湖南省益阳市国基实验学校_八年级数学上学期第一次月考试卷(含解析)新人教版【含答案】
- 格式:doc
- 大小:303.52 KB
- 文档页数:12
八年级第一次月考数学试卷一.选择题(每小题3分,共30分)1.下列说法正确的是……………………………………………………………………………【 】 A 、全等三角形是指形状相同大小相等的三角形 B 、全等三角形是指面积相等的三角形 C 、周长相等的三角形是全等三角形 D 、所有的等边三角形都是全等三角形2. 已知,如图,△ABC ≌△DEF,AC ∥DF,BC ∥EF.则不正确的等式是………………………【 】A.AC=DFB.AD=BEC.DF=EFD.BC=EF3.下列各组图形中,是全等形的是…………………………………………………………【 】A 、两个含60°角的直角三角形;B 、腰对应相等的两个等腰直角三角形;C 、边长为3和5的两个等腰三角形;D 、一个钝角相等的两个等腰三角形4.如图所示,在△ABD 和△ACE 都是等边三角形,则ΔADC ≌ΔABE 的根据是……………【 】A. SSSB. AASC. ASAD. SAS5.如图所示,在下列条件中,不能作为判断△ABD ≌△BAC 的条件是…………………【 】A. ∠D =∠C ,∠BAD =∠ABC B .∠BAD =∠ABC ,∠ABD =∠BAC C .BD =AC ,∠BAD =∠ABC D .AD =BC ,BD =AC6. 如图所示,E 、B 、F 、C 四点在一条直线上,EB=CF ,∠A=∠D ,再添一个条件仍不能证明△ABC ≌△DEF 的是………………………………………………………………………【 】 A.AB=DE B. DF ∥AC C. ∠E=∠ABC D. AB ∥DE7. △ABC 中,AC=5,中线AD=7,则AB 边的取值范围是…………………………………【 】A.1<AB<29B.4<AB<24C.5<AB<19D.9<AB<198.如图所示,从下列四个条件:①BC =B ′C , ②AC =A ′C ,③∠A ′CA =∠B ′CB ,④AB =A ′B ′中,任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是……………【 】A .1个B .2个C .3个D .4个9.在Rt ΔABC 中,∠ACB=90°,E 是AB 上一点,且BE=BC ,过E 作DE ⊥AB 交AC 于D ,如果AC=5cm ,则AD+DE 等于…………………………………………………………………【 】 A .3 cm B. 4 cm C. 5 cm D. 6 cmABCDE 第2题图第4题图AB FECD第6题第6题 第5题图第6题图第10题图-1第9题图第8题图AC B DE10.全等三角形又叫做合同三角形,平面内的合同三角形分为真正合同三角形与镜面合同三角形,假设△ABC 和△A 1B 1C 1是全等(合同)三角形,点A 与点A 1对应,点B 与点B 1对应,点C 与点C 1对应,当沿周界A →B →C →A ,及A 1→B 1→A 1→C 1环绕时,若运动方向相同,则称它们是真正合同三角形(如图1),若运动方向相反,则称它们是镜面合同三角形(如图2),两个真正合同三角形都可以在平面内通过平移或旋转使它们重合,两个镜面合同三角形要重合,则必须将其中一个翻转180°.下列各组合同三角形中,是镜面合同三角形的是……………………………………【 】二、填空题(每小题4分,共16分)11. 能够完全重合的两个图形叫做_____________12. 如图,△ABC ≌△DEF ,A 与D ,B 与E 分别是对应顶点,∠B=32,∠A=68,AB=13cm , 则∠F= 度,DE= cm .13. 如图,在△ABC 中,∠C =90°,AD 是∠BAC 的角平分线,若BC =5㎝,BD =3㎝,则点D 到AB 的距离为 .14.如图,△ABC 是不等边三角形,DE=BC ,以D ,E 为两个顶点作位置不同的三角形,使所作的三角形与△ABC 全等,这样的三角形最多可以画出 个.三. 解答题:(共54分)15. (本小题满分6分)在如图所示的方格纸中,动手画出△DEF 和△DEG(F 、G 不能重合),使得 △ABC ≅△DEF ≅△DEG . 【解】第5题图2第15题图ABC DEABCDEF第12题图第13题图第14题图16.(本小题满分8分)如图,△ABE ≌△ACD ,∠B 和∠C 是对应角,AB 与AC 是对应边,写出其他对应边和对应角. 【解】17. (本小题满分8分)如图,AB=AD ,BC=DC ,AC 与BD 交于点E ,由这些条件你能推出哪些结论?(不再添加辅助线,不再标注其它字母,不写推理过程,只要求写出四个你认为正确的结论即可) 【解】18. (本小题满分10分)如图所示,已知,AB//CD ,E 是BC 的中点,直线AE 与DC 的延长线交于点F. 求证:AB=CF.(12分) 【证明】19. (本小题满分10分)请用三角形全等的知识自行设计一种如图所示测量池塘两端A 、B 的距离的方案,并加以证明. 【解】20. (本小题满分12分)已知:∠AOB=90°,OM 是∠AOB 的平分线,将三角板的直角顶P 在射第17题图第18题图线OM 上滑动,两直角边分别与OA 、OB 交于C 、D . (1)PC 和PD 有怎样的数量关系是_________ (2)请你证明(1)得出的结论. 【证明】参考答案:1A 2C 3B 4D 5C 6A 7D 8B 9C 10D 11.全等形 12.80°,13 13.2cm 14.415.每画一个3分,答案不唯一,只要正确均给分.16.BE 和CD ……………………2分 AE 和=AD ……………………4分 ∠BAE 和∠CAD ……………6分 ∠AEB 和∠ADC ……………8分 17.∠1=∠2,∠3=∠4,DE=BE ,DB ⊥AC 等每给出一个2分,本题是开放题答案不唯一,只要正确均给分.MBADOPC第20题图第18题图第17题图18.∵AB ∥CD∴∠F=∠BAE ,∠ECF=∠EBA.…………3分 又∵E 是BC 中点∴CE=BE ……………………………………6分 在△ECF 和△EBA 中F BAE ECF EBA CE BE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ECF ≌△EBA(AAS)…………………8分 ∴AB=CF …………………………………10分19.【方案】在平地上选取一个可直接到达A 和B 的点C ,连接并延长到D ,使CD=CA ,连接BC 并延长到E ,使CE=CB ,连接DE ,量出DE 的长,就是A ,B 的距离.……………4分 【证明】∵CD=CA ,EC=BC又∵∠ACB=∠DCE …………………………6分 在△ACB 和△DCE 中CD CA ACB DCE BC EC =⎧⎪∠=∠⎨⎪=⎩∴△ACB ≌△DCE(SAS)…………………8分 ∴AB=DE …………………………………10分20.(1)PC=PD ……………………………4分 (2)过P 分别作PE ⊥OB 于E ,PF ⊥OA 于F , ∴∠CFP=∠DEP=90°……………………6分∵OM 是∠AOB 的平分线,∴PE=PF …………………7分∵∠1+∠FPD=90°(直角三角板) 又∵∠AOB=90° ∴∠FPE=90° ∴∠2+∠FPD=90°∴∠1=∠2…………………………………9分 在△CFP 和△DEP 中12CFP DEP PE PF∠=∠⎧⎪=⎨⎪∠=∠⎩∴△CFP ≌△DEP(ASA)…………………10分 ∴PC=PD …………………………………12分。
人教版八年级上册数学第一次月考考试卷及答案【新版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.﹣2020的倒数是( )A .﹣2020B .﹣12020C .2020D .12020 2.将抛物线22y x =向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为( ).A .22(2)3y x =++;B .22(2)3y x =-+;C .22(2)3y x =--;D .22(2)3y x =+-.3.若﹣2a m b 4与5a n +2b 2m +n 可以合并成一项,则m-n 的值是( )A .2B .0C .-1D .14.若x ,y 均为正整数,且2x +1·4y =128,则x +y 的值为( )A .3B .5C .4或5D .3或4或55.若 45+a =5b (b 为整数),则a 的值可以是( )A .15B .27C .24D .206.下列长度的三条线段能组成直角三角形的是( )A .3, 4,5B .2,3,4C .4,6,7D .5,11,127.汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”.如图是由弦图变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD 、正方形EFGH 、正方形MNKT 的面积分别为S 1、S 2、S 3.若S 1+S 2+S 3=10,则S 2的值为( )A .113B .103C .3D .838.如图,在△ABC 中,CD 平分∠ACB 交AB 于点D ,过点D 作DE ∥BC 交AC 于点E,若∠A=54°,∠B=48°,则∠CDE 的大小为( )A .44°B .40°C .39°D .38°9.如图,在下列条件中,不能证明△ABD ≌△ACD 的是( ).A .BD =DC ,AB =AC B .∠ADB =∠ADC ,BD =DCC .∠B =∠C ,∠BAD =∠CAD D .∠B =∠C ,BD =DC10.如图,在平行四边形ABCD 中,∠ABC 的平分线交AD 于E ,∠BED=150°,则∠A 的大小为( )A .150°B .130°C .120°D .100°二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是 .2.若式子x 1x+有意义,则x 的取值范围是__________. 3.若214x x x++=,则2211x x ++= ________. 4.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD 与ABC 全等,点D 的坐标是______.5.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若AB=6cm ,BC=8cm ,则AEF 的周长=______cm .6.如图,ABCD 的周长为36,对角线AC ,BD 相交于点O .点E 是CD 的中点,BD=12,则△DOE 的周长为________.三、解答题(本大题共6小题,共72分)1.解下列方程:(1)2410x x -+= (2)()()2411x x x -=-2.先化简,再从﹣1、2、3、4中选一个合适的数作为x 的值代入求值.2222444424x x x x x x x ⎛⎫---÷ ⎪-+--⎝⎭.3.已知关于x ,y 的方程组325x y a x y a -=+⎧⎨+=⎩. (1)若x ,y 为非负数,求a 的取值范围;(2)若x y >,且20x y +<,求x 的取值范围.4.如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.(1)求证:△BCE≌△DCF;(2)求证:AB+AD=2AE.5.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF,(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.6.在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、A4、C5、D6、A7、B8、C9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±4.2、x 1≥-且x 0≠3、84、(-4,2)或(-4,3)5、96、15.三、解答题(本大题共6小题,共72分)1、(1)1222x x ==2)1241,3xx ==.2、x+2;当1x =-时,原式=1.3、(1)a ≥2;(2)-5<x <14、略5、(1)略(2)略6、(1)乙队单独完成需90天;(2)在不超过计划天数的前提下,由甲、乙合作完成最省钱.。
新部编人教版八年级数学上册第一次月考考试及答案【完美版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.3-的倒数是()A.3B.13C.13-D.3-2.如果y=2x-+2x-+3,那么y x的算术平方根是()A.2 B.3 C.9 D.±33.按如图所示的运算程序,能使输出y值为1的是()A.11m n==,B.10m n==,C.12m n==,D.21m n==,4.如图,在四边形ABCD中,∠A=140°,∠D=90°,OB平分∠ABC,OC平分∠BCD,则∠BOC=()A.105°B.115°C.125°D.135°5.已知点P(a+5,a-1)在第四象限,且到x轴的距离为2,则点P的坐标为()A.(4,-2) B.(-4,2) C.(-2,4) D.(2,-4)6.如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为()A.10 B.12 C.16 D.187.在平面直角坐标系中,一次函数y=kx+b 的图象如图所示,则k 和b 的取值范围是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <08.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .80 9.如图,平行于x 轴的直线与函数11k y (k 0x 0)x =>>,,22k y (k 0x 0)x=>>,的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若ABC 的面积为4,则12k k -的值为( )A .8B .8-C .4D .4-10.如图,▱ABCD 的对角线AC 、BD 相交于点O ,且AC+BD=16,CD=6,则△ABO 的周长是( )A .10B .14C .20D .22二、填空题(本大题共6小题,每小题3分,共18分)1.已知a ,b ,c 是△ABC 的三边长,a ,b 满足|a ﹣7|+(b ﹣1)2=0,c 为奇数,则c=________.2.若最简二次根式1a +与8能合并成一项,则a =__________.3.将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.4.如图,直线y=x+b 与直线y=kx+6交于点P (3,5),则关于x 的不等式x+b >kx+6的解集是_________.5.