最新数值分析模拟题2
- 格式:doc
- 大小:111.50 KB
- 文档页数:4
..数值分析试题集(试卷一)一( 10 分)已知 x 1* 1.3409 ,x 2* 1.0125 都是由四舍五入产生的近似值, 判断 x 1*x 2* 及 x 1* x 2*有几位有效数字。
二( 10 分)由下表求插值多项式x 01 2 y2 34 y1- 1三( 15 分)设 f ( x)C 4 [a,b] , H ( x )是满足下列条件的三次多项式H (a) f (a) , H (b) f (b) , H (c)f (c) , H (c) f (c)( a c b )求 f (x)H ( x) ,并证明之。
12四( 15 分)计算13 dx ,10 2。
x五( 15 分)在 [0,2]上取 x 0 0 , x 1 1 , x 22 ,用二种方法构造求积公式,并给出其公式的代数精度。
六( 10 分)证明改进的尢拉法的精度是 2 阶的。
七( 10 分)对模型 yy , 0 ,讨论改进的尢拉法的稳定性。
八( 15分)求方程 x 34x 2 7x 1 0 在 -1.2 附近的近似值,10 3。
-----------------------------------------------------------------------------------------------------------------------------(试卷二)一填空( 4*2 分)1 {k ( x) } k 0 是区间 [0, 1]上的权函数为( x) x 2 的最高项系数为 1 的正交多项式族,其中10 (x)1,则x0 ( x) dx ------------------- , 1 ( x) ------------------。
2 12 A,则 A1 4----------- ,( A) ----------------- 。
a 1 2 时, A 可作 LU 分解。
3 设 A,当 a 满足条件 ---------------- 14..4 设非线性方程 f ( x) (x33x23x1)( x 3) 0 ,其根 x1* 3 , x2*1,则求 x1* 的近似值时,二阶局部收敛的牛顿迭代公式是--------------------------- 。
一. 填空题(本大题共4小题,每小题4分,共16分)1.设有节点012,,x x x ,其对应的函数()y f x =的值分别为012,,y y y ,则二次拉格朗日插值基函数0()l x 为 。
2.设()2f x x =,则()f x 关于节点0120,1,3x x x ===的二阶向前差分为 。
3.设110111011A -⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦,233x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则1A = ,1x = 。
4. 1n +个节点的高斯求积公式的代数精确度为 。
二.简答题(本大题共3小题,每小题8分,共24分)1. 哪种线性方程组可用平方根法求解?为什么说平方根法计算稳定?2. 什么是不动点迭代法?()x ϕ满足什么条件才能保证不动点存在和不动点迭代序列收敛于()x ϕ的不动点?3. 设n 阶矩阵A 具有n 个特征值且满足123n λλλλ>≥≥≥,请简单说明求解矩阵A 的主特征值和特征向量的算法及流程。
三.求一个次数不高于3的多项式()3P x ,满足下列插值条件:i x 1 2 3 i y 2 4 12 i y '3并估计误差。
(10分)四.试用1,2,4n =的牛顿-科特斯求积公式计算定积分1011I dx x=+⎰。
(10分) 五.用Newton 法求()cos 0f x x x =-=的近似解。
(10分) 六.试用Doolittle 分解法求解方程组:12325610413191963630x x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦ (10分)七.请写出雅可比迭代法求解线性方程组123123123202324812231530x x x x x x x x x ++=⎧⎪++=⎨⎪-+=⎩ 的迭代格式,并判断其是否收敛?(10分)八.就初值问题0(0)y yy y λ'=⎧⎨=⎩考察欧拉显式格式的收敛性。
(10分)《数值分析》(A )卷标准答案(2009-2010-1)一. 填空题(每小题3分,共12分) 1. ()1200102()()()()x x x x l x x x x x --=--; 2.7;3. 3,8;4. 2n+1。
