参数检验不依赖于总体分布的假设,而是在不对数据做过多假设的情况下,通过对样本数据的排序、秩次转换等操作,进行统计推断。
非参数检验的应用场景非参数检验广泛应用于多个领域,特别是当数据不满足参数化分布假设时。
下面列举几个常见的应用场景:1. 样本量较小在样本量较小的情况下,参数化方法可能对数据分布的假设过于苛刻,导致结果不够准确。
而非参数检验则不对数据分布做过多要求,能够更灵活地处理小样本数据。
2. 数据不满足正态分布假设正态分布假设是很多参数检验方法的基础前提。
但在实际问题中,数据往往并不服从正态分布。
非参数检验不需要对数据做分布假设,因此更适用于处理不满足正态分布假设的数据。
3. 数据有序或等级性质对于无法直接度量或比较数值大小的数据,如排名数据、生活满意度评价等,非参数检验提供了一种适用的方法。
通过对数据的秩次进行比较,我们可以推断出两组数据是否存在显著差异。
非参数检验的基本过程非参数检验通常包括以下几个基本步骤:1. 建立原假设和备择假设在进行非参数检验之前,我们需要明确所研究的问题,并建立原假设(H0)和备择假设(H1)。
原假设通常是指两组样本没有显著差异,而备择假设则相反。
2. 选择合适的非参数检验方法根据实际问题和数据类型的特点,选择合适的非参数检验方法。
常用的非参数检验方法包括Wilcoxon秩和检验、Mann-Whitney U检验、Kruskal-Wallis单因素方差分析等。