如图,OP 平分∠MON ,PE ⊥OM 于点E ,PF ⊥ON 于点F ,OA =OB ,则图中有__________对全等三角形.6.如图,已知正方形ABCD 的边长为5,点E 、F 分别在AD 、DC 上,AE=DF=2,BE 与AF 相交于点G ,点H 为BF 的中点,连接GH ,则GH 的长为_______.三、解答题(本大题共6小题,共72分)1.解下列分式方程:(1)32111x x =+-- (2)2531242x x x-=---2.先化简,再求值:(x +2)(x -2)+x(4-x),其中x =14.3.已知关于x 的一元二次方程2(4)240x m x m -+++=.(1)求证:该一元二次方程总有两个实数根;(2)若12,x x 为方程的两个根,且22124n x x =+-,判断动点(,)P m n 所形成的数图象是否经过点(5,9)A -,并说明理由.4.如图,△ABC 与△DCB 中,AC 与BD 交于点E ,且∠A=∠D ,AB=DC(1)求证:△ABE ≌DCE ;(2)当∠AEB=50°,求∠EBC 的度数.5.如图,矩形EFGH 的顶点E ,G 分别在菱形ABCD 的边AD ,BC 上,顶点F 、H 在菱形ABCD 的对角线BD 上.(1)求证:BG DE =;(2)若E 为AD 中点,2FH =,求菱形ABCD 的周长.6.2017年5月,某县突降暴雨,造成山体滑坡,桥梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区.现有甲、乙两种货车,已知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1 000件帐篷与乙种货车装运800件帐篷所用车辆相等.(1)求甲、乙两种货车每辆车可装多少件帐篷;(2)如果这批帐篷有1 490件,用甲、乙两种汽车共16辆装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其余装满,求甲、乙两种货车各有多少辆.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、D4、B5、A6、C7、C8、C9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、72、13、如果两个角互为对顶角,那么这两个角相等4、x>3.5、36、三、解答题(本大题共6小题,共72分)1、(1)x=2;(2)32 x=-2、-3.3、(1)见解析;(2)经过,理由见解析4、略(2)∠EBC=25°5、(1)略;(2)8.6、(1)甲种货车每辆车可装100件帐篷,乙种货车每辆车可装80件帐篷;(2)甲种货车有12辆,乙种货车有4辆.。
人教版八年级数学上学期第一次月考测试卷含答案一、选择题1.下列各式中,运算正确的是( )A .32222-=B .8383-=-C .2323+=D .()222-=-2.下列运算正确的是 ( ) A .3223÷= B .235+= C .233363⨯=D .18126-=3.已知:x =3+1,y =3﹣1,求x 2﹣y 2的值( ) A .1B .2C .3D .434.下列各式中,正确的是( ) A .16=±4 B .±16=4C .2668⨯= D .42783+⨯=- 45.式子2x -在实数范围内有意义,则x 的取值范围是( ) A .0x <B .0xC .2xD .2x6.下列说法错误的个数是( ) ①所有无限小数都是无理数;②()23-的平方根是3±;③2a a =;④数轴上的点都表示有理数 A .1个B .2个C .3个D .4个7.如图直线a ,b 都与直线m 垂直,垂足分别为M 、N ,MN =1,等腰直角△ABC 的斜边,AB 在直线m 上,AB =2,且点B 位于点M 处,将等腰直角△ABC 沿直线m 向右平移,直到点A 与点N 重合为止,记点B 平移平移的距离为x ,等腰直角△ABC 的边位于直线a ,b 之间部分的长度和为y ,则y 关于x 的函数图象大致为( )A .B .C .D .8.下列计算或判断:(1)±3是27的立方根;(2)33a =a ;(3)64的平方根是2;(4)22(8)±=±8;(5)65- =65+,其中正确的有( )A .1个B .2个C .3个D .4个 9.下列各式计算正确的是( )A .235+=B .2236=()C .824+=D .236⨯=10.关于12的下列说法中错误的是( ) A .12是12的算术平方根 B .3124<< C .12不能化简 D .12是无理数11.使式子2124x x ++-成立的x 的取值范围是( ) A .x≥﹣2B .x >﹣2C .x >﹣2,且x ≠2D .x≥﹣2,且x ≠212.下列各式计算正确的是( ) A .()233= B .()255-=± C .523-= D .3223-=二、填空题13.(1)已知实数a 、b 在数轴上的位置如图所示,化简()222144a a ab b +--+=_____________;(2)已知正整数p ,q 32016p q =()p q ,的个数是_______________;(3)△ABC 中,∠A=50°,高BE 、CF 所在的直线交于点O,∠BOC 的度数__________. 14.设a ﹣b=23b ﹣c=23a 2+b 2+c 2﹣ab ﹣ac ﹣bc=_____.15.为了简洁、明确的表示一个正数的算术平方根,许多数学家进行了探索,期间经历了400余年,直至1637年法国数学家笛卡儿在他的《几何学》中开始使用”表示算数平方根.我国使用根号是由李善兰(1811-1882年)译西方数学书时引用的,她在《代数备旨》中把图1所示题目翻译为:22164?a x a x =则图2所示题目(字母代表正数)翻译为_____________,计算结果为_______________.16.14(1)(1)(2)(8)(9)x x x x x x +⋅⋅⋅=+++++的解是______.17.若a 、b 、c 均为实数,且a 、b 、c 均不为043252a cb=___________ 18.已知|a ﹣20072008a -=a ,则a ﹣20072的值是_____.19.对于任意实数a ,b ,定义一种运算“◇”如下:a ◇b =a(a -b)+b(a +b),如:3◇2=3×(3-2)+2×(3+2)=1332=_____.20.2m 1-1343m --mn =________.三、解答题21.观察下列各式子,并回答下面问题. 211-222-233-244-(1)试写出第n 个式子(用含n 的表达式表示),这个式子一定是二次根式吗?为什么? (2)你估计第16个式子的值在哪两个相邻整数之间?试说明理由.【答案】(12n n -,该式子一定是二次根式,理由见解析;(224015和16之间.理由见解析. 【分析】(1)依据规律可写出第n 个式子,然后判断被开方数的正负情况,从而可做出判断; (2)将16n =代入,得出第16240,再判断即可. 【详解】解:(12n n - 该式子一定是二次根式,因为n 为正整数,2(1)0n n n n -=-≥,所以该式子一定是二次根式(221616240- 22515=25616=,∴1516<<.15和16之间. 【点睛】本题考查的知识点是二次根式的定义以及估计无理数的大小,掌握用“逼近法”估算无理数的大小的方法是解此题的关键.22.(112=3=4=;……写出④ ;⑤ ;(2)归纳与猜想.如果n 为正整数,用含n 的式子表示这个运算规律; (3)证明这个猜想.【答案】(12=5==;(2=3)证明见解析. 【解析】 【分析】(1)根据题目中的例子直接写出结果; (2)根据(1)中的特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子进行化简,即可得到等号右边的式子,从而可以解答本题. 【详解】解:(1)由例子可得,④5=25,(2)如果n 为正整数,用含nn, (3)证明:∵n 是正整数,n.故答案为5=256; n;(3)证明见解析. 【点睛】本题考查了二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.23.计算(a +b aba b-+)÷(ab b ++ab a --ab )(a ≠b ).【答案】-+a b 【解析】试题分析:先计算括号内的,然后把除法转化为乘法,约分即可得出结论. 试题解析:解:原式=a ab b ab a b++-+÷()()()()()()a aa b b ba b a b a b aba ba b--+-+-+-=a b+÷()()2222a a ab b ab b a b ab a b a b ----++-=a b +·()()()ab a b a b ab a b -+-+=-a b +.24.阅读下列材料,然后回答问题: 在进行二次根式运算时,我们有时会碰上如3、3+1这样的式子,其实我们还可以将其进一步化简:535==33333⨯⨯;22(31)2(31)=313+1(3+1)(31)(3)1⨯-⨯-==--- . 以上这种化简过程叫做分母有理化.3+1还可以用以下方法化简:22(3)1(3+1)(31)=313+13+13+13+1--===-. (1)请用其中一种方法化简1511-;(2)化简:++++3+15+37+599+97.【答案】(1) 15+11;(2) 311-1. 【分析】(1)运用了第二种方法求解,即将4转化为1511-;(2)先把每一个加数进行分母有理化,再找出规律,即后面的第二项可以和前面的第一项抵消,然后即可得出答案. 【详解】 (1)原式==;(2)原式=+++…=﹣1+﹣+﹣+…﹣=﹣1=3﹣1【点睛】本题主要考查了分母有理化,找准有理化的因式是解题的关键.25.先化简再求值:(a ﹣22ab b a -)÷22a b a-,其中2,b=12. 【答案】原式=2a ba b-=+【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除法运算,最后将数个代入进行计算即可. 【详解】原式=()()222a ab b aa ab a b -+⨯+-=()()()2·a b a aa b a b -+- =a ba b-+, 当2,b=12时, 原式221212++-2【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.26.计算下列各式: (1()2112323-;(21118-48227【答案】(14323 ;(2)355239【分析】先根据二次根式的性质化简,再合并同类二次根式即可. 【详解】(1)原式2=-2=;(2)原式==. 【点睛】本题考查了二次根式的加减,熟练掌握性质是解答本题的关键(0)(0)a a a a a ≥⎧==⎨-<⎩,)0,0a b =≥≥=(a ≥0,b >0).27.计算:(1(2|a ﹣1|,其中1<a 【答案】(1)1;(2)1 【分析】(1)根据二次根式的乘法法则计算;(2)由二次根式的非负性,a 的取值范围进行化简. 【详解】解:(1-1=2-1=1(2)∵1<a ,a ﹣1=2﹣a +a ﹣1=1. 【点睛】本题考查二次根式的性质、二次根式的乘法法则,主要检验学生的计算能力.28.(1|5-+;(2)已知实数a 、b 、c 满足|3|a +=,求2(b a +的值.【答案】(1)5;(2)4 【分析】(1)先利用二次根式的乘法法则和绝对值的意义计算,再进行回头运算即可; (2)先根据二次根式有意义的条件确定b 的值,再根据非负数的和的意义确定a ,c 的值,然后再计算代数式的值即可. 【详解】解:(15-+5)=+5=+5=(2)由题意可知:5050b b -≥⎧⎨-≥⎩, 解得5b =由此可化简原式得,30a +=30a ∴+=,20c -=3a ∴=-,2c =22((534b a ∴+=--=【点睛】可不是考查了二次根式的混合运算以及二次根式的化简求值,熟练掌握运算法则和运算顺序是解答此题的关键.29.(1)计算)(2201113-⎛⎫--•- ⎪⎝⎭(2)已知,,a b c 为实数且2c =2c ab-的值【答案】(1)13;(2)12-【分析】(1)利用完全平方公式、负整数指数幂、零指数幂分别计算再合并即可; (2)先依据二次根式有意义的条件,求得a 、b 、c 的值,然后再代入计算即可. 【详解】(1))(2201113-⎛⎫--•- ⎪⎝⎭31=+⨯=4+9=13;(2)根据二次根式有意义的条件可得:∵()2303010a a b ⎧-≥⎪⎪-≥⎨⎪-+≥⎪⎩, ∴3a =,1b =-,∴2c =∴(()2223112c ab -=-⨯-=-【点睛】本题主要考查了二次根式的混合运算,二次根式有意义的条件以及二次根式的化简求值,熟练掌握二次根式有意义的条件是解题的关键.30.计算下列各题: (1(2)2-. 【答案】(1)2)2-- 【分析】(1)根据二次根式的运算顺序和运算法则计算即可; (2)利用平方差、完全平方公式进行计算. 【详解】解:(1)原式==; (2)原式22(5=--+525=---2=--【点睛】本题考查二次根式的加减乘除混合运算,熟练掌握运算法则和乘法公式是关键.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】由合并同类项、二次根式的性质分别进行判断,即可得到答案.【详解】解:A 、-=A 正确;B =B 错误;C 、2不能合并,故C 错误;D 2=,故D 错误;故选:A . 【点睛】本题考查了二次根式的性质,合并同类项,解题的关键是熟练掌握运算法则进行解题.2.A解析:A 【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题. 【详解】A 、3=,故选项A 正确;B B 错误;C 、18=,故选项C 错误;D =D 错误; 故选:A . 【点睛】本题考查了二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.3.D解析:D 【分析】先根据x 、y 的值计算x y +、x y -的值,再将所求式子利用平方差公式进行化简,然后代入求值即可. 【详解】∵1,1x y ==,∴11112x y x y +==-=-=,则22()()2x y x y y x -=+-== 故选:D . 【点睛】本题考查了代数式的化简求值、二次根式的加减法与乘法,利用平方差公式对代数式进行化简是解题关键.4.C解析:C 【分析】根据算术平方根与平方根的定义、二次根式的加法与乘除法逐项判断即可.【详解】A4=,此项错误B、4=±,此项错误C==,此项正确D==故选:C.【点睛】本题考查了算术平方根与平方根的定义、二次根式的加法与乘除法,掌握二次根式的运算法则是解题关键.5.D解析:D【分析】根据二次根式有意义的条件(被开方数≥0),列出不等式求解即可得到答案;【详解】x-≥,即:20x,解得:2故选:D;【点睛】本题主要考查了二次根式有意义的条件,掌握二次根式有意义即被开方数≥0是解题的关键. 6.C解析:C【分析】根据无理数定义判断①;根据平方根的算法判断②;利用二次根式的性质化简判断③;根据数轴的特点,判断④.