模 拟 试 卷(一)一、填空题(每小题3分,共30分)1.有3个不同节点的高斯求积公式的代数精度是 次的.2.设,,则=.,= ______.152210142-⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦A 342⎛⎫⎪=- ⎪ ⎪⎝⎭x ∞A1x3.已知y =f (x )的均差(差商),,,01214[,,]3f x x x =12315[,,] 3f x x x =23491[,,]15f x x x =, 那么均差=.0238[,,] 3f x x x =423[,,]f x x x 4.已知n =4时Newton -Cotes 求积公式的系数分别是:则,152,4516,907)4(2)4(1)4(0===C C C = .)4(3C 5.解初始值问题的改进的Euler 方法是阶方法;0(,)()y f x y y x y '=⎧⎨=⎩6.求解线性代数方程组的高斯—塞德尔迭代公式为,123123123530.13260.722 3.51x x x x x x x x x --=⎧⎪-++=⎨⎪++=⎩若取, 则.(0)(1,1,1)=- x(1)=x 7.求方程根的牛顿迭代格式是 .()x f x =8.是以整数点为节点的Lagrange 插值基函数,则01(), (),, ()n x x x 01, ,, ,n x x x =.()nk jk k x x =∑9.解方程组的简单迭代格式收敛的充要条件是.=Ax b (1)()k k +=+x Bx g 10.设,则的三次牛顿插值多项式为(-1)1,(0)0,(1)1,(2)5f f f f ====()f x ,其误差估计式为 .二、综合题(每题10分,共60分)1.求一次数不超过4次的多项式满足:,,()p x (1)15p =(1)20p '=(1)30p ''=,.(2)57p =(2)72p '=2.构造代数精度最高的形式为的求积公式,并求出10101()()(1)2xf x dx A f A f ≈+⎰其代数精度.3.用Newton 法求方程在区间内的根, 要求.2ln =-x x ) ,2(∞8110--<-kk k x x x 4.用最小二乘法求形如的经验公式拟合以下数据:2y a bx=+i x 19253038iy 19.032.349.073.35.用矩阵的直接三角分解法解方程组.⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡71735 30103421101002014321x x x x 6 试用数值积分法建立求解初值问题的如下数值求解公式0(,)(0)y f x y y y '=⎧⎨=⎩,1111(4)3n n n n n hy y f f f +-+-=+++其中.(,),1,,1i i i f f x y i n n n ==-+三、证明题(10分)设对任意的,函数的导数都存在且,对于满足x ()f x ()f x '0()m f x M '<≤≤的任意,迭代格式均收敛于的根.20Mλ<<λ1()k k k x x f x λ+=-()0f x =*x 参考答案一、填空题1.5; 2. 8, 9 ; 3.; 4. ; 5. 二; 911516456. , (0.02,0.22,0.1543)(1)()()123(1)(1)()213(1)(1)(1)312(330.1)/5(220.7)/6(12)*2/7k k k k k k k k k x x x x x x x x x ++++++⎧=++⎪=+-⎨⎪=--⎩7. ; 8. ; 9. ;1()1()k k k k k x f x x x f x +-=-'-j x ()1B ρ<10.32(4)11,()(1)(1)(2)/24(1,2)66x x x f x x x x ξξ+-+--∈-二、综合题1.差商表:11122151515575720204272152230781233234()1520(1)15(1)7(1)(1)(2)5432p x x x x x x x x x x =+-+-+-+--=++++其他方法:设233()1520(1)15(1)7(1)(1)()p x x x x x ax b =+-+-+-+-+令,,求出a 和b.(2)57p =(2)72p '=2.取,令公式准确成立,得:()1,f x x =,, , .0112A A +=011123A A +=013A =116A =时,公式左右;时,公式左, 公式右2()f x x =14=3()f x x =15=524=∴ 公式的代数精度.2=3.此方程在区间内只有一个根,而且在区间(2,4)内。
