《信号检测与估计》总复习
- 格式:doc
- 大小:189.50 KB
- 文档页数:4
信号检测与估计知识点一、知识概述《信号检测与估计知识点》①基本定义:信号检测与估计呢,简单说就是从一堆有干扰的数据里找到真正的信号,还得把这个信号的一些特征估摸出来。
就好比在很嘈杂的菜市场找朋友的声音(信号),还得判断朋友声音的大小之类的特征(估计)。
②重要程度:在通信、雷达、图像处理这些学科里超级重要。
就拿雷达来说,如果不能准确检测和估计信号,那根本就不知道飞机在哪呢,整个防空系统都得乱套。
③前置知识:得先知道概率论、随机过程这些基础知识。
不然,信号检测与估计里那些关于概率、随机变量啥的根本理解不了。
④应用价值:在通信领域,可以提升信号传输准确性;在医学上,检测病人的生理信号,像心电图啥的,估计其参数有助于诊断病情;在工业自动化里,对检测到的信号进行估计,能更好控制生产流程。
二、知识体系①知识图谱:信号检测与估计在信号处理这个大的学科里面是很核心的部分,就像心脏在人体里的位置一样重要。
②关联知识:和信号处理里的滤波、调制解调关系密切。
比如说滤波后的信号可能才更有利于检测和估计,而检测估计的结果可以反馈给调制解调改变参数。
③重难点分析:- 掌握难度:这个知识点有点难,难点在于要同时考虑到噪声和信号的混合情况,还得建立合适的模型。
按我的经验,很多时候分不清哪些是噪声干扰带来的变化,哪些是信号本身的特征。
- 关键点:把握好概率统计的方法,准确地建立信号模型是关键。
④考点分析:- 在考试中很重要,如果是在电子通信等相关专业的考试里,经常考。
- 考查方式可能是给一些含噪声的信号数据,让你进行检测和估计参数,也可能是叫你设计一个简单的信号检测方案。
三、详细讲解【理论概念类】①概念辨析:- 信号检测就是判断信号是否存在。
咱们看谍战片里的电台接收情报,接收员得判断接收到的微弱声音(可能包含信号和噪声)里是不是有真正要接收的情报信号,这就是信号检测。
- 信号估计是对信号的各种参数,像幅度、相位等进行估计。
好比知道有信号了,还得估摸这个信号是多强、频率是多少之类的。
信号检测估计复习资料第二章随机信号及其统计描述1.两个随机过程不相关一定独立。
()2.严格的平稳随机过程不一定是宽平稳随机过程。
()3.平稳随机过程的功率谱密度与自相关函数是一对傅里叶变换。
()4.白噪声是一种理想化模型,在实际中是不存在的。
()5.功率谱密度是样本函数x在单位频带内在1欧姆电阻上的平均功率值。
()6.加性噪声按功率谱密度分为()噪声和()噪声。
7.有色噪声的功率谱密度在频率范围内是均匀分布的。
()8.对于白噪声下面哪个量是均匀分布的()。
A.噪声电压B.噪声电流C.噪声功率D.噪声功率谱密度9.在信号检测与估计理论中,通信接收机中的噪声可以近似为平稳随机过程。
()第三章经典检测理论1.什么是二元检测,其本质是什么?画出其理论模型。
2.二元检测中有两类错误的判决概率,两类正确判决概率。
( )3.下面哪种概率是虚警概率()。
A.P(D0|H0)B.P(D1|H0)C.P(D1|H1)D. P(D0|H1)4.二元检测中有先验概率和后验概率,P(H0)是()概率,P (H0|x)是()概率。
5.下面哪个为后验概率密度函数()。
A.f(x|H0)B.f(x|H1,a)C.f(a|x)D.f(a)6.经典检测理论中常用的4个检测准则分别为()、()、()和()。
7.最大后验概率准则和最小错误概率准则判决公式是不同的。
()8.最大后验概率准则为何称为理想观测者准则?9.极大极小风险准则是在先验概率未知的情况下,使可能出现的最大风险达到极小的判别准则。
()10.Neyman-Pearson准则规定,在给定( )概率情况下,使得()概率尽可能大。
11.最大后验估计和最大似然估计的使用条件。
12.下面哪种判决准则是时平均风险最小的准则()。
A.最大后验概率准则B.最小错误概率准则C.Bayes准则D.Neyman-Pearson准则13.当先验概率未知和代价函数均未知时,使用的判决准则是Neyman-Pearson准则。