【详解】无限不循环小数才是无理数,①错误;=,3的平方根是②正确;3a=,③错误;数轴上的点可以表示所有有理数和无理数,④错误故选:C.【点睛】本题考查无理数的定义、平方根的计算、二次根式的性质以及数轴表示数,紧抓相关定义是解题关键.7.D解析:D【解析】【分析】根据等腰直角△ABC被直线a和b所截的图形分为三种情况讨论:①当0≤x≤1时,y是BM+BD;②当1<x≤2时,y是CP+CQ+MN;当2<x≤3时,y=AN+AF,分别用x表示出这三种情况下y的函数式,然后对照选项进行选择.【详解】①当0≤x≤1时,如图1所示.此时BM=x,则DM=x,在Rt△BMD中,利用勾股定理得BD=2x,所以等腰直角△ABC的边位于直线a,b之间部分的长度和为y=BM+BD=(2+1)x,是一次函数,当x=1时,B点到达N点,y=2+1;②当1<x≤2时,如图2所示,△CPQ是直角三角形,此时y=CP+CQ+MN=2+1.即当1<x≤2时,y的值不变是2+1.③当2<x≤3时,如图3所示,此时△AFN是等腰直角三角形,AN=3﹣x,则AF2(3﹣x),y=AN+AF=(﹣1﹣2)x2,是一次函数,当x=3时,y=0.综上所述只有D答案符合要求.故选:D.【点睛】本题主要考查动点问题的函数图象,解题的方法是动中找静,在不同的情况下找到y与x 的函数式.8.B解析:B【解析】根据立方根的意义,可知27的立方根是3,故(133a a=正确,故(2)正64=8,可知其平方根为±2,故(3)不正确;根据算术平方根的意义,可知=,故2288±=(),故(4656-5(5)正确.故选B.9.D解析:D【分析】根据二次根式的运算法则一一判断即可.【详解】A23B、错误,2();2312=C8222232==D23236=⨯=故选:D.【点睛】本题考查二次根式的运算,解题的关键是熟练掌握二次根式的加减乘除运算法则,属于中考常考题型.10.C解析:C【分析】根据算术平方根的定义,无理数的定义及估值,二次根式的化简依次判断.【详解】A12的算术平方根,故该项正确;B、34<<,故该项正确;C=D=是无理数,故该项正确;故选:C.【点睛】此题考查算术平方根的定义,无理数的定义及估值,二次根式的化简,熟练掌握各知识点并运用解题是关键.11.C解析:C【分析】根据分式和二次根式有意义的条件(分式的分母不为零,二次根式的被开方数为非负数)即可得到结果.【详解】解:由题意得:2x-40≠,2x∴≠±,又∵20x+≥,∴x≥-2.∴x的取值范围是:x>-2且2x≠.故选C.【点睛】本题考查了分式和二次根式有意义的条件,解不等式,是基础题.12.A解析:A【分析】根据二次根式的性质和运算法则逐一计算可得.【详解】A、23=此选项计算正确,符合题意;B、5=此选项计算错误,不符合题意;C-不是同类二次根式,不能合并,此选项计算错误,不符合题意;D、-=故选:A.【点睛】本题主要考查了利用二次根式的性质化简以及二次根式的加减运算,准确利用二次根式的性质计算是解题的关键.二、填空题13.(1)2a -2b +1;(2)3;(3)130°或50°.【解析】(1)∵-1<a<0,b>1,∴=|a+1|-|a-2b|=1+a-2b+a=2a-2b+1.(2)∵,∴,p=20解析:(1)2a -2b +1;(2)3;(3)130°或50°.【解析】(1)∵-1<a<0,b>1, ∴222(1)4a a ab b +--+=|a+1|-|a-2b|=1+a-2b+a=2a-2b+1.(2)∵32016p q +=, ∴20163p q =-,p=2016-62016+9q,∴p=14x 3(其中x 为正整数), 同理可得:q=14y 2(其中y 为正整数),则x+3y=12(x 、y 为正整数)∴963,,123x x x y y y ===⎧⎧⎧⎨⎨⎨===⎩⎩⎩, ∴整数对有(p,q )=(14⨯81,141⨯),或(1436,144)⨯⨯ ,或(149,149⨯⨯)。
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!八年级(上)第一次月考数学试卷一.选择题(10小题,共30分)1.(3分)以下列各组线段为边,能组成三角形的是( )A.3cm,4cm,5cm B.4cm,6cm,10cm C.1cm,1cm,3cm D.3cm,4cm,9cm2.(3分)已知等腰三角形的一边长等于4,一边长等于9,则它的周长为( )A.22B.17C.17或22D.263.(3分)一个三角形的两边长分别为3和8,第三边长是一个偶数,则第三边的长不能为( )A.6B.8C.10D.124.(3分)在如图中,正确画出AC边上高的是( )A.B.C.D.5.(3分)如图,线段AD把△ABC分为面积相等的两部分,则线段AD是( )A.三角形的角平分线B.三角形的中线C.三角形的高D.以上都不对6.(3分)适合条件∠A=∠B=∠C的三角形是( )A.锐角三角形B.等边三角形C.钝角三角形D.直角三角形7.(3分)过多边形的一个顶点的所有对角线把多边形分成8个三角形,这个多边形的边数是( )A.8B.9C.10D.118.(3分)若一个多边形的内角和等于1080°,则这个多边形的边数是( )A.9B.8C.7D.69.(3分)一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数是( )A.5B.6C.7D.810.(3分)三角形的一个外角是锐角,则此三角形的形状是( )A.锐角三角形B.钝角三角形C.直角三角形D.无法确定11.(3分)n边形的每个外角都为24°,则边数n为( )A.13B.14C.15D.1612.(3分)如图,∠A+∠B+∠C+∠D+∠E+∠F的和为( )A.180°B.360°C.540°D.720°二、填空题(每小题3分,共30分)13.(3分)如图,共有 个三角形.14.(3分)如图所示,∠CAB的外角等于120°,∠B等于40°,则∠C的度数是 .15.(3分)如图,∠1,∠2,∠3是△ABC的不同的三个外角,则∠1+∠2+∠3= 度.16.(3分)要使五边形木架(用5根木条钉成)不变形,至少要再钉 根木条.17.(3分)一个多边形截去一个角后,所形成的一个新多边形的内角和为2520°,则原多边形是 .18.(3分)如图,从A处观测C处仰角∠CAD=30°,从B处观测C处的仰角∠CBD=4 5°,从C外观测A、B两处时视角∠ACB= 度.三、解答题19.(10分)如图,在△ABC中,∠BAC是钝角,完成下列画图.(不写作法保留作图痕迹)(1)∠BAC的平分线AD;(2)AC边上的中线BE;(3)AC边上的高BF.20.(10分)某零件如图所示,图纸要求∠A=90°,∠B=32°,∠C=21°,当检验员量得∠BDC=145°,就断定这个零件不合格,你能说出其中的道理吗?21.(10分)如图,EB∥DC,∠C=∠E,请你说出∠A=∠ADE的理由.22.(10分)如图,△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,∠A=56°,求∠EDF.23.(10分)(1)若多边形的内角和为2340°,求此多边形的边数;(2)一个n边形的每个外角都相等,如果它的内角与相邻外角的度数之比为13:2,求n的值.24.(10分)如图,已知在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠D BC的度数.25.(12分)如图,△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于D,DF ⊥CE交CE于F,求∠CDF的度数.26.(12分)如图所示:△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠BAC=60°,∠C=70°,求∠CAD,∠BOA的度数是多少?27.(12分)探究:(1)如图①,∠1+∠2与∠B+∠C有什么关系?为什么?(2)把图①△ABC沿DE折叠,得到图②,填空:∠1+∠2 ∠B+∠C(填“>”“<”“=”),当∠A=40°时,∠B+∠C+∠1+∠2= ;(3)如图③,是由图①的△ABC沿DE折叠得到的,如果∠A=30°,则x+y=360°﹣(∠B+∠C+∠1+∠2)=360°﹣ = ,猜想∠BDA+∠CEA与∠A的关系为 .八年级(上)第一次月考数学试卷参考答案与试题解析一.选择题(10小题,共30分)1.(3分)(2015秋•宜昌校级期中)以下列各组线段为边,能组成三角形的是( )A.3cm,4cm,5cm B.4cm,6cm,10cm C.1cm,1cm,3cm D.3cm,4cm,9cm【分析】根据三角形任意两边的和大于第三边,进行分析判断.【解答】解:A、4+3>5,能组成三角形;B、6+4=10,不能组成三角形;C、1+1=2<3,不能组成三角形;D、3+4=7<9,不能组成三角形;故选:A.【点评】本题考查了能够组成三角形三边的条件.注意:用两条较短的线段相加,如果大于最长那条就能够组成三角形.2.(3分)(2015秋•河东区期末)已知等腰三角形的一边长等于4,一边长等于9,则它的周长为( )A.22B.17C.17或22D.26【分析】题目给出等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:分两种情况:当腰为4时,4+4<9,所以不能构成三角形;当腰为9时,9+9>4,9﹣9<4,所以能构成三角形,周长是:9+9+4=22.故选A.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.3.(3分)(2015秋•新泰市期中)一个三角形的两边长分别为3和8,第三边长是一个偶数,则第三边的长不能为( )A.6B.8C.10D.12【分析】第三边应该大于两边的差而小于两边的和,因而可得第三边长x满足的关系式.根据第三边长是偶数,就可以判断第三边长的可能值.【解答】解:第三边长x满足:5<x<11,并且第三边长是偶数,因而不满足条件的只有第4个答案.故选D.【点评】考查了三角形三边关系,已知三角形的两边,则第三边的范围是:大于已知两边的差,而小于两边的和.4.(3分)(2015秋•西宁期末)在如图中,正确画出AC边上高的是( )A.B.C.D.【分析】作哪一条边上的高,即从所对的顶点向这条边或者条边的延长线作垂线即可.【解答】解:画出AC边上高就是过B作AC的垂线,故选:C.【点评】此题主要考查了三角形的高,关键是掌握高的作法.5.(3分)(2014秋•株洲县期末)如图,线段AD把△ABC分为面积相等的两部分,则线段AD是( )A.三角形的角平分线B.三角形的中线C.三角形的高D.以上都不对【分析】作三角形ABC的高AE,根据三角形面积公式,分别表示出S△ABD和S△ACD ,即可得出BD=CD,即线段AD是三角形的中线.【解答】解:作AE⊥BC,∴S△ABD=×BD×AE,S△ACD=×CD×AE,∵S△ABD=S△ACD,即×BD×AE=×CD×AE,∴BD=CD,即线段AD是三角形的中线.故选B.【点评】本题主要考查了三角形的面积和三角形的中线,三角形的中线可分三角形为面积相等的两部分.6.(3分)(2016秋•弥勒市校级月考)适合条件∠A=∠B=∠C的三角形是( )A.锐角三角形B.等边三角形C.钝角三角形D.直角三角形【分析】由三角形内角和为180°和∠A=∠B=∠C,可得∠A+∠B+∠C=2∠C=180°,得∠C=90°,故该三角形的形状为直角三角形.【解答】解:∵角形内角和为180°.∴∠A+∠B+∠C=180°.又∵∠A=∠B=∠C的.∴2∠C=180°.解得∠C=90°.故适合条件∠A=∠B=∠C的三角形是直角三角形.故选项A错误,选项B错误,选项C错误,选项D正确.故选D.【点评】本题考查三角形内角和的知识,关键是根据题目中的信息进行转化,来解答本题.7.(3分)(2015•玉林二模)过多边形的一个顶点的所有对角线把多边形分成8个三角形,这个多边形的边数是( )A.8B.9C.10D.11【分析】经过n边形的一个顶点的所有对角线把多边形分成(n﹣2)个三角形,根据此关系式求边数.【解答】解:设多边形有n条边,则n﹣2=8,解得n=10.故这个多边形的边数是10.故选:C.【点评】考查了多边形的对角线,解决此类问题的关键是根据多边形过一个顶点的对角线与分成的三角形的个数的关系列方程求解.8.(3分)(2015秋•西区期末)若一个多边形的内角和等于1080°,则这个多边形的边数是( )A.9B.8C.7D.6【分析】多边形的内角和可以表示成(n﹣2)•180°,依此列方程可求解.【解答】解:设所求正n边形边数为n,则1080°=(n﹣2)•180°,解得n=8.故选:B.【点评】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.9.(3分)(2015•岳麓区校级自主招生)一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数是( )A.5B.6C.7D.8【分析】多边形的外角和是360度,多边形的内角和比它的外角和的2倍还大180°,则多边形的内角和是2×360+180=900度;n边形的内角和是(n﹣2)180°,则可以设这个多边形的边数是n,这样就可以列出方程(n﹣2)180°=900°,解之即可.【解答】解:多边形的内角和是2×360+180=900度,设这个多边形的边数是n,根据题意得:(n﹣2)180°=900°,解得n=7,即这个多边形的边数是7.故选C.【点评】本题考查了多边形的内角和公式和外角和定理.10.(3分)(2014秋•荔湾区期末)三角形的一个外角是锐角,则此三角形的形状是( )A.锐角三角形B.钝角三角形C.直角三角形D.无法确定【分析】三角形的一个外角是锐角,根据邻补角的定义可得它相邻的内角为钝角,即可判断三角形的形状是钝角三角形.【解答】解:∵三角形的一个外角是锐角,∴与它相邻的内角为钝角,∴三角形的形状是钝角三角形.故选B.【点评】本题考查了三角形的一个内角与它相邻的外角互补.11.(3分)(2015秋•临沂期中)n边形的每个外角都为24°,则边数n为( )A.13B.14C.15D.16【分析】多边形的外角和是固定的360°,依此可以求出多边形的边数.【解答】解:∵一个多边形的每个外角都等于24°,∴多边形的边数为360°÷24°=15.故选C.【点评】本题主要考查了多边形的外角和定理:多边形的外角和是360°.12.(3分)(2008春•滕州市期末)如图,∠A+∠B+∠C+∠D+∠E+∠F的和为( )A.180°B.360°C.540°D.720°【分析】根据三角形的内角和定理,可知∠A+∠C+∠E=180°,∠B+∠D+∠F=180°,从而得出结果.【解答】解:∵∠A+∠C+∠E=180°,∠B+∠D+∠F=180°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故选B.【点评】本题主要考查了三角形的内角和定理:三角形的内角和为180°.二、填空题(每小题3分,共30分)13.(3分)(2016秋•汇川区校级月考)如图,共有 6 个三角形.