数值分析试卷及答案数值分析试卷一、选择题(共10题,每题2分,共计20分)1. 数值分析的研究内容主要包括以下哪几个方面?A. 数值计算方法B. 数值误差C. 数值软件D. 数学分析答:A、B、C2. 下列哪种方法不属于数值积分的基本方法?A. 插值法B. 微积分基本公式C. 数值微积分D. 数值积分公式答:A3. 数值积分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:D4. 数值微分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:A5. 数值微分的基本方法有哪几种?A. 前向差分B. 后向差分C. 中心差分D. 插值法答:A、B、C6. 用数值方法求解方程的基本方法有哪几种?A. 迭代法B. 曲线拟合法C. 插值法D. 数值积分法答:A、B、C7. 用迭代法求方程的根时,当迭代结果满足何条件时可停止迭代?A. 当迭代结果开始发散B. 当迭代结果接近真实解C. 当迭代次数超过一定阈值D. 当迭代结果在一定范围内波动答:B8. 下列哪种插值方法能够确保经过所有给定数据点?A. 拉格朗日插值B. 牛顿插值C. 三次样条插值D. 二次插值答:A、B、C9. 数值解线性方程组的基本方法有哪几种?A. 直接法B. 迭代法C. 插值法D. 拟合法答:A、B10. 下列哪种方程求解方法适用于非线性方程?A. 直接法B. 迭代法C. 插值法D. 曲线拟合法答:B二、填空题(共5题,每题4分,共计20分)1. 数值积分的基本公式是_________。
答:牛顿-科特斯公式2. 数值微分的基本公式是_________。
答:中心差分公式3. 数值积分的误差分为_________误差和_________误差。
答:截断、舍入4. 用插值法求解函数值时,通常采用_________插值。
答:拉格朗日5. 数值解线性方程组的常用迭代法有_________方法和_________方法。
数值分析考试题一、 填空题(每小题3分,共15分) 1.已知x =62.1341是由准确数a 经四舍五入得到的a 的近似值,试给出x 的绝对 误差界_______________.2. 已知矩阵1221A ⎡⎤=⎢⎥⎣⎦,则A 的奇异值为 _________. 3. 设x 和y 的相对误差均为0.001,则xy 的相对误差约为____________. 4. 424()53,,()_____.i i f x xx x i f x =+-∆=若=则5. 下面Matlab 程序所描述的数学表达式为________________________.a =[10,3,4,6];t=1/(x -1);n=length(a )();1:1:1*();y a n for k n y t y a k end==--=+二、(10分)设32()()f x x a =-。
(1)写出解()0f x =的Newton 迭代格式;(2)证明此迭代格式是线性收敛的。
三、 (15分)已知矛盾方程组Ax=b ,其中21110,1101211A b ⎡⎤-⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦-⎢⎥⎣⎦,(1)用Householder 方法求矩阵A 的正交分解,即A=QR 。
(2)用此正交分解求矛盾方程组Ax=b 的最小二乘解。
四、(15分) 给出数据点:012343961215i i x y =⎧⎨=⎩(1)用1234,,,x x x x 构造三次Newton 插值多项式3()N x ,并计算 1.5x =的近似值3(1.5)N 。
(2)用事后误差估计方法估计3(1.5)N 的误差。
五、(15分)(1)设012{(),(),()}ϕϕϕx x x 是定义于[-1,1]上关于权函数2()x x ρ=的首项系数为1的正交多项式组,若已知01()1,()x x x ϕϕ==,试求出2()x ϕ。
(2)利用正交多项式组012{(),(),()}ϕϕϕx x x ,求()f x x =在11[,]22-上的二次最佳平方逼近多项式。
数值分析模拟试题2解答一、 填空题(每小题3分,共15分)1. a = 3 , b = 3 , c = 0 .2.()nkk klx x ==∑ 3. 不稳定4. [1,2,3,4,5,6]0f =5. ,,,m n n m y Ax y A R x R y R ⨯=+∈∈∈ 二、 简单计算题(每小题6分,共18分) 三、 1解:2. 解:1121513A --⎡⎤=⎢⎥⎣⎦,1111()414cond A A A -==⨯=。
3. 解:令()1f x =,左=右=1; ()f x x =,左=右=1/2; 2()f x x =,左=右=1/2; 3()f x x =,左≠右; 故求积公式的代数精度为2。