《信号检测与估计》总复习2005.4第一章 绪 论本章提要本章简要介绍了信号检测与估计理论的地位作用、研究对象和发展历程,以及本课程的性能和主要内容等。
第二章 随机信号及其统计描述 本章提要本章简要阐述了随机过程的基本概念、统计描述方法,介绍了高斯噪声和白噪声及其统计特性。
本章小结(1)概率分布函数是描述随机过程统计特性的一个重要参数,既适用于离散随机过程,也适用于连续随机过程。
一维概率分布函数具有如下性质1),(0≤≤t x F X[]0)(),(=-∞<=-∞t X P t F X ;[]1)(),(=+∞<=+∞t X P t F X ;),(),())((1221t x F t x F x t X x P X X -=<≤;若21x x <,则),(),(12t x F t x F X X ≥概率密度函数可以直接给出随机变量取各个可能值的概率大小,仅适用于连续随机变量。
一维概率密度具有如下性质:0),(≥t x f X ;1),(=⎰+∞∞-dx t x f X ;x d t x f t x F x X X ''=⎰∞-),(),(;[]⎰=-=<≤21),(),(),()(1221x x X X X dxt x f t x F t x F x t X x P(2)随机过程的数字特征主要包括数学期望、方差、自相关函数、协方差函数和功率谱密度。
分别描述了随机过程样本函数围绕的中心,偏离中心的程度、样本波形两个不同时刻的相关程度、样本波形起伏量在两个不同时刻的相关程度和平均功率在不同频率上的分布情况。
定义公式分别为:[]dxt x xf t X E t m X X ⎰+∞∞-==),()()([]{}[]dx t x f t m x t m t X E t X X X X ⎰+∞∞--=-=),()()()()(222σ[]212121212121),,,()()(),(dx dx t t x x f x x t X t X E t t R X X ⎰⎰+∞∞-+∞∞-==[][]{}[][]2121212211221121),,,()()()()()()(),(dx dx t t x x f t m x t m xt m t X t m t X E t t C X X X X X X ⎰⎰∞+∞-∞+∞---=--=。
第二章 检测理论1.二元检测:① 感兴趣的信号在观测样本中受噪声干扰,根据接收到的测量值样本判决信号的有无。
② 感兴趣的信号只有两种可能的取值,根据观测样本判决是哪一个。
2.二元检测的数学模型:感兴趣的信号s ,有两种可能状态:s0、s1。
在接收信号的观测样本y 中受到噪声n 的污染,根据测量值y 作出判决:是否存在信号s ,或者处于哪个状态。
即:y(t)=si(t)+n(t) i=0,1假设:H 0:对应s 0状态或无信号,H 1:对应s 1状态或有信号。
检测:根据y 及某些先验知识,判断哪个假设成立。
3. 基本概念与术语✧ 先验概率:不依赖于测量值或观测样本的条件下,某事件(假设)发生或 成立的概率。
p(H 0),p(H 1)。
✧ 后验概率:在已掌握观测样本或测量值y 的前提下,某事件(假设)发生或成立的概率。
p(H 0/y),p(H 1/y) 。
✧ 似然函数:在某假设H 0或H 1成立的条件下,观测样本y 出现的概率。
✧ 似然比:✧ 虚警概率 :无判定为有;✧ 漏报概率 :有判定为无;✧ (正确)检测概率 :有判定为有。
✧ 平均风险: 4.1 最大后验概率准则(MAP )在二元检测的情况下,有两种可能状态:s0、s1,根据测量值y 作出判决:是否存在信号s ,或者处于哪个状态。
即: y(t)=si(t)+n(t) i=0,1假设:H 0:对应s 0状态或无信号,H 1:对应s 1状态或有信号。
)|()|()(01H y p H y p y L =f P m P d P )(][)(][111110101010100000H P C P C P H P C P C P r ∙++∙+=如果 成立,判定为H 0成立;否则 成立,判定为H 1成立。
利用贝叶斯定理: 可以得到: 如果 成立,判定为H 0成立; 如果 成立,判定为H 1成立;定义似然比为: 得到判决准则: 如果 成立,判定为H 0成立; 如果 成立,判定为H 1成立;这就是最大后验准则。