【分析】要数三角形的个数,显然只要数出BE上共有多少条线段即可.有BD、BE、BC、DE、DC、CE共6条线段,即和A组成6个三角形.【解答】解:∵有BD、BE、BC、DE、DC、CE共6条线段,∴与A组成的三角形有6个.故答案为:6【点评】此题考查了三角形的计数,关键是求出BE上共有多少条线段,注意数三角形的个数的简便方法.14.(3分)(2016秋•仙游县期中)如图所示,∠CAB的外角等于120°,∠B等于40°,则∠C的度数是 80° .【分析】根据三角形外角的性质可得答案.【解答】解:∵∠CAB的外角=∠B+∠C,且∠CAB的外角等于120°,∠B等于40°,∴∠C=80°,故答案为:80°.【点评】本题主要考查三角形的外角的性质,熟练掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.15.(3分)(2014秋•株洲县期末)如图,∠1,∠2,∠3是△ABC的不同的三个外角,则∠1+∠2+∠3= 360 度.【分析】利用三角形的外角和定理解答.【解答】解:∵三角形的外角和为360°,∴∠1+∠2+∠3=360°.【点评】此题主要考查了三角形的外角和定理.16.(3分)(2009春•仙桃期末)要使五边形木架(用5根木条钉成)不变形,至少要再钉 2 根木条.【分析】三角形具有稳定性,其它多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变.【解答】解:再钉上两根木条,就可以使五边形分成三个三角形.故至少要再钉两根木条.【点评】本题考查三角形稳定性的实际应用.三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.17.(3分)(2015秋•南通校级期中)一个多边形截去一个角后,所形成的一个新多边形的内角和为2520°,则原多边形是 15,16或17 .【分析】根据多边形的内角和公式先求出新多边形的边数,然后再根据截去一个角的情况进行讨论.【解答】解:设新多边形的边数为n,则(n﹣2)•180°=2520°,解得n=16,①若截去一个角后边数增加1,则原多边形边数为17,②若截去一个角后边数不变,则原多边形边数为16,③若截去一个角后边数减少1,则原多边形边数为15,故原多边形的边数可以为15,16或17.【点评】本题主要考查了多边形的内角和公式,注意要分情况进行讨论,避免漏解.18.(3分)(2014秋•湖北期末)如图,从A处观测C处仰角∠CAD=30°,从B处观测C处的仰角∠CBD=45°,从C外观测A、B两处时视角∠ACB= 15 度.【分析】因为∠CBD是△ABC的外角,所以∠CBD=∠CAD+∠ACB,则∠ACB=∠CBD﹣∠ACB.【解答】解:方法1:∵∠CBD是△ABC的外角,∴∠CBD=∠CAD+∠ACB,∴∠ACB=∠CBD﹣∠ACB=45°﹣30°=15°.方法2:由邻补角的定义可得∠CBA=180°﹣∠CBD=180°﹣45°=135°.∵∠CAD=30°,∠CBA=135°,∴∠ACB=180°﹣∠CAD﹣∠CBA=180°﹣30°﹣135°=180°﹣165°=15°.【点评】本题考查的是三角形外角与内角的关系,即三角形的外角等于与它不相邻的两个内角的和.三、解答题19.(10分)(2016秋•鹤庆县校级期中)如图,在△ABC中,∠BAC是钝角,完成下列画图.(不写作法保留作图痕迹)(1)∠BAC的平分线AD;(2)AC边上的中线BE;(3)AC边上的高BF.【分析】(1)利用角平分线的作法得出即可;(2)首先作出线段AC的垂直平分线得出E为中点,进而得出中线;(3)延长CA,进而过点B作BF⊥CA即可.【解答】解:(1)如图所示:AD即为所求;(2)如图所示:BE即为所求;(3)如图所示:BF即为所求.【点评】此题主要考查了复杂作图,掌握线段垂直平分线、角平分线和线段垂直平分线的作法是解题关键.20.(10分)(2016秋•汇川区校级月考)某零件如图所示,图纸要求∠A=90°,∠B=32°,∠C=21°,当检验员量得∠BDC=145°,就断定这个零件不合格,你能说出其中的道理吗?【分析】连接AD并延长,根据三角形的一个外角等于和它不相邻的两个内角的和求出∠1=∠B+∠BAD,∠2=∠C+∠CAD,然后求出∠1+∠2的度数,根据零件规定数据,只有140°才是合格产品.【解答】解:如图,连接AD并延长,∴∠1=∠B+∠BAD,∠2=∠C+∠CAD,∵∠A=90°,∠B=32°,∠C=21°,∴∠BDC=∠1+∠2,=∠B+∠BAD+∠DAC+∠C,=∠B+∠BAC+∠C,=32°+90°+21°,=143°,∵143°≠145°,∴这个零件不合格.【点评】本题主要利用三角形的一个外角等于和它不相邻的两个内角的和的性质,熟练掌握性质是解题的关键.21.(10分)(2013春•金华期中)如图,EB∥DC,∠C=∠E,请你说出∠A=∠ADE 的理由.【分析】由∠C与∠E的关系,以及平行线EB∥DC,可得出ED与AC的关系,进而求出角的关系.【解答】解:∵EB∥DC,∴∠C=∠ABE(两直线平行,同位角相等)∵∠C=∠E,∴∠E=∠ABE(等量代换)∴ED∥AC(内错角相等,两直线平行)∴∠A=∠ADE(两直线平行,内错角相等).【点评】熟练掌握平行线的性质及判定是正确解题的关键.22.(10分)(2016秋•汇川区校级月考)如图,△ABC中,∠B=∠C,FD⊥BC,D E⊥AB,∠A=56°,求∠EDF.【分析】由∠B=∠C,∠A=56°,根据等腰三角形的性质,即可求得∠B的度数,又由DE⊥AB于点E,DF⊥BC,即可求得答案.【解答】解:∵∠B=∠C,∠A=56°,∴∠B=∠C=62°,∵DF⊥BC,DE⊥AB,∴∠BED=∠BDF=90°,∴∠BDE=90°﹣∠B=28°,∴∠EDF=90°﹣∠BDE=62°.【点评】此题考查了等腰三角形的性质与直角三角形的性质.此题比较简单,注意掌握数形结合思想的应用.23.(10分)(2016秋•城东区校级月考)(1)若多边形的内角和为2340°,求此多边形的边数;(2)一个n边形的每个外角都相等,如果它的内角与相邻外角的度数之比为13:2,求n的值.【分析】(1)根据多边形的内角和计算公式作答;(2)先根据多边形的内角和外角的关系,求出一个外角.再根据外角和是固定的360°,从而可代入公式求解.【解答】解:(1)设此多边形的边数为n,则(n﹣2)•180°=2340,解得n=15.故此多边形的边数为15;(2)设多边形的一个外角为2x度,则一个内角为13x度,依题意得13x+2x=180,解得x=12.2x=2×12=24,360°÷24°=15.故这个多边形边数为15.【点评】此题主要考查了多边形的内角和,多边形的内角与外角关系、方程的思想,关键是掌握多边形内角和定理.24.(10分)(2000•内蒙古)如图,已知在△ABC中,∠C=∠ABC=2∠A,BD是AC 边上的高,求∠DBC的度数.【分析】根据三角形的内角和定理与∠C=∠ABC=2∠A,即可求得△ABC三个内角的度数,再根据直角三角形的两个锐角互余求得∠DBC的度数.【解答】解:∵∠C=∠ABC=2∠A,∴∠C+∠ABC+∠A=5∠A=180°,∴∠A=36°.则∠C=∠ABC=2∠A=72°.又BD是AC边上的高,则∠DBC=90°﹣∠C=18°.【点评】此题主要是三角形内角和定理的运用.三角形的内角和是180°.25.(12分)(2010•安县校级模拟)如图,△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE交CE于F,求∠CDF的度数.【分析】首先根据三角形的内角和定理求得∠ACB的度数,再根据CE平分∠ACB 求得∠ACE的度数,则根据三角形的外角的性质就可求得∠CED=∠A+∠ACE,再结合CD⊥AB,DF⊥CE就可求解.【解答】解:∵∠A=40°,∠B=72°,∴∠ACB=180°﹣40°﹣72°=68°,∵CE平分∠ACB,∴∠ACE=∠BCE=34°,∴∠CED=∠A+∠ACE=74°,∴∠CDE=90°,DF⊥CE,∴∠CDF+∠ECD=∠ECD+∠CED=90°,∴∠CDF=74°.【点评】此题主要考查了三角形的内角和定理、三角形的外角的性质、以及角平分线定义和垂直定义.26.(12分)(2012春•宁津县校级期中)如图所示:△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠BAC=60°,∠C=70°,求∠CAD,∠BOA的度数是多少?【分析】因为AD是高,所以∠ADC=90°,又因为∠C=70°,所以∠CAD度数可求;因为∠BAC=60°,∠C=70°,所以∠BAO=30°,∠ABC=50°,BF是∠ABC的角平分线,则∠ABO=25°,故∠BOA的度数可求.【解答】解:∵AD⊥BC,∴∠ADC=90°,∵∠C=70°,∴∠CAD=180°﹣90°﹣70°=20°;∵∠BAC=60°,∠C=70°,∴∠BAO=30°,∠ABC=50°,∵BF是∠ABC的角平分线,∴∠ABO=25°,∴∠BOA=180°﹣∠BAO﹣∠ABO=180°﹣30°﹣25°=125°.故∠CAD,∠BOA的度数分别是20°,125°.【点评】本题考查了三角形内角和定理、角平分线定义.关键是利用角平分线的性质解出∠ABO、∠BAO,再运用三角形内角和定理求出∠AOB.27.(12分)(2013春•海淀区校级期末)探究:(1)如图①,∠1+∠2与∠B+∠C有什么关系?为什么?(2)把图①△ABC沿DE折叠,得到图②,填空:∠1+∠2 = ∠B+∠C(填“>”“<”“=”),当∠A=40°时,∠B+∠C+∠1+∠2= 280° ;(3)如图③,是由图①的△ABC沿DE折叠得到的,如果∠A=30°,则x+y=360°﹣(∠B+∠C+∠1+∠2)=360°﹣ 300° = 60° ,猜想∠BDA+∠CEA与∠A的关系为 ∠BDA+∠CEA=2∠A .【分析】根据三角形内角是180度可得出,∠1+∠2=∠B+∠C,从而求出当∠A=40°时,∠B+∠C+∠1+∠2=140×2=280°,有以上计算可归纳出一般规律:∠BDA+∠CEA= 2∠A.【解答】解:(1)根据三角形内角是180°可知:∠1+∠2=180°﹣∠A,∠B+∠C=180°﹣∠A∴∠1+∠2=∠B+∠C(2)∵∠1+∠2+∠BDE+∠CED=∠B+∠C+∠BDE+∠CED=360°∴∠1+∠2=∠B+∠C当∠A=40°时,∠B+∠C+∠1+∠2=140×2=280°(3)如果∠A=30°,则x+y=360°﹣(∠B+∠C+∠1+∠2)=360°﹣300°=60°所以∠BDA+∠CEA与∠A的关系为:∠BDA+∠CEA=2∠A【点评】本题考查图形的翻折变换和三角形,四边形内角和定理,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.。
人教版八年级上册数学《第一次月考》考试卷及答案【完整版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.下列式子中,属于最简二次根式的是( )A .9B .7C .20D .132.若点1(),6A x -,2(),2B x -,32(),C x 在反比例函数12y x=的图像上,则1x ,2x ,3x 的大小关系是( ) A .123x x x << B .213x x x << C .231x x x << D .321x x x <<3.下列计算正确的是( )A .235+=B .3223-=C .623÷=D .(4)(2)22-⨯-=4.式子:①2>0;②4x +y ≤1;③x +3=0;④y -7;⑤m -2.5>3.其中不等式有( )A .1个B .2个C .3个D .4个5.已知4821-可以被在0~10之间的两个整数整除,则这两个数是( )A .1、3B .3、5C .6、8D .7、96.如图,菱形ABCD 的对角线AC 、BD 的长分别为6和8,则这个菱形的周长是( )A .20B .24C .40D .487.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是( )A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+1 8.如图,在△ABC中,∠C=90°,按以下步骤作图:①以点A为圆心、适当长为半径作圆弧,分别交边AC、AB于点M、N;②分别以点M和点N为圆心、大于12MN的长为半径作圆弧,在∠BAC内,两弧交于点P;③作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15 B.30 C.45 D.609.如图,菱形ABCD的周长为28,对角线AC,BD交于点O,E为AD的中点,则OE的长等于()A.2 B.3.5 C.7 D.1410.如图在△ABC中,BO,CO分别平分∠ABC,∠ACB,交于O,CE为外角∠ACD 的平分线,BO的延长线交CE于点E,记∠BAC=∠1,∠BEC=∠2,则以下结论①∠1=2∠2,②∠BOC=3∠2,③∠BOC=90°+∠1,④∠BOC=90°+∠2正确的是()A.①②③B.①③④C.①④D.①②④二、填空题(本大题共6小题,每小题3分,共18分)116的平方根是.2.以正方形ABCD 的边AD 作等边△ADE ,则∠BEC 的度数是__________.3.若2|1|0a b -++=,则2020()a b +=_________.4.如图,直线y=x+b 与直线y=kx+6交于点P (3,5),则关于x 的不等式x+b >kx+6的解集是_________.5.如图,在▱ABCD 中,∠D=100°,∠DAB 的平分线AE 交DC 于点E ,连接BE.若AE=AB ,则∠EBC 的度数为__________.6.如图△ABC 中,分别延长边AB 、BC 、CA ,使得BD=AB ,CE=2BC ,AF=3CA ,若△ABC 的面积为1,则△DEF 的面积为________.三、解答题(本大题共6小题,共72分)1.解不等式:11123x x +--≤2.先化简,再求值[(x 2+y 2)-(x-y )2+2y (x-y )]÷2y ,其中x=-2,y=-12.3.已知关于x 的一元二次方程22240x x k ++-=有两个不相等的实数根(1)求k 的取值范围;(2)若k 为正整数,且该方程的根都是整数,求k 的值.4.已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.(1)求证:AB=AF;(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.5.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.6.某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.(1)降价前商场每月销售该商品的利润是多少元?(2)要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、D4、C5、D6、A7、B8、B9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±2.2、30°或150°.3、14、x>3.5、30°.6、18三、解答题(本大题共6小题,共72分)1、1x2、2x-y;-31 2.3、(1)k<52(2)24、(1)略;(2)结论:四边形ACDF是矩形.理由见解析.5、(1)略(2)90°(3)AP=CE6、(1) 4800元;(2) 降价60元.。