三、(12分)解、设123(,,)A u u u =,123(0,2,0),(2,1,2),(0,2,1),T T T u u u ===11111(0,2,0),/(0,1,0),T T v u v v ε====2221121222(,)(2,0,2),/T T v u u u v v εεεε=-=-===,434tan ,cos ,sin 35510003/54/504/53/5x C S G θθθ=======⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦333113223121(,)(,)2(1,0,1)2T v u u u u εεεεε=--=-=-,333/1,0,1)T v v ε==-于是可得11212212322u u u εεε⎧⎪=⎪⎪=+⎨⎪⎪=++⎪⎩即21201/1/10001/01/001/A QR ⎡⎡⎤-⎢⎢==⎢⎥⎢⎢⎥⎢⎣⎦⎣四、(10分)解:依题目可设11H()()()x h x h x =+2'2111'121'2211'121()(),()2(),(1)1,23(1)2()0,()(23)()(1),()(32),(1)1()(1)h x x ax b h x x ax b ax h a b a b h a b a h x x x h x x x h x x x h h x x x λλλ=+=++=+=⎧=-⎧⎪⎨⎨==++=⎪⎩⎩∴=-+=-=-==∴=-令由解得令由从而222311()()()(23)(1)2H x h x h x x x x x x x =+=-++-=- 五、 (10分)解:将01(),()f x f x 分别于2x 处作Taylor 展开,可得2302221231222248()()2'()''()'''()(1)23!()()'()''()'''()(2)23!h h f x f x hf x f x f h h f x f x hf x f x f ξξ=-+-=-+-(1)-4*(2)除以2h 并化简,可得2(3)0122()4()3()'()()23f x f x f x h f x f h ξ-+≈+六、(10分)解:1111011(1111()()2222tf t f x dx f dt ---++===⎰⎰⎰⎰))23(1)2231()21()23(1)2231((622--++-+≈f f f π12220111111122(()())622422960.3600x dx ππ+-≈⨯++⨯=≈⎰故 七、(15分)解:设所求曲线为12()()()s x a x b x ϕϕ=+,其中212(),()x x x x ϕϕ==12000.2110.5,,,24 1.039 1.2Y ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥Φ=Φ==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦则法方程为1112121222(,)(,)(,)(,)(,)(,)Y a Y b ΦΦΦΦΦ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥ΦΦΦΦΦ⎣⎦⎣⎦⎣⎦即1436 6.1,369815.3a b ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦解之得0.61840.0711a b ⎡⎤⎡⎤=⎢⎥⎢⎥-⎣⎦⎣⎦于是所求曲线为2()0.61840.0711s x x x =-。
模拟试题一一、填空(每小题3分,共30分)1. 设2.40315x *=是真值 2.40194x =的近似值,则x *有 位有效数字。
2. 牛顿—柯特斯求积公式的系数和()0nn k k c =∑ 。
3 已知 12,()_________01A A ∞⎛⎫== ⎪⎝⎭则条件数cond 。