第二章 检测理论1.二元检测:① 感兴趣的信号在观测样本中受噪声干扰,根据接收到的测量值样本判决信号的有无。
② 感兴趣的信号只有两种可能的取值,根据观测样本判决是哪一个。
2.二元检测的数学模型:感兴趣的信号s ,有两种可能状态:s0、s1。
在接收信号的观测样本y 中受到噪声n 的污染,根据测量值y 作出判决:是否存在信号s ,或者处于哪个状态。
即:y(t)=si(t)+n(t) i=0,1假设:H 0:对应s0状态或无信号,H 1:对应s1状态或有信号。
检测:根据y 及某些先验知识,判断哪个假设成立。
3. 基本概念与术语✧ 先验概率:不依赖于测量值或观测样本的条件下,某事件(假设)发生或 成立的概率。
p(H 0),p(H 1)。
✧ 后验概率:在已掌握观测样本或测量值y 的前提下,某事件(假设)发生或成立的概率。
p(H 0/y),p(H 1/y) 。
✧ 似然函数:在某假设H0或H1成立的条件下,观测样本y 出现的概率。
✧ 似然比:✧ 虚警概率 :无判定为有;✧ 漏报概率 :有判定为无;✧ (正确)检测概率 :有判定为有。
✧ 平均风险: 4.1 最大后验概率准则(MAP )在二元检测的情况下,有两种可能状态:s0、s1,根据测量值y 作出判决:是否存在信号s ,或者处于哪个状态。
即: y(t)=si(t)+n(t) i=0,1假设:H 0:对应s0状态或无信号,H 1:对应s1状态或有信号。
)|()|()(01H y p H y p y L =f P m P d P )(][)(][111110101010100000H P C P C P H P C P C P r ∙++∙+=如果 成立,判定为H0成立;否则 成立,判定为H1成立。
利用贝叶斯定理: 可以得到: 如果 成立,判定为H0成立; 如果 成立,判定为H1成立;定义似然比为:得到判决准则: 如果 成立,判定为H0成立; 如果 成立,判定为H1成立;这就是最大后验准则。
3一、简答题注释简答题(每题5分,共20分)或(每题4分,共20分)二、第1章简答题1.从系统和信号的角度看,简述信号检测与估计的研究对象。
答:从系统的角度看,信号检测与估计的研究对象是加性噪声情况信息传输系统中的接收设备。
从信号的角度看,信号检测与估计的研究对象是随机信号或随机过程。
2.简述信号检测与估计的基本任务和所依赖的数学基础。
答:解决信息传输系统接收端信号与数据处理中信息恢复与获取问题,或从被噪声及其他干扰污染的信号中提取、恢复所需的信息。
信号检测与估计所依赖的数学基础是数理统计中贝叶斯统计的贝叶斯统计决策理论和方法。
3.概述信号在传输过程中与噪声混叠在一起的类型。
答:信号在传输过程中,噪声与信号混杂在一起的类型有3种:噪声与信号相加,噪声与信号相乘(衰落效应),噪声与信号卷积(多径效应)。
与信号相加的噪声称为加性噪声,与信号相乘的噪声称为乘性噪声,与信号卷积的噪声称为卷积噪声。
加性噪声是最常见的干扰类型,也是最基本的,因为乘性噪声和卷积噪声的情况均可转换为加性噪声的情况。
三、第2章简答题1.简述匹配滤波器概念及其作用。
答:匹配滤波器是在输入为确定信号加平稳噪声的情况下,使输出信噪比达到最大的线性系统。
匹配滤波器的作用:一是使滤波器输出有用信号成分尽可能强;二是抑制噪声,使滤波器输出噪声成分尽可能小,减小噪声对信号处理的影响。
2.根据匹配滤波器传输函数与输入确定信号及噪声的关系,简述匹配滤波器的原理。
答:匹配滤波器传输函数等于输入确定信号频谱的复共轭除以输入平稳噪声的功率谱密度,再附加相位项T ω-,其中T 为输入确定信号的持续时间或观测时间。
由于匹配滤波器传输函数的幅频特性与输入确定信号的幅频特性成正比,与输入噪声的功率谱密度成反比;对于某个频率点,信号越强,该频率点的加权系数越大,噪声越强,加权越小。
从而起到加强信号,抑制噪声的作用。
对于信号,匹配滤波器的相频特性与输入信号的相位谱互补,使输入信号经过匹配滤波器以后,相位谱将全部被补偿掉。
一、简答题注释简答题(每题5分,共20分)或(每题4分,共20分)二、第1章简答题1.从系统和信号的角度看,简述信号检测与估计的研究对象。