人教版八年级上册数学《第一次月考》考试题含答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.4的平方根是( )A .±2B .2C .﹣2D .162.估计7+1的值( )A .在1和2之间B .在2和3之间C .在3和4之间D .在4和5之间3.下列各式中,正确的是( )A .2(3)3-=-B .233-=-C .2(3)3±=±D .23=3± 4.如果a+b <0,并且ab >0,那么( )A .a <0,b <0B .a >0,b >0C .a <0,b >0D .a >0,b <05.已知一次函数y =kx +b 随着x 的增大而减小,且kb <0,则在直角坐标系内它的大致图象是( )A .B .C .D .6.如图,已知70AOC BOD ∠=∠=︒,30BOC ∠=︒,则AOD ∠的度数为( )A .100︒B .110︒C .130︒D .140︒7.如图,在▱ABCD 中,对角线AC 的垂直平分线分别交AD 、BC 于点E 、F ,连接CE ,若△CED 的周长为6,则▱ABCD 的周长为( )A .6B .12C .18D .248.已知a =2018x +2018,b =2018x +2019,c =2018x +2020,则a 2+b 2+c 2-ab -ac -bc 的值是( )A .0B .1C .2D .39.如图,//DE BC ,BE 平分ABC ∠,若170∠=,则CBE ∠的度数为( )A .20B .35C .55D .7010.如图,AB ∥EF ,CD ⊥EF ,∠BAC=50°,则∠ACD=( )A .120°B .130°C .140°D .150°二、填空题(本大题共6小题,每小题3分,共18分)1.已知a 、b 为两个连续的整数,且11a b <<,则a b +=__________.2.已知三角形ABC 的三边长为a,b,c 满足a+b=10,ab=18,c=8,则此三角形为__________三角形.3.若m+1m =3,则m 2+21m=________. 4.如图是一个三级台阶,它的每一级的长、宽和高分别为20 dm,3 dm,2 dm ,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点的最短路程是__________dm.5.如图是一张长方形纸片ABCD ,已知AB=8,AD=7,E 为AB 上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP ),使点P 落在长方形ABCD 的某一条边上,则等腰三角形AEP 的底边长是_____________.6.如图,在矩形ABCD 中,BC =20cm ,点P 和点Q 分别从点B 和点D 出发,按逆时针方向沿矩形ABCD 的边运动,点P 和点Q 的速度分别为3cm /s 和2cm /s ,则最快_________s 后,四边形ABPQ 成为矩形.三、解答题(本大题共6小题,共72分)1.解方程(1)240x -= (2)2(3)(21)(3)x x x +=-+2.先化简,再求值:a 3a 2++÷22a 6a 9a -4++-a 1a 3++,其中50+-113⎛⎫ ⎪⎝⎭2(-1)3.已知关于x 的不等式组5x 13(x-1),13x 8-x 2a 22+>⎧⎪⎨≤+⎪⎩恰有两个整数解,求实数a 的取值范围.4.某市推出电脑上网包月制,每月收取费用y (元)与上网时间x (小时)的函数关系如图所示,其中BA 是线段,且BA ∥x 轴,AC 是射线.(1)当x ≥30,求y 与x 之间的函数关系式;(2)若小李4月份上网20小时,他应付多少元的上网费用?(3)若小李5月份上网费用为75元,则他在该月份的上网时间是多少?5.某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x(h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?6.为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、B4、A5、A6、B7、B8、D9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、72、直角3、74、255、56、4三、解答题(本大题共6小题,共72分)1、(1)12x =-,22x =;(2)13x =-,24x =2、-33a +,;12-.3、-4≤a<-3.4、(1)y=3x ﹣30;(2)4月份上网20小时,应付上网费60元;(3)5月份上网35个小时.5、(1)y 关于x 的函数解析式为210(05)20(510)200(1024)x x y x x x ⎧⎪+≤<⎪=≤<⎨⎪⎪≤≤⎩;(2)恒温系统设定恒温为20°C ;(3)恒温系统最多关闭10小时,蔬菜才能避免受到伤害.6、(1)A 种纪念品需要100元,购进一件B 种纪念品需要50元(2)共有4种进货方案(3)当购进A 种纪念品50件,B 种纪念品50件时,可获最大利润,最大利润是2500元。
人教版八年级(上)第一次月考数学试卷及答案人教版八年级(上)第一次月考数学试卷一、选择题(共12小题,每小题4分,满分48分)1.以下长度的三条线段中,能够组成三角形的是()。
A。
2cm,3cm,4cmB。
1cm,4cm,2cmC。
1cm,2cm,3cmD。
6cm,2cm,3cm2.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()。
A。
带①去B。
带②去C。
带③去D。
带①和②去3.能够把一个任意三角形分成面积相等的两部分的是()。
A。
角平分线B。
中线C。
高D。
A、B、C都可以4.下面四个图形中,线段BE是△ABC的高的图形是()。
A。
B。
C。
D。
5.适合条件∠A=∠B=∠C的△ABC是()。
A。
锐角三角形B。
直角三角形C。
钝角三角形D。
等边三角形6.一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数是()。
A。
5B。
6C。
7D。
87.下列命题正确的是()。
A。
三角形的角平分线,中线,高均在三角形内部B。
三角形中至少有一个内角不小于60°C。
直角三角形仅有一条高D。
直角三角形斜边上的高等于斜边的一半8.如图,在△ABC中,AB=AC,∠BAD=∠CAD,则下列结论:①△ABD≌△ACD,②∠B=∠C,③BD=CD,④AD⊥BC。
其中正确的个数有()。
A。
1个B。
2个C。
3个D。
4个9.如图,在△ABC中,AD平分∠XXX于D,XXX于E,∠B=40°,∠BAC=82°,则∠DAE=()。
A。
7°B。
8°C。
9°D。
10°10.已知,如图AB=CD,BC=AD,∠B=23°,则∠D=()。
A。
67°B。
46°C。
23°D。
不能确定11.如图,EA∥DF,AE=DF,要使△AEC≌△DFB,只要()。
A。
AB=CDB。
2022-2023第一学期八年级第一次月考 (数学)试卷考试总分:141 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 6 小题 ,每题 3 分 ,共计18分 )1. 下列图形具有稳定性的是 A. B. C. D.2. 如图,,,,交于点,则图中全等三角形共有 A.五对B.四对C.三对D.二对3. 有,,,的四条线段,任选其中的三条线段组成一个三角形,则最多能组成三角形的个数为 ( )A.个B.个C.个D.个4.如图, .则线段和线段的关系是( )A.既不相等也不互相垂直()AB =AC AD =AE BE CD O ()3cm 6cm 8cm 9cm 1234△ABC ≅△CDE AC CEB.相等但不互相垂直C.互相垂直但不相等D.相等且互相垂直5. 能使两个直角三角形全等的条件是 ( )A.一个锐角对应相等B.两个锐角对应相等C.一条边对应相等D.一条直角边和一条斜边对应相等6.如图,已知, 平分,且于点,则的值是 ( )A.B.C.D.二、 填空题 (本题共计 1 小题 ,共计3分 )7. (3分) 如图,在中,,将沿着折叠,得到,点、分别在、边上,且 连接,若,则的值为________.三、 解答题 (本题共计 12 小题 ,每题 10 分 ,共计120分 )8. 如图,,是上的一点,且,.求证:;=12S △ABC AD ∠BAC AD ⊥BD D S △ADC 10864△ABC AB ⊥BC △ABC AC △ADC M N AB AD AM =AN =AB,13MN ∠BAD =60∘tan ∠MNC ∠A =∠B =90∘E AB AD =BE ∠1=∠2(1)Rt △ADE ≅Rt △BEC猜想和的位置关系,并说明理由. 9.如图,中,,平分,求的度数.10. 如图,已知点,,,在同一直线上, .求证:;.11. 一个多边形的各个内角都相等,且每一个内角的度数比每一个外角度数的倍还大 ,求这个多边形的每个内角度数.12. 已知,在中,==,平分,点是的中点,在上取点,使得=,与的延长线交于点.(1)当=时,①求的长;②求的大小.(2)当时,探究与的数量关系.13. 八年级某班数学实验课安排测量操场上旗杆的高度.小聪同学经过认真思考,研究出了一个可行的测量方案:在某一时刻测得旗杆的影长和的大小,然后在操场上画,使得,在边上截取线段,再利用三角形全等的知识求出旗杆的高度,请完成小聪同学的测量方案,并把图形补画完整,说明方案可行的理由.14. 已知,如图,点,,,在同一直线上,,,,求证:.15. 如图,于点,于点,、交于点.(2)CE DE △ABC ∠ABC =∠C =70∘BD ∠ABC ∠ADB A D C B AD =BC ,DE//CF ,AE//BF (1)△ADE ≅△BCF (2)CE//DF 320∘△ABC AB AC 5AD ∠BAC M AC AD E DE AM EM DC F ∠BAC 90∘AE ∠F ∠BAC ≠90∘∠F ∠BAC AB BC ∠ACB ∠MDN ∠MDN =∠ACB DM DE =BC B F C E AC//FD ∠B =∠E BF =CE △ABC ≅△DEF AC =DB,BD ⊥DC D CA ⊥AB A BD AC E求证:;延长、交于点,请直接写出图中的所有全等三角形.16. 如图,平分,求的度数.17. 如图,在中,,点,,分别在,,边上,且,.求证:是等腰三角形;当时,求的度数. 18. 图是一张折叠椅子,图是其侧面示意图,已知椅子折叠时长,椅子展开后最大张角,且,,座面与地面平行.当展开角最大时,请解答下列问题:求的度数;求座面与地面之间的距离.(结果精确到. 参考数据:,,)19. 如图,在中,,,,动点从点出发沿射线以的速度移动,设运动的时间为.求边的长;当为直角三角形时,求的值.(1)AB =DC (2)BA CD F BD ∠ABC,DA ⊥AB,∠1=,∠BDC =60∘80∘∠C △ABC AB =AC D E F AB BC AC BE =CF BD =CE (1)△DEF (2)∠A =40∘∠DEF 12 1.2m ∠CBD =37∘BD =BC AB :BG :GC =1:2:3EF DC (1)∠CGF (2)EF DC 0.01sin ≈0.94871.5∘cos ≈0.31771.5∘tan ≈2.98971.5∘Rt △ABC ∠ACB =90∘AB =5cm AC =3cm P B BC 1cm/s ts (1)BC (2)△ABP t参考答案与试题解析2022-2023第一学期八年级第一次月考 (数学)试卷一、 选择题 (本题共计 6 小题 ,每题 3 分 ,共计18分 )1.【答案】A【考点】三角形的稳定性【解析】此题暂无解析【解答】解:根据三角形稳定性可知,选项中只有项具有稳定性.故选.2.【答案】A【考点】全等三角形的判定【解析】此题暂无解析【解答】解:∵,,∴,.∵在和中,∴,∴,∴.∵在和中,∴,∴.∵在和中,∴,∴.∵在和中,A A AB =AC AD =AE ∠ABC =∠ACB BD =EC △BDC △CEB BD =EC,∠ABC =∠ACB,BC =CB,△BDC ≅△CEB(SAS)∠EBC =∠DCB ∠ABO =∠ACO △DBO △ECO ∠DOB =∠EOC,∠DBO =∠ECO,BD =EC,△DBO ≅△ECO(AAS)OB =OC △ABO △ACO AB =AC,∠ABO =∠ACO,OB =OC,△ABO ≅△ACO(SAS)∠DAO =∠EAO △DAO △EAO AD =AE,∴.∵在和中,∴.综上,图中全等三角形共有五对.故选.3.【答案】C【考点】三角形三边关系【解析】从条线段里任取条线段组合,可有种情况,看哪种情况不符合三角形三边关系,舍去即可.【解答】解:四条木棒的所有组合:,,和,,和,,和,,;只有,,和,,;,,能组成三角形.故选.4.【答案】D【考点】全等三角形的性质【解析】利用全等三角形的性质即可得到结论.【解答】解:∵,∴,.又∵,∴,∴,∴.故线段和线段的关系是相等且互相垂直.故选.5.【答案】D【考点】直角三角形全等的判定【解析】AD =AE,∠DAO =∠EAO,AO =AO,△DAO ≅△EAO(SAS)△DAC △EAB AD =AE,∠DAC =∠EAB,AB =AC,△DAC ≅△EAB(SAS)A 434368369689389368689389C △ABC ≅△CDE AC =CE ∠ACB =∠E ∠E+∠ECD =90∘∠ACB+∠ECD =90∘∠ACE =90∘AC ⊥CE AC CE D【解答】解:根据三角形全等的定义,能使两个直角三角形全等的条件:,一个锐角对应相等,再加上相等的直角,仅有两组对应角相等,无法证明三角形全等,故该选项错误;,两个锐角对应相等,再加上相等的直角,有三组对应角相等,无法证明三角形全等,故该选项错误;,一条边对应相等,只有一条边和一个直角对应相等,无法证明三角形全等,故该选项错误;,一条直角边和一条斜边对应相等,根据“”可证明直角三角形全等,故该选项正确.故选.6.【答案】C【考点】三角形的面积【解析】此题暂无解析【解答】解:如图,延长交于点,∵平分,,∴ ,,在和中,,∴,∴,∴,∴,∴,故选.二、 填空题 (本题共计 1 小题 ,共计3分 )7.