4 若332x -1x 1S(x)=1(x -1)+a(x -1)+b(x -1)+c 1x 220⎧≤≤⎪⎨≤≤⎪⎩是三次样条函数,则a =_______, b =______, c =______.5 以n + 1个 整 数 点k ( k =0,1,2,…,n ) 为 节 点 的 Lagrange 插 值 基函 数 为()k l x ( k =0,1,2,…,n ),则 nk k=0kl (x)=_____.∑6 序列{}n n=0y ∞满足递推关系:n n-1y =10y -1,(n =1,2,...),若0y 有误差, 这个计算过程____________稳定.7 若42f(x)=2x +x -3, 则f[1,2,3,4,5,6]=_____. 8 数值求积公式10311f(x)dx f()+f(1)434=⎰的代数精度是____________. 9.当x很大时,为防止损失有效数字,应该使 .10.已知A =⎢⎢⎢⎣⎡761 852 ⎥⎥⎥⎦⎤943,x =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111,则=1Ax . 二、(10分) 用最小二乘法确定一条经过原点的二次曲线,使之拟合下列数据x 0 1.0 2.0 3.0 y 0.2 0.5 1.0 1.2三、(10分)2011A =050,b =3,203-1⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭用迭代公式(1)()()()(0,1,2,)k k k x x Ax b k α+=+-=求解,Ax b =问取什么实数α可使迭代收敛,什么α可使迭代收敛最快。
四、(10)设()f x 四阶连续可导,0,0,1,2,,i x x ih i =+= 试建立如下数值微分公式''01212()2()()()f x f x f x f x h -+≈并推导该公式的截断误差。
模拟题2
一、填空题:(4×15分)
1.用
7
22
作为π近似值有 位有效数字。
2.设有三个近似数:a=2.31,b=1.93,c=2.24,它们都有三位有效数字。
计算
bc a p +=,=)(p ε 。
3.算法是数值稳定的是指: 。
4.已知352274.036.0sin ,333487.034.0sin ==,用线性插值计算=3367.0sin ,其截断误差≤)(1x R 。
5.x x f =)(在[0,1]上的伯恩斯坦多项式=),(2x f B 。
6.x e x f =)(在[0,1]上的最佳一次逼近多项式=)(1x P 。
7.设)(x P n 为Legendre 多项式,则=⎰-1
1)()(dx x P x P m n 。
8.用梯形公式计算=⎰-1
dx e x ,其误差≤)(f R 。
9.近似公式)1(3
1
)0(34)1(41)(1
1
f f f x f ++-≈
⎰-至少具有 次代数精度。
10.数值微分的中点公式=≈')()(a G a f ,其中
≤-')()(a G a f 。
11.设⎥⎦⎤⎢⎣⎡--=4 321
A ,则=1A , =2A 。
12.设⎥⎥⎥⎦
⎤⎢⎢
⎢⎣⎡
=312
1211
A ,则=1)(A c o n d ,当 时,矩阵A 是病态的。
13.给出一阶定常迭代法
⎩⎨⎧=+=+),,3,2,1(
)
()1()0( k f Bx x
x k k 初始向量
收敛的两个充分条件:① ;
② 。
14.设方程组
⎪⎩⎪
⎨⎧=++=++=-+3
221 122321
321321x x x x x x x x x ,用Jacobi 迭代法解此方程组,其迭代矩阵为 迭代 (选择“收敛”或“不收敛”填空)。
15.解一元非线性方程的迭代法的收敛性与 和 有关。
二、已知函数)(x f 是一个多项式,完成下面的差商表,并按差商表求)(x f 。
(10
分)
三、请把下面对“曲线拟合的最小二乘法”的描述补充完整。
(10分)
设)}(,),(),({10x x x span n ϕϕϕϕ =()(,),(),(10x x x n ϕϕϕ 是C[a ,b]上线性无关函数
族),)()()()(1100x a x a x a x S n n ϕϕϕ+++= 。
如果)(x f 只在一组离散点{x i ,i =0,1,2,…,m}
(n<m )上给定,)(i i x f y =,(i =0,1,2,…,m)。
到数据{(x i ,y i ),i =0,1,2,…,m}上关于权函数],[),(b a x x ∈ω的曲线拟合的最小二乘法即是在ϕ中找一函数)(*x S ,使得
设)()()()(*1*10*0
*x a x a x a x S n n ϕϕϕ+++= ,则T
n a a a a ),,,(**1*0* =为法方程
d Ga =
的解,其中T n a a a a ),,,(10 =,T n d d d d ),,,(10 =
⎥⎥⎥⎥
⎦
⎤⎢⎢⎢
⎢⎣⎡= G =),(j i ϕϕ
==),(k k f d ϕ
四、用Gauss 消去法解线性方程组:
⎪⎩⎪
⎨⎧=+-=++--=++3
103220241225321
321321x x x x x x x x x 解题过程要体现其算法,同时写出其系数矩阵的LU 分解。
(10分)
五、写出用切线法解方程
01=-x xe
的迭代公式,并求其在根x *的邻域内的收敛阶。
(10分)。