答:从系统的角度看,信号检测与估计的研究对象是加性噪声情况信息传输系统中的接收设备。
从信号的角度看,信号检测与估计的研究对象是随机信号或随机过程。
2.简述信号检测与估计的基本任务和所依赖的数学基础。
答:解决信息传输系统接收端信号与数据处理中信息恢复与获取问题,或从被噪声及其他干扰污染的信号中提取、恢复所需的信息。
信号检测与估计所依赖的数学基础是数理统计中贝叶斯统计的贝叶斯统计决策理论和方法。
3.概述信号在传输过程中与噪声混叠在一起的类型。
答:信号在传输过程中,噪声与信号混杂在一起的类型有3种:噪声与信号相加,噪声与信号相乘(衰落效应),噪声与信号卷积(多径效应)。
与信号相加的噪声称为加性噪声,与信号相乘的噪声称为乘性噪声,与信号卷积的噪声称为卷积噪声。
加性噪声是最常见的干扰类型,也是最基本的,因为乘性噪声和卷积噪声的情况均可转换为加性噪声的情况。
三、第2章简答题1.简述匹配滤波器概念及其作用。
答:匹配滤波器是在输入为确定信号加平稳噪声的情况下,使输出信噪比达到最大的线性系统。
匹配滤波器的作用:一是使滤波器输出有用信号成分尽可能强;二是抑制噪声,使滤波器输出噪声成分尽可能小,减小噪声对信号处理的影响。
2.根据匹配滤波器传输函数与输入确定信号及噪声的关系,简述匹配滤波器的原理。
答:匹配滤波器传输函数等于输入确定信号频谱的复共轭除以输入平稳噪声的功率谱密度,再附加相位项T ω-,其中T 为输入确定信号的持续时间或观测时间。
由于匹配滤波器传输函数的幅频特性与输入确定信号的幅频特性成正比,与输入噪声的功率谱密度成反比;对于某个频率点,信号越强,该频率点的加权系数越大,噪声越强,加权越小。
从而起到加强信号,抑制噪声的作用。
对于信号,匹配滤波器的相频特性与输入信号的相位谱互补,使输入信号经过匹配滤波器以后,相位谱将全部被补偿掉。
第二章 检测理论1.二元检测:① 感兴趣的信号在观测样本中受噪声干扰,根据接收到的测量值样本判决信号的有无。
② 感兴趣的信号只有两种可能的取值,根据观测样本判决是哪一个。
2.二元检测的数学模型:感兴趣的信号s ,有两种可能状态:s0、s1。
在接收信号的观测样本y 中受到噪声n 的污染,根据测量值y 作出判决:是否存在信号s ,或者处于哪个状态。
即:y(t)=si(t)+n(t) i=0,1假设:H 0:对应s 0状态或无信号,H 1:对应s 1状态或有信号。
检测:根据y 及某些先验知识,判断哪个假设成立。
3. 基本概念与术语✧ 先验概率:不依赖于测量值或观测样本的条件下,某事件(假设)发生或 成立的概率。
p(H 0),p(H 1)。
✧ 后验概率:在已掌握观测样本或测量值y 的前提下,某事件(假设)发生或成立的概率。
p(H 0/y),p(H 1/y) 。
✧ 似然函数:在某假设H 0或H 1成立的条件下,观测样本y 出现的概率。
✧ 似然比:✧ 虚警概率:无判定为有; ✧ 漏报概率 :有判定为无;✧ (正确)检测概率 :有判定为有。
✧ 平均风险: 4.1 最大后验概率准则(MAP )在二元检测的情况下,有两种可能状态:s0、s1,根据测量值y 作出判决:是否存在信号s ,或者处于哪个状态。
即:y(t)=si(t)+n(t) i=0,1假设:H 0:对应s 0状态或无信号,H 1:对应s 1状态或有信号。
)|()|()(01H y p H y p y L =f P m P d P )(][)(][111110101010100000H P C P C P H P C P C P r ∙++∙+=如果成立,判定为H 0成立; 否则成立,判定为H 1成立。
利用贝叶斯定理: 可以得到: 如果 成立,判定为H 0成立; 如果 成立,判定为H 1成立;定义似然比为: 得到判决准则: 如果 成立,判定为H 0成立;如果 成立,判定为H 1成立;这就是最大后验准则。
信号的平稳性如何定义?与各态历经性的关联?如果一个随机过程x(t)经过实践Δt后,其统计特性保持不变,则该过程具有严格的平稳性。
如果N阶都是平稳的,称为严格平稳。
遍历过程一定是平稳的,平稳的过程不一定都是遍历的。