【答案】A B C D HL D BD AC E AD ∠BAE AD ⊥BD ∠BAD =∠EAD ∠ADB =∠ADE △ABD △AED ∠BAD =∠EADAD =AD ∠BDA =∠EDA△ABD ≅△AED(ASA)BD =DE =,=S △ABD S △ADE S △BDC S △CDE +=+S △ABD S △BDC S △ADE S △CDE =S △ADC ==×12=6S △ADC 12S △ABC 12C 33–√三角形的外角性质翻折变换(折叠问题)【解析】此题暂无解析【解答】解:如图,连接;由题意得:,,;;设;在直角中,∵,∴;而,∴,∴,;;∵,∴,∴,而,∴,;∴,∴,而,∴,故答案为:.三、 解答题 (本题共计 12 小题 ,每题 10 分 ,共计120分 )8.【答案】证明:∵,∴.∵,∴和是直角三角形,而.∴.解:,理由是:∵,∴.∵,∴,∴,∴.【考点】直角三角形全等的判定全等三角形的性质BD MN //BD MN ⊥AC BD ⊥AC ∠BAC =∠BAD =1230∘BC =λ△ABC ∠BAC =30∘AC =2BC =2λBC =DC ∠CBD =∠CDB ==−180∘120∘230∘CP =λ12AP =2λ−λ=λ1232BD =2BP =λ3–√MN //BD △AMN ∽△ABD ==AM AB AO AP MN BD AM =AB 13AO =AP =λ1312MN =BD =λ133–√3NO =MN =λ123–√6tan ∠MNC =CO NO CO =2λ−λ=λ1232tan ∠MNC =33–√33–√(1)∠1=∠2DE =CE ∠A =∠B =90∘△ADE △EBC AD =BE Rt △ADE ≅Rt △BEC(HL)(2)CE ⊥DE Rt △ADE ≅Rt △BEC ∠AED =∠BCE ∠ECB+∠BEC =90∘∠AED+∠BEC =90∘∠DEC =90∘CE ⊥DE此题比较简单,根据已知条件,利用直角三角形的特殊判定方法可以证明题目结论.【解答】证明:∵,∴.∵,∴和是直角三角形,而.∴.解:,理由是:∵,∴.∵,∴,∴,∴.9.【答案】解:∵,平分,∴,∴.【考点】三角形的外角性质角平分线的定义【解析】依据==,平分,即可得出=,再根据三角形外角性质,即可得到的度数.【解答】解:∵,平分,∴,∴.10.【答案】证明:∵ ,,,,,在和中,.,,在和中,(),(1)∠1=∠2DE =CE ∠A =∠B =90∘△ADE △EBC AD =BE Rt △ADE ≅Rt △BEC(HL)(2)CE ⊥DE Rt △ADE ≅Rt △BEC ∠AED =∠BCE ∠ECB+∠BEC =90∘∠AED+∠BEC =90∘∠DEC =90∘CE ⊥DE ∠ABC =∠C =70∘BD ∠ABC ∠DBC =35∘∠ADB =∠C +∠DBC =+=70∘35∘105∘∠ABC ∠C 70∘BD ∠ABC ∠DBC 35∘∠ADB ∠ABC =∠C =70∘BD ∠ABC ∠DBC =35∘∠ADB =∠C +∠DBC =+=70∘35∘105∘(1)DE//CF ∴CDE =∠FCD ∠ADE =∠BCF ∵AE//BF ∴∠A =∠B △ADE △BCF ∠A =∠B ,AD =BC ,∠ADE =∠BCF∴△ADE ≅△BCF (ASA )(2)∵△ADE ≅△BCF ∴DE =FC △CDE △DCF CD =DC ,∠CDE =∠DCF ,DE =CF ,∴△CDE ≅△DCF SAS,.【考点】全等三角形的判定【解析】此题暂无解析【解答】证明:∵ ,,,,,在和中,.,,在和中,(),,.11.【答案】解:设外角为,内角为,根据题意,得:,解得:,,答:这个多边形的每个内角度数.【考点】多边形内角与外角【解析】通过已知条件,列方程,即可求解.【解答】解:设外角为,内角为,根据题意,得:,解得:,,答:这个多边形的每个内角度数.12.∴∠ECD =∠FDC ∴CE//DF(1)DE//CF ∴CDE =∠FCD ∠ADE =∠BCF ∵AE//BF ∴∠A =∠B △ADE △BCF ∠A =∠B ,AD =BC ,∠ADE =∠BCF∴△ADE ≅△BCF (ASA )(2)∵△ADE ≅△BCF ∴DE =FC △CDE △DCF CD =DC ,∠CDE =∠DCF ,DE =CF ,∴△CDE ≅△DCF SAS ∴∠ECD =∠FDC ∴CE//DF x ∘(3x+20)∘x+(3x+20)=180x =403x+20=140140∘x ∘(3x+20)∘x+(3x+20)=180x =403x+20=140140∘【答案】当=时,①=;②连接.∵=,=,平分,∴,=.∵点是的中点,∴===,,∴==,∴=,∴==;当时,=.理由如下:∵=,平分,∴=.设=,则=.∵点是的中点,∴===,∴==,∴=,∴===,∴=.【考点】等腰三角形的性质【解析】(1)①先根据等腰直角三角形的性质求出,根据线段中点的定义得出=,再代入=即可;②连接,根据等腰直角三角形的性质以及已知条件得出,=,===,,==,利用三角形内角和定理以及等边对等角求出=,那么==;(2)当时,先根据等腰三角形的性质得出=.设=,则=.根据直角三角形斜边中线的性质得出===,利用三角形内角和定理以及等边对等角求出==,=,那么===,从而得出=.【解答】当=时,①=;②连接.∵=,=,平分,∴,=.∵点是的中点,∴===,,∠BAC 90∘AE AD−DE =AB−DE =−2–√252–√252DM AB AC ∠BAC 90∘AD ∠BAC AD ⊥BC AD DC M AC DM MC AM DE DM ⊥AC ∠MDC ∠MDE 45∘∠DEM =(−)12180∘45∘67.5∘∠F −90∘67.5∘22.5∘∠BAC ≠90∘∠BAC 4∠F AB AC AD ∠BAC ∠ADC 90∘∠BAC 4x ∠DAC 2x M AC DM MC AM DE ∠ADM ∠DAC 2x ∠DEM =(−2x)12180∘−x 90∘∠F −DEM 90∘−(−x)90∘90∘x ∠BAC 4∠F AD =AB =2–√252–√2DE AM =52AE AD−DE DM AD ⊥BC AD DC DM MC AM DE DM ⊥AC ∠MDC ∠MDE 45∘∠DEM =(−)12180∘45∘67.5∘∠F −90∘67.5∘22.5∘∠BAC ≠90∘∠ADC 90∘∠BAC 4x ∠DAC 2x DM MC AM DE ∠ADM ∠DAC 2x ∠DEM =(−2x)12180∘−x 90∘∠F −DEM 90∘−(−x)90∘90∘x ∠BAC 4∠F ∠BAC 90∘AE AD−DE =AB−DE =−2–√252–√252DM AB AC ∠BAC 90∘AD ∠BAC AD ⊥BC AD DC M AC DM MC AM DE DM ⊥AC∴==,∴=,∴==;当时,=.理由如下:∵=,平分,∴=.设=,则=.∵点是的中点,∴===,∴==,∴=,∴===,∴=.13.【答案】解:如图所示:过点作,垂足为,此时,理由:在和中,∴,∴,即可以得出旗杆高度.【考点】全等三角形的应用【解析】利用全等三角形的判定与性质得出,进而得出答案.【解答】解:如图所示:过点作,垂足为,此时,理由:在和中,∴,∴,即可以得出旗杆高度.14.【答案】证明:∵,∠MDC ∠MDE 45∘∠DEM =(−)12180∘45∘67.5∘∠F −90∘67.5∘22.5∘∠BAC ≠90∘∠BAC 4∠F AB AC AD ∠BAC ∠ADC 90∘∠BAC 4x ∠DAC 2x M AC DM MC AM DE ∠ADM ∠DAC 2x ∠DEM =(−2x)12180∘−x 90∘∠F −DEM 90∘−(−x)90∘90∘x ∠BAC 4∠F E GE ⊥DM E EG =AB △ACB △GDE ∠ACB =∠GDECB =DE ∠ABC =∠GED△ACB ≅△GDE(ASA)AB =EG AB =EG E GE ⊥DM E EG =AB △ACB △GDE ∠ACB =∠GDECB =DE ∠ABC =∠GED△ACB ≅△GDE(ASA)AB =EG BF =CE∴,即,∵,∴,在和中,∴.【考点】全等三角形的判定【解析】解答此题的关键在于理解图形的全等的相关知识,掌握能够完全重合的两个图形叫全等形.【解答】证明:∵,∴,即,∵,∴,在和中,∴.15.【答案】证明:∵,∴ 在和中,∴∴.【考点】全等三角形的判定【解析】此题暂无解析【解答】证明:∵,∴ 在和中,∴∴.16.【答案】解:在中,∵,,∴.∵平分,∴.在中,.BF +CF =CE+CF BC =EF AC//FD ∠ACF =∠CFD △ABC △DEF BC =EF ,∠E =∠B ,∠ACF =∠CFD ,△ABC ≅△DEF(ASA)BF =CE BF +CF =CE+CF BC =EF AC//FD ∠ACF =∠CFD △ABC △DEF BC =EF ,∠E =∠B ,∠ACF =∠CFD ,△ABC ≅△DEF(ASA)(1)BD ⊥DC,CA ⊥AB ∠BAC =∠CDB =90∘Rt △ABC Rt △DCB {BC =CB AC =DBRt △ABC ≅Rt △DCB(HL)AB =DC (2)△ABE ≅△DCE,△ABC ≅△DCB,∠CAB.(1)BD ⊥DC,CA ⊥AB ∠BAC =∠CDB =90∘Rt △ABC Rt △DCB {BC =CB AC =DBRt △ABC ≅Rt △DCB(HL)AB =DC △ABD ∠A =90∘∠1=60∘∠ABD =−∠1=90∘30∘BD ∠ABC ∠CBD =∠ABD =30∘△BDC ∠C =−(∠BDC +∠CBD)180∘=−(+)180∘80∘30∘=70∘【考点】三角形内角和定理角平分线的定义【解析】【解答】解:在中,∵,,∴.∵平分,∴.在中,.17.【答案】证明:∵,∴.在和中∴,∴,∴是等腰三角形;解:如图:∵,∴,∴.∵,∴.∴.∵,∴,∴.【考点】等腰三角形的判定与性质全等三角形的性质与判定全等三角形的性质等腰三角形的性质【解析】(1)根据条件可以得出,就可以得出而得出结论;(2)由(1)的结论就可以得出,由等腰三角形的性质就可以得出,就可以得出,就有,由就可以得出结论;【解答】△ABD ∠A =90∘∠1=60∘∠ABD =−∠1=90∘30∘BD ∠ABC ∠CBD =∠ABD =30∘△BDC ∠C =−(∠BDC +∠CBD)180∘=−(+)180∘80∘30∘=70∘(1)AB =AC ∠B =∠C △BDE △CEF BE =CF,∠B =∠C,BD =CE,△BDE ≅△CEF(SAS)DE =EF △DEF (2)∠A =40∘∠B =∠C =70∘∠1+∠2=110△BDE ≅△CEF ∠1=∠3∠2+∠3=110∘∠2+∠3+∠4=180∘∠4=70∘∠DEF =70∘△BDE ≅△CEF DE =FE ∠1=∠3∠B =∠C =70∘∠1+∠2=110∘∠2+∠3=110∘∠2+∠4+∠3=180∘证明:∵,∴.在和中∴,∴,∴是等腰三角形;解:如图:∵,∴,∴.∵,∴.∴.∵,∴,∴.18.【答案】解:∵,,∴,∵,∴.如图,过点作于点.∵,且,∴.在中,,即,∴.答:座面与地面之间的距离约是.【考点】三角形内角和定理平行线的性质等腰三角形的性质解直角三角形的应用【解析】(1)根据等腰三角形的性质和三角形内角和定理可得的度数,再根据平行线的性质可得的度数;(1)AB =AC ∠B =∠C △BDE △CEF BE =CF,∠B =∠C,BD =CE,△BDE ≅△CEF(SAS)DE =EF △DEF (2)∠A =40∘∠B =∠C =70∘∠1+∠2=110△BDE ≅△CEF ∠1=∠3∠2+∠3=110∘∠2+∠3+∠4=180∘∠4=70∘∠DEF =70∘(1)BD =BC ∠CBD =37∘∠BDC =∠BCD ==−180∘37∘271.5∘EF //DC ∠CGF =∠BCD =71.5∘(2)G GK ⊥DC K AB :BG :GC =1:2:3AC =1.2m GC =1.2×=0.6m 36Rt △KCG sin ∠BCD =GK GC sin =71.5∘GK 0.6GK =0.6×sin ≈0.57m 71.5∘EF DC 0.57m ∠BCD ∠CGF C =1.2×=0.6m3(2)根据比的意义可得,过点作于点,在中,根据三角函数可得座面与地面之间的距离.【解答】解:∵,,∴,∵,∴.如图,过点作于点.∵,且,∴.在中,,即,∴.答:座面与地面之间的距离约是.19.【答案】解:在中,,∴.由题意知,①当时,点与点重合,如图①,,此时;②当时,如图②,,,,在中,,在中,,即:,解得:,故当为直角三角形时,或.GC =1.2×=0.6m 36G GK ⊥DC K Rt △KCG EF (1)BD =BC ∠CBD =37∘∠BDC =∠BCD ==−180∘37∘271.5∘EF //DC ∠CGF =∠BCD =71.5∘(2)G GK ⊥DC K AB :BG :GC =1:2:3AC =1.2m GC =1.2×=0.6m 36Rt △KCG sin ∠BCD =GK GC sin =71.5∘GK 0.6GK =0.6×sin ≈0.57m 71.5∘EF DC 0.57m (1)Rt △ABC B =C 2A −A =B 2C 2−=523216BC =4cm (2)BP =tcm ∠APB =90∘P C BP =BC =4cm t =4∠BAP =90∘BP =tcm CP =(t−4)cm AC =3cm Rt △ACP A =P 2+(t−432)2Rt △BAP A +A =B 2P 2BP 2+[+(t−4]=5232)2t 2t =254△ABP t =4t =254【考点】勾股定理动点问题直角三角形的性质【解析】(1)直接根据勾股定理求出的长度;(2)当为直角三角形时,分两种情况:①当为直角时,②当为直角时,分别求出此时的值即可;【解答】解:在中,,∴.由题意知,①当时,点与点重合,如图①,,此时;②当时,如图②,,,,在中,,在中,,即:,解得:,故当为直角三角形时,或.BC △ABP ∠APB ∠BAP t (1)Rt △ABC B =C 2A −A =B 2C 2−=523216BC =4cm (2)BP =tcm ∠APB =90∘P C BP =BC =4cm t =4∠BAP =90∘BP =tcm CP =(t−4)cm AC =3cm Rt △ACP A =P 2+(t−432)2Rt △BAP A +A =B 2P 2BP 2+[+(t−4]=5232)2t 2t =254△ABP t =4t =254。
人教版数学八年级上册第一次月考数学试卷一.选择题(共8小题,每小题3分,满分24分)1.下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是()A.1,2,6 B.2,2,4 C.1,2,3 D.2,3,42.一个三角形的三条边长分别为1、2、x,则x的取值范围是()A.1≤x≤3 B.1<x≤3 C.1≤x<3 D.1<x<33.如图,AD是△ABC的中线,已知△ABD的周长为25cm,AB比AC长6cm,则△ACD的周长为()A.19cm B.22cm C.25cm D.31cm4.若AD是△ABC的中线,则下列结论错误的是()A.AD平分∠BAC B.BD=DC C.AD平分BC D.BC=2DC5.如图,直线a∥b,则∠A的度数是()A.28°B.31°C.39°D.42°6.已知△ABC中,∠A:∠B:∠C=2:3:4,则这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形7.如图,l1∥l2,∠1=120°,∠2=100°,则∠3=()A.20°B.40°C.50°D.60°8.如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE二.填空题(共6小题,每小题3分,满分18分)9.一个三角形的两边长分别为2厘米和9厘米,若第三边的长为奇数,则第三边的长为厘米.10.在直角三角形、钝角三角形和锐角三角形这三种三角形中,有两条高在三角形外部的是三角形.11.如图,AB∥CD,∠1=50°,∠2=110°,则∠3= 度.12.如图,直线MA∥NB,∠A=70°,∠B=40°,则∠P= 度.13.如图,若△OAD≌△OBC,且∠O=65°,∠C=20°,则∠OAD= 度.14.如图,AB=AC,要使△ABE≌△ACD,应添加的条件是(添加一个条件即可).三.解答题(满分25分)15.已知,如图,AE是∠BAC的平分线,∠1=∠D.求证:∠1=∠2.16.如图,△ABC中,按要求画图:(1)画出△ABC中BC边上的中线AD;(2)画出△ABC中AB边上的高CH.17.如图,在△ABC中,∠A=70°,∠B=50°,CD平分∠ACB,求∠ACD的度数.18.如图,AB∥CD,∠A=60°,∠C=∠E,求∠C.19.如图,AB∥CD,证明:∠A=∠C+∠P.四、解答题(共18分)20.一个多边形,它的内角和比外角和的4倍多180°,求这个多边形的边数及内角和度数.21.如图,已知AC平分∠BAD,AB=AD.求证:△ABC≌△ADC.22.如图,AB=AC,点E、F分别是AB、AC的中点,求证:△AFB≌△AEC.五、解答题(共15分)23.如图,在△ABC中,∠ABC=66°,∠ACB=54°,BE是AC上的高,CF是AB上的高,H是BE和CF的交点,求∠ABE、∠ACF和∠BHC的度数.24.已知,如图在△ABC中,AC=BC,AC⊥BC,直线EF交AC于F,交AB于E,交BC的延长线于D,且CF=CD,连接AD、BF,则AD与BF之间有何关系?请证明你的结论.参考答案与试题解析一.选择题(共8小题,每小题3分,满分24分)1.下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是()A.1,2,6 B.2,2,4 C.1,2,3 D.2,3,4【考点】三角形三边关系.【分析】根据三角形的三边关系:三角形两边之和大于第三边,计算两个较小的边的和,看看是否大于第三边即可.【解答】解:A、1+2<6,不能组成三角形,故此选项错误;B、2+2=4,不能组成三角形,故此选项错误;C、1+2=3,不能组成三角形,故此选项错误;D、2+3>4,能组成三角形,故此选项正确;故选:D.【点评】此题主要考查了三角形的三边关系,关键是掌握三角形的三边关系定理.2.一个三角形的三条边长分别为1、2、x,则x的取值范围是()A.1≤x≤3 B.1<x≤3 C.1≤x<3 D.1<x<3【考点】三角形三边关系.【分析】已知两边,则第三边的长度应是大于两边的差而小于两边的和,这样就可求出第三边长的范围.【解答】解:根据题意得:2﹣1<x<2+1,即1<x<3.故选D.【点评】考查了三角形三边关系,本题需要理解的是如何根据已知的两条边求第三边的范围.3.如图,AD是△ABC的中线,已知△ABD的周长为25cm,AB比AC长6cm,则△ACD的周长为()A.19cm B.22cm C.25cm D.31cm【考点】三角形的角平分线、中线和高.【分析】根据三角形中线的定义可得BD=CD,再表示出△ABD和△ACD的周长的差就是AB、AC的差,然后计算即可.【解答】解:∵AD是BC边上的中线,∴BD=CD,∴△ABD和△ACD周长的差=(AB+BD+AD)﹣(AC+AD+CD)=AB﹣AC,∵△ABD的周长为25cm,AB比AC长6cm,∴△ACD周长为:25﹣6=19cm.故选:A.【点评】本题主要考查了三角形的中线的定义,把三角形的周长的差转化为已知两边AB、AC的长度的差是解题的关键.4.若AD是△ABC的中线,则下列结论错误的是()A.AD平分∠BAC B.BD=DC C.AD平分BC D.BC=2DC【考点】三角形的角平分线、中线和高.【分析】根据三角形的中线的概念:连接三角形的顶点和对边中点的线段叫做三角形的中线.【解答】解:A、AD平分∠BAC,则AD是△ABC的角平分线,故本选项错误;AD是△ABC的中线,则有BD=DC,AD平分BC,BC=2DC,故B、C、D正确.故选A.【点评】本题主要考查三角形的中线的概念,并能够正确运用几何式子表示是解本题的关键.5.如图,直线a∥b,则∠A的度数是()A.28°B.31°C.39°D.42°【考点】三角形内角和定理;平行线的性质.【专题】计算题;压轴题.【分析】本题主要利用平行线的性质和三角形的有关性质进行做题.【解答】解:∵a∥b,∴∠DBC=∠BCb=70°(内错角相等),∴∠ABD=180°﹣70°=110°(补角定义),∴∠A=180°﹣31°﹣110°=39°(三角形内角和性质).故选C.【点评】此题主要考查了学生的三角形的内角和定理:三角形的内角和为180°.及平行线的性质.6.已知△ABC中,∠A:∠B:∠C=2:3:4,则这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形【考点】三角形内角和定理.【专题】压轴题.【分析】根据比例,设三个内角为2k、3k、4k,再根据三角形的内角和定理求出最大角的度数.【解答】解:根据题意,设∠A、∠B、∠C分别为2k、3k、4k,则∠A+∠B+∠C=2k+3k+4k=180°,解得k=20°,∴4k=4×20°=80°<90°,所以这个三角形是锐角三角形.故选A.【点评】本题主要考查设“k”法的运用和三角形的内角和定理.7.如图,l1∥l2,∠1=120°,∠2=100°,则∠3=()A.20°B.40°C.50°D.60°【考点】三角形的外角性质;平行线的性质.【专题】计算题.【分析】先延长∠1和∠2的公共边交l1于一点,利用两直线平行,同旁内角互补求出∠4的度数,再利用外角性质求解.【解答】解:如图,延长∠1和∠2的公共边交l1于一点,∵l1∥l2,∠1=120°,∴∠4=180°﹣∠1=180°﹣120°=60°,∴∠3=∠2﹣∠4=100°﹣60°=40°.故选B.【点评】本题主要考查作辅助线构造三角形,然后再利用平行线的性质和外角性质求解.8.如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE【考点】全等三角形的性质.【分析】根据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断.【解答】解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选D.【点评】本题主要考查了全等三角形的性质,根据已知的对应角正确确定对应边是解题的关键.二.填空题(共6小题,每小题3分,满分18分)9.一个三角形的两边长分别为2厘米和9厘米,若第三边的长为奇数,则第三边的长为9 厘米.【考点】三角形三边关系.【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【解答】解:根据三角形的三边关系,得:第三边的取值范围是大于7而小于11.又第三边的长是奇数,故第三边的长是9厘米.【点评】考查了三角形的三边关系,还要注意第三边是奇数这一条件.10.在直角三角形、钝角三角形和锐角三角形这三种三角形中,有两条高在三角形外部的是钝角三角形.【考点】三角形的角平分线、中线和高.【分析】根据三角形的高的概念,通过具体作高.发现:锐角三角形的三条高都在三角形的内部;直角三角形有两条高即三角形的两条直角边,一条在内部;钝角三角形有两条高在三角形的外部,一条在内部.【解答】解:有两条高在三角形外部的是钝角三角形.【点评】注意不同形状的三角形的高的位置.11.如图,AB∥CD,∠1=50°,∠2=110°,则∠3= 60 度.【考点】三角形内角和定理;对顶角、邻补角;平行线的性质.【专题】计算题.【分析】如图所示,可根据邻补角、内错角以及三角形内角和求出∠3的度数.【解答】解:∵∠2=110°,∴∠4=70°,∵AB∥CD,∴∠5=∠1=50°,利用三角形的内角和定理,就可以求出∠3=180°﹣∠4﹣∠5=60°.【点评】本题考查了三角形的内角和定理,以及平行线的性质:两直线平行,同旁内角互补.12.如图,直线MA∥NB,∠A=70°,∠B=40°,则∠P= 30 度.【考点】三角形的外角性质;平行线的性质.【专题】计算题.【分析】要求∠P的度数,只需根据平行线的性质,求得其所在的三角形的外角,根据三角形的外角的性质进行求解.【解答】解:根据平行线的性质,得∠A的同位角是70°.再根据三角形的外角的性质,得∠P=70°﹣40°=30°.故答案为:30°.【点评】特别注意根据平行线的性质以及三角形的一个外角等于和它不相邻的两个内角和,能够发现并证明此题中的结论:∠P=∠A﹣∠B.13.如图,若△OAD≌△OBC,且∠O=65°,∠C=20°,则∠OAD= 95 度.【考点】全等三角形的性质.【分析】运用全等求出∠D=∠C,再用三角形内角和即可求.【解答】解:∵△OAD≌△OBC,∴∠OAD=∠OBC;在△OBC中,∠O=65°,∠C=20°,∴∠OBC=180°﹣(65°+20°)=180°﹣85°=95°;∴∠OAD=∠OBC=95°.故答案为:95.【点评】考查全等三角形的性质,三角形内角和及推理能力,本题比较简单.14.如图,AB=AC,要使△ABE≌△ACD,应添加的条件是∠B=∠C或AE=AD (添加一个条件即可).【考点】全等三角形的判定.【专题】开放型.【分析】要使△ABE≌△ACD,已知AB=AC,∠A=∠A,则可以添加一个边从而利用SAS来判定其全等,或添加一个角从而利用AAS来判定其全等.【解答】解:添加∠B=∠C或AE=AD后可分别根据ASA、SAS判定△ABE≌△ACD.故答案为:∠B=∠C或AE=AD.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.三.解答题(满分25分)15.已知,如图,AE是∠BAC的平分线,∠1=∠D.求证:∠1=∠2.【考点】平行线的判定与性质;三角形的角平分线、中线和高.【专题】证明题.【分析】由∠1=∠D,根据同位角相等,两直线平行可证AE∥DC,根据两直线平行,内错角相等可证∠EAC=∠2,再根据角平分线的性质即可求解.【解答】证明:∵∠1=∠D,∴AE∥DC(同位角相等,两直线平行),∴∠EAC=∠2(两直线平行,内错角相等),∵AE是∠BAC的平分线,∴∠1=∠EAC,∴∠1=∠2.【点评】本题考查了平行线的判定与性质和三角形的角平分线的性质,有一定的综合性,但难度不大.16.如图,△ABC中,按要求画图:(1)画出△ABC中BC边上的中线AD;(2)画出△ABC中AB边上的高CH.【考点】作图—复杂作图;三角形的角平分线、中线和高.【分析】(1)作线段BC的垂直平分线,垂足为D,连接AD即可;(2)以C为圆心,以任意长为半径画弧交BA的延长线于两点,再以这两点为圆心,以大于这两点间的长度的为半径画弧,相交于一点,然后作出高即可.【解答】解:(1)如图,AD即为所求作的BC边上的中线;(2)如图,CH即为所求作的AB边上的高.【点评】本题考查了复杂作图,主要有线段垂直平分线的作法,过一点作已知直线的垂线,都是基本作图,需熟练掌握.17.如图,在△ABC中,∠A=70°,∠B=50°,CD平分∠ACB,求∠ACD的度数.【考点】三角形内角和定理.【专题】压轴题.【分析】本题考查的是三角形内角和定理,求出∠ACB的度数后易求解.【解答】解:∵∠A=70°,∠B=50°,∴∠ACB=180°﹣70°﹣50°=60°(三角形内角和定义).∵CD平分∠ACB,∴∠ACD=∠ACB=×60°=30°.【点评】此类题解答的关键为求出∠ACB后求解即可.18.如图,AB∥CD,∠A=60°,∠C=∠E,求∠C.【考点】平行线的性质;三角形的外角性质.【专题】计算题.【分析】根据两直线平行,内错角相等,可得∠DFE,由外角的性质,即可求得∠C.【解答】解:∵AB∥CD,∠A=60°,∴∠DFE=∠A=60°,∵∠DFE=∠C+∠E,∠C=∠E,∴∠C=30°.【点评】此题考查了平行线的性质与三角形外角的性质.19.如图,AB∥CD,证明:∠A=∠C+∠P.【考点】平行线的性质;三角形的外角性质.【专题】证明题.【分析】因为∠PED为△PCE的外角,所以∠P+∠C=∠PED;再根据两直线平行,同位角相等可得∠A=∠PED,即∠A=∠C+∠P.【解答】证明:∵AB∥CD,∴∠A=∠PED,(两直线平行,同位角相等)又∠PED为△PCE的外角,∴∠P+∠C=∠PED,∴∠P+∠C=∠A.【点评】本题考查三角形外角的性质及平行线的性质,解答的关键是沟通外角和内角的关系.四、解答题(共18分)20.一个多边形,它的内角和比外角和的4倍多180°,求这个多边形的边数及内角和度数.【考点】多边形内角与外角.【分析】多边形的内角和比外角和的4倍多180°,而多边形的外角和是360°,则内角和是1620度.n边形的内角和可以表示成(n﹣2)•180°,设这个多边形的边数是n,就得到方程,从而求出边数.【解答】解:根据题意,得(n﹣2)•180=1620,解得:n=11.则这个多边形的边数是11,内角和度数是1620度.【点评】此题比较简单,只要结合多边形的内角和公式寻求等量关系,构建方程即可求解.21.如图,已知AC平分∠BAD,AB=AD.求证:△ABC≌△ADC.【考点】全等三角形的判定.【专题】证明题.【分析】首先根据角平分线的定义得到∠BAC=∠DAC,再利用SAS定理便可证明其全等.【解答】证明:∵AC平分∠BAD,∴∠BAC=∠DAC,在△ABC和△ADC中,,∴△ABC≌△ADC.【点评】此题主要考查了全等三角形的判定,关键是找准能使三角形全等的条件.22.如图,AB=AC,点E、F分别是AB、AC的中点,求证:△AFB≌△AEC.【考点】全等三角形的判定.【专题】证明题.【分析】根据中点的定义可知AE=AB,AF=AC,可知AE=AF,根据SAS即可证明△AFB≌△AEC.【解答】证明:∵点E、F分别是AB、AC的中点,∴AE=AB,AF=AC,∵AB=AC,∴AE=AF,在△AFB和△AEC中,AB=AC,∠A=∠A,AE=AF,∴△AFB≌△AEC.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.五、解答题(共15分)23.如图,在△ABC中,∠ABC=66°,∠ACB=54°,BE是AC上的高,CF是AB上的高,H是BE和CF的交点,求∠ABE、∠ACF和∠BHC的度数.【考点】三角形的角平分线、中线和高;三角形内角和定理.【分析】由三角形的内角和是180°,可求∠A=60°.又因为BE是AC边上的高,所以∠AEB=90°,所以∠ABE=30°.同理,∠ACF=30度,又因为∠BHC是△CEH的一个外角,所以∠BHC=120°.【解答】解:∵∠ABC=66°,∠ACB=54°,∴∠A=180°﹣∠ABC﹣∠ACB=180°﹣66°﹣54°=60°.又∵BE是AC边上的高,所以∠AEB=90°,∴∠ABE=180°﹣∠BAC﹣∠AEB=180°﹣90°﹣60°=30°.同理,∠ACF=30°,∴∠BHC=∠BEC+∠ACF=90°+30°=120°.【点评】此题主要考查了三角形外角的性质及三角形的内角和定理,求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件;三角形的外角通常情况下是转化为内角来解决.24.已知,如图在△ABC中,AC=BC,AC⊥BC,直线EF交AC于F,交AB于E,交BC的延长线于D,且CF=CD,连接AD、BF,则AD与BF之间有何关系?请证明你的结论.【考点】全等三角形的判定与性质.【分析】通过全等三角形的判定定理SAS证得△BCF≌△ACD,则由“全等三角形的对应边相等”推知AD=BF.【解答】解:AD=BF,理由如下:如图,∵AC⊥BC,∴∠BCF=∠ACD=90°,∴在△BCF与△ACD中,,∴△BCF≌△ACD(SAS),∴AD=BF.【点评】本题考查了全等三角形的判定与性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.考试中答题策略和几个答题窍门对于中学生来说,最终都要参加升学考试,而考试的遗憾莫过于实有的水平未能充分发挥出来,致使十几年的辛劳毁于两小时的“经验”不足。