随机信号的频域特性为什么要用功率谱密度来描述,而不是用频谱?与自相关函数是什么关系?由于平稳随机过程x(t)持续时间无限长,因此不满足绝对可积的条件,故其频谱密度不存在。
但是随机过程的平均功率是有限的。
Pw是自相关函数的傅里叶变换,自相关函数式功率谱密度的傅里叶逆变换。
窄带信号:如果信号的带宽远小于f0,w0/2π。
检测:感兴趣的信号在观测样本中受噪声干扰,根据接收到的测量值样本判决信号的有无。
先验概率:不依赖于测量值或观测样本的条件下,某事件(假设)发生或成立的概率。
p(H0),p(H1)。
后验概率:在已掌握观测样本或测量值y的前提下,某事件(假设)发生或成立的概率。
p(H0/y),p(H1/y) 。
似然函数:在某假设H0或H1成立的条件下,观测样本y出现的概率。
似然比:L(y)=p(y|H1)p(y|H0)虚警概率:无判定为有;漏报概率:有判定为无平均风险:r=(P00C00+P10C10)∙P(H0)+(P01C01+P11C11)∙P(H1)最大后验概率准则:似然比为:L(y)=p(y|H1)/p(y|H0)判别准则:L(y)<P(H0)/P(H1),则判定为H0成立。
L(y)≥P(H0)/P(H1),则判定H1成立。
最佳门限值:由先验概率决定。
要求在先验概率已知的条件下进行判决。
即:以观测样本为依据,以似然比为检测统计量,以后验概率最大为衡量标准(准则),以先验概率比为检测门限。
四种可能性:虚警、漏报、正确检测、正确判断没信号最小错误概率准则:门限取在加权后二者相交处总错误概率最小。
为什么要加权?所有的密度函数都是非加性的。
总错误概率:P e=P(H0)/P f+P(H1)/P m似然比为:L(y)=p(y|H1)/p(y|H0)判别准则:L(y)<P(H0)/P(H1),则判定为H0成立。
《信号检测与估计》总复习
2005.4
第一章 绪 论
本章提要
本章简要介绍了信号检测与估计理论的地位作用、研究对象和发展历程,以及本课程的性能和主要内容等。
第二章 随机信号及其统计描述 本章提要
本章简要阐述了随机过程的基本概念、统计描述方法,介绍了高斯噪声和白噪声及其统计特性。
本章小结
(1)概率分布函数是描述随机过程统计特性的一个重要参数,既适用于离散随机过程,也适用于连续随机过程。
一维概率分布函数具有如下性质
1),(0≤≤t x F X
[]0)(),(=-∞<=-∞t X P t F X ;
[]1)(),(=+∞<=+∞t X P t F X ;
),(),())((1221t x F t x F x t X x P X X -=<≤;
若
21x x <,则),(),(12t x F t x F X X ≥
概率密度函数可以直接给出随机变量取各个可能值的概率大小,仅适用于连续随机变量。
一维概率密度具有如下性质:
0),(≥t x f X ;
1
),(=⎰
+∞
∞
-dx t x f X ;
x d t x f t x F x X X '
'=⎰
∞
-),(),(;
[]⎰=-=<≤2
1
),(),(),()(1221x x X X X dx
t x f t x F t x F x t X x P
(2)随机过程的数字特征主要包括数学期望、方差、自相关函数、协方差函数和功率谱密度。
分别描述了随机过程样本函数围绕的中心,偏离中心的程度、样本波形两个不同时刻的相关程度、样本波形起伏量在两个不同时刻的相关程度和平均功率在不同频率上的分布情况。
定义公式分别为:
[]dx
t x xf t X E t m X X ⎰+∞
∞
-==),()()(
[]{}
[]dx t x f t m x t m t X E t X X X X ⎰
+∞
∞
--=-=),()()()()(2
22
σ
[]2
12121212121),,,()()(),(dx dx t t x x f x x t X t X E t t R X X ⎰
⎰
+∞∞-+∞
∞
-==
[][]{}
[][]2
121212211
221121),,,()()()()()()(),(dx dx t t x x f t m x t m x
t m t X t m t X E t t C X X X X X X ⎰
⎰∞+∞-∞+∞
---=--=。