2015-2016学年湖南省益阳市国基实验学校八年级(上)第一次月考数学试卷一、选择题(把正确答案填写在答案表上,每小题3分,共30分)1.下列各式:,,,(x ﹣y )中,是分式的共有( )A .1个B .2个C .3个D .4个2.要使分式有意义,则x 应满足( )A .x ≠﹣1B .x ≠2C .x ≠±1D .x ≠﹣1且x ≠23.计算的正确结果是( )A .0B .C .D .4.下列各式中正确的是( )A .B .C .D .5.若(x ﹣3)0﹣2(3x ﹣6)﹣2有意义,则x 的取值范围是( )A .x >3B .x <2C .x ≠3或x ≠2D .x ≠3且x ≠26.若102y =25,则10﹣y 等于( )A .B .C .﹣或D .7.如图,Rt △ABC 中,∠ACB=90°,DE 过点C ,且DE ∥AB ,若∠ACD=55°,则∠B 的度数是( )A .65°B .45°C .55°D .35°8.把三角形的面积分为相等的两部分的是( )A .三角形的角平分线B .三角形的中线C .三角形的高D .以上都不对9.下列的三条线段能组成三角形的是( )A .1,2,3B .2,2,4C .3,4,5D .3,4,810.下列语句不是命题的是( )A .若x 2=4,则x=2B .同旁内角相等C .延长线段ABD .直角大于锐角二、填空题(把正确答案填写在横线上,每小题3分,共30分)11.当x______时,分式有意义.12.化简=______.13.某种微粒的直径约5060纳米,用科学记数法表示为______ 米.14. =______.15.若分式的值为零,则x=______.16.若,则=______.17.A、B两地相距10千米,甲、乙二人同时从A地出发去B地,甲的速度是乙的速度的3倍,结果甲比乙早到小时.设乙的速度为x千米/时,可列方程为______.18.已知在△ABC中,∠A比它的外角小20度,则∠B+∠C=______度.19.在△ABC中,∠A=∠B=∠C,则∠B=______度.20.若 a=0,b=0,那么ab=0,它是______命题(选填“真”或“假”).三、解答题:21.计算下列各式:(1)(2)(3)(4).22.先化简,再求值:(1﹣)÷,其中x=2.23.解下列方程:(1)(2).四、应用题:(第24题12分,第25题6分,第26题12分,共30分)24.甲、乙两地相距19千米,某人从甲地出发出乙地,先步行7千米,然后改骑自行车,共用2小时到达乙地.已知这个人骑自行车的速度是步行速度的4倍.(1)这个人步行时间为______小时,骑车时间为______小时.(2)求步行速度和骑自行车的速度.25.已知:△ABC中,∠ABC和∠ACB的平分线BD,CE相交于点O,∠ABC=40°,∠ACB=80°,求∠BOC的度数.26.如图所示,在△ABC中:(1)画出BC边上的高AD和中线AE.(2)若∠B=30°,∠ACB=130°,求∠BAD和∠CAD的度数.2015-2016学年湖南省益阳市国基实验学校八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(把正确答案填写在答案表上,每小题3分,共30分)1.下列各式:,,,(x﹣y)中,是分式的共有()A.1个B.2个C.3个D.4个【考点】分式的定义.【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:,,(x﹣y)分母中含有字母,因此是分式;的分母中均不含有字母,因此它们是整式,而不是分式.故分式有3个.故选C.2.要使分式有意义,则x应满足()A.x≠﹣1 B.x≠2 C.x≠±1 D.x≠﹣1且x≠2【考点】分式有意义的条件.【分析】本题主要考查分式有意义的条件:分母≠0,令分式分母不为0,解得x的取值范围.【解答】解:∵(x+1)(x﹣2)≠0,∴x+1≠0且x﹣2≠0,∴x≠﹣1且x≠2.故选D.3.计算的正确结果是()A.0 B.C.D.【考点】分式的加减法.【分析】对异分母分式通分计算后直接选取答案.【解答】解:原式==,故选C.4.下列各式中正确的是()A.B.C .D .【考点】分式的乘除法.【分析】原式各项分子分母分别乘方,计算得到结果,即可做出判断.【解答】解:A 、原式==,错误;B 、原式=,错误;C 、原式=,正确;D 、原式=,错误.故选C .5.若(x ﹣3)0﹣2(3x ﹣6)﹣2有意义,则x 的取值范围是( )A .x >3B .x <2C .x ≠3或x ≠2D .x ≠3且x ≠2【考点】负整数指数幂;零指数幂.【分析】根据零指数幂及负整数指数幂的意义,列出关于x 的不等式组,解不等式组即可求出x 的范围.【解答】解:∵(x ﹣3)0﹣2(3x ﹣6)﹣2有意义,∴,解得:x ≠3且x ≠2.故选D .6.若102y =25,则10﹣y 等于( )A .B .C .﹣或D .【考点】幂的乘方与积的乘方;负整数指数幂.【分析】用幂的乘方的逆用和负整指数幂计算即可.【解答】解:∵102y =25,∴(10y )2=25,∴10y =5,10y =﹣5(舍)∴10﹣y ==,故选A ,7.如图,Rt△ABC中,∠ACB=90°,DE过点C,且DE∥AB,若∠ACD=55°,则∠B的度数是()A.65° B.45° C.55° D.35°【考点】平行线的性质;余角和补角.【分析】根据“∠ACB=90°和∠ACD=55°”先求出∠BCE的度数,再根据两直线平行,内错角相等即可求出∠B.【解答】解:∵∠ACB=90°,∠ACD=55°,∴∠BCE=180°﹣90°﹣55°=35°,∵DE∥AB,∴∠B=∠BCE=35°.故选D.8.把三角形的面积分为相等的两部分的是()A.三角形的角平分线 B.三角形的中线C.三角形的高D.以上都不对【考点】三角形的角平分线、中线和高;三角形的面积.【分析】根据等底等高的两个三角形面积相等知,三角形的中线把三角形的面积分为相等的两部分.【解答】解:把三角形的面积分为相等的两部分的是三角形的中线.故选B.9.下列的三条线段能组成三角形的是()A.1,2,3 B.2,2,4 C.3,4,5 D.3,4,8【考点】三角形三边关系.【分析】根据三角形的三边关系定理:三角形两边之和大于第三边,针对每一个选项进行计算,可选出答案.【解答】解:A、∵1+2=3,∴以1,2,3为边长不能组成三角形,故本选项错误;B、∵2+2=4,∴以2,2,4为边长不能组成三角形,故本选项错误;C、∵3+4>5,∴以3,4,5为边长能组成三角形,故本选项正确;D、∵3+4<8,∴以3,4,8为边长不能组成三角形,故本选项错误.故选:C.10.下列语句不是命题的是()A.若x2=4,则x=2 B.同旁内角相等 C.延长线段AB D.直角大于锐角【考点】命题与定理.【分析】根据命题的定义:判断一件事情的语句,叫做命题判断即可.【解答】解:若x2=4,则x=2是命题;同旁内角相等是命题;延长线段AB不是命题;直角大于锐角是命题,故选:C.二、填空题(把正确答案填写在横线上,每小题3分,共30分)11.当x ≠±1 时,分式有意义.【考点】分式有意义的条件.【分析】分式有意义,则分母≠0,故可知:|x|﹣1≠0,解可得答案.【解答】解:∵分式有意义,∴|x|﹣1≠0,|x|≠1,∴x≠±1.故答案为:≠±1.12.化简= .【考点】约分.【分析】先对分式的分子进行因式分解,再进行约分即可.【解答】解:原式==.故答案是.13.某种微粒的直径约5060纳米,用科学记数法表示为 5.06×10﹣6米.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:5060纳米=5060×10﹣9米=5.06×10﹣6米.故答案为:5.06×10﹣6.14. = 3 .【考点】负整数指数幂;零指数幂.【分析】首先根据a0=1(a≠0)、a﹣p=(a≠0,p为正整数)计算,然后再按从左到右的顺序计算.【解答】解:原式=×9÷1=3.故答案为:3.15.若分式的值为零,则x= ﹣3 .【考点】分式的值为零的条件.【分析】先根据分式的值为0的条件列出关于x的不等式组,求出x的值即可.【解答】解:∵分式的值为零,∴,解得x=﹣3.故答案为:﹣3.16.若,则= 3 .【考点】完全平方公式.【分析】利用完全平方公式将所求代数式变形即可代值计算.【解答】解: =(x+)2﹣2=5﹣2=3.故答案为:3.17.A、B两地相距10千米,甲、乙二人同时从A地出发去B地,甲的速度是乙的速度的3倍,结果甲比乙早到小时.设乙的速度为x千米/时,可列方程为+=.【考点】由实际问题抽象出分式方程.【分析】根据甲乙速度关系得出两人所行走的时间,进而得出等式方程即可.【解答】解:设乙的速度为x千米/时,则甲的速度是3x千米/时,根据题意可得: +=.故答案为: +=.18.已知在△ABC中,∠A比它的外角小20度,则∠B+∠C= 100 度.【考点】三角形的外角性质.【分析】设∠A的外角为x,根据邻补角的定义列方程求出x,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠B+∠C=x.【解答】解:设∠A的外角为x,则∠A=x﹣20°,由邻补角的定义得,x+x﹣20°=180°,解得x=100°,由三角形的外角性质得,∠B+∠C=x=100°.故答案为:100.19.在△ABC中,∠A=∠B=∠C,则∠B= 60 度.【考点】三角形内角和定理.【分析】本题考查的是三角形内角和定理.设∠A为X,然后根据三角形内角和为180°的等量关系求解即可.【解答】解:设∠A为x.x+2x+3x=180°⇒x=30°.∴∠A=30°,∠B=60°,∠C=90°.故填60.20.若 a=0,b=0,那么ab=0,它是真命题(选填“真”或“假”).【考点】命题与定理.【分析】根据有理数的乘法法则:任何数与0相乘都得0判断即可.【解答】解:如果 a=0,b=0,那么ab=0,∴若 a=0,b=0,那么ab=0是真命题,故答案为:真.三、解答题:21.计算下列各式:(1)(2)(3)(4).【考点】分式的混合运算;负整数指数幂.【分析】(1)根据负整数指数幂和约分的法则进行计算即可;(2)先通分,再根据同分母的分式进行加减即可;(3)根据运算顺序,先算乘除,再算加减;(4)根据运算顺序,先算括号里面的,再算乘除即可.【解答】解:(1)原式=4a2b••=;(2)原式=﹣==;(3)原式=••==;(4)原式=[﹣]•(x﹣1)=•(x﹣1)=﹣.22.先化简,再求值:(1﹣)÷,其中x=2.【考点】分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,将x的值代入计算即可求出值.【解答】解:原式=•=•=,当x=2时,原式==1.23.解下列方程:(1)(2).【考点】解分式方程.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:3x﹣1=5,解得:x=2,经检验x=2是增根,分式方程无解;(2)去分母得:1﹣2x+2﹣3x﹣3=0,解得:x=0,经检验x=0是分式方程的解.四、应用题:(第24题12分,第25题6分,第26题12分,共30分)24.甲、乙两地相距19千米,某人从甲地出发出乙地,先步行7千米,然后改骑自行车,共用2小时到达乙地.已知这个人骑自行车的速度是步行速度的4倍.(1)这个人步行时间为 1.4 小时,骑车时间为0.6 小时.(2)求步行速度和骑自行车的速度.【考点】分式方程的应用.【分析】(1)设步行速度为x千米/时,根据等量关系:步行时间+骑自行车的时间=2,列分式方程解出即可;(2)由(1)得出结论.【解答】解:(1)设步行速度为x千米/时,则骑自行车的速度为4x千米/时,根据题意得:,解得:x=5,经检验:x=5是原分式方程的解,∴这个人步行时间为: =1.4小时,骑车时间为:2﹣1.4=0.6小时,故答案为:1.4,0.6;(2)由(1)得:4x=4×5=20答:步行速度为1.4千米/时,则骑自行车的速度为0.6千米/时.25.已知:△ABC中,∠ABC和∠ACB的平分线BD,CE相交于点O,∠ABC=40°,∠ACB=80°,求∠BOC的度数.【考点】三角形内角和定理;角平分线的定义.【分析】先利用角平分线的定义求出∠DBC和∠ECB的度数,再运用△BOC的内角和是180°,求解∠BOC的度数.【解答】解:∵∠ABC和∠ACB的平分线BD,CE相交于点O,∠ABC=40°,∠ACB=80°,∴∠DBC=∠ABC=20°,∠ECB=∠ACB=40°,∴∠BOC=180°﹣∠DBC﹣∠ECB=180°﹣20°﹣40°=120°.答:∠BOC=120°.26.如图所示,在△ABC中:(1)画出BC边上的高AD和中线AE.(2)若∠B=30°,∠ACB=130°,求∠BAD和∠CAD的度数.【考点】作图—复杂作图.【分析】(1)延长BC,作AD⊥BC于D;作BC的中点E,连接AE即可;(2)可根据三角形的内角和定理求∠BAC=20°,由外角性质求∠CAD=40°,那可得∠BAD=60°.【解答】解:(1)如图:(2)∵∠B=30°,∠ACB=130°,∴∠BAC=180°﹣30°﹣130°=20°,∵∠ACB=∠D+∠CAD,AD⊥BC,∴∠CAD=130°﹣90°=40°,∴∠BAD=20°+40°=60°.。