必修四第二章 平面向量综合练习
- 格式:doc
- 大小:668.58 KB
- 文档页数:5
一、选择题1.如图,在ABC 中,AD AB ⊥,2AD =,3DC BD =,则AC AD ⋅的值为( )A .3B .8C .12D .162.ABC ∆中,AB AC ⊥,M 是BC 中点,O 是线段AM 上任意一点,且2AB AC ==,则OA OB OA OC +的最小值为( )A .-2B .2C .-1D .13.已知两个单位向量a ,b ,其中向量a 在向量b 方向上的投影为12.若()()2a b a b λ+⊥-,则实数λ的值为( )A .14-B .12-C .0D .12 4.已知向量()2,3a =,()4,2b =,那么向量a b -与a 的位置关系是( ) A .平行 B .垂直 C .夹角是锐角 D .夹角是钝角5.在ABC ∆中,2AB =,3AC =,5cos 6A =,若O 为ABC ∆的外心(即三角形外接圆的圆心),且AO mAB nAC +=,则2n m -=( ) A .199 B .4122- C .111- D .17116.在矩形ABCD 中,|AB |=6,|AD |=3.若点M 是CD 的中点,点N 是BC 的三等分点,且BN =13BC ,则AM ·MN =( ) A .6 B .4 C .3 D .27.在△ABC 中,M 是BC 的中点.若AB =a ,BC =b ,则AM =( )A .1()2a b +B .1()2a b -C .12a b +D .12a b +8.已知向量()a 1,2=,()b x,2=-,且a b ⊥,则a b +等于( ). A .5 B .5 C .42 D .319.已知向量13,22AB ⎛⎫= ⎪ ⎪⎝⎭,5AC =,3AB BC ⋅=,则BC =( ) A .3 B .32 C .4 D .42 10.直线0ax by c 与圆22:4O x y +=相交于M ,N 两点,若222c a b =+,P 为圆O 上任意一点,则PM PN ⋅的取值范围为( ) A .[2,6]-B .[]2,4-C .[]1,4D .[1,4]- 11.ABC 中,5AB =,10AC =,25AB AC =,点P 是ABC 内(包括边界)的一动点,且32()55AP AB AC R λλ=-∈,则||AP 的最大值是( ) A .33 B .37 C .39 D .41 12.已知2a b ==,0a b ⋅=,()()0c a c b -⋅-=,若2d c -=,则d 最大值为( )A .22B .122+C .222+D .42 二、填空题13.如图,在ABC 中,D 是BC 的中点,E 在边AB 上,且2BE EA =,若3AB AC AD EC ⋅=⋅,则AB AC的值为___________.14.已知平面向量,,a b c 满足()()||2,||2||a c b c a b a b -⋅-=-==.则c 的最大值是________.15.已知平面非零向量,,a b c 两两所成的角相等,1a b c ===,则a b c ++的值为_____.16.已知3a =,2b =,()()2318a b a b +⋅-=-,则a 与b 的夹角为_____. 17.已知平面向量2a =,3b =,4c =,4d =,0a b c d +++=,则()()a b b c +⋅+=______.18.ABC 中,2AB BA BC =⋅,0OA OC AB ++=,且1OA AB ==,则CA CB ⋅=______.19.如图所示,已知OAB ,由射线OA 和射线OB 及线段AB 构成如图所示的阴影区(不含边界).已知下列四个向量:①12=+OM OA OB ; ②23143OM OA OB =+;③33145=+OM OA OB ;④44899=+OM OA OB .对于点1M ,2M ,3M ,4M 落在阴影区域内(不含边界)的点有________(把所有符合条件点都填上)20.已知ABC 的重心为G ,过G 点的直线与边AB 和AC 的交点分别为M 和N ,若AM MB λ=,且AMN 与ABC 的面积之比为2554,则实数λ=__________. 三、解答题21.已知平面非零向量a ,b 的夹角是23π. (1)若1a =,27a b +=,求b ;(2)若()2,0a =,(),3b t =,求t 的值,并求与a b -共线的单位向量e 的坐标. 22.设()2,0a →=,(3b →=. (1)若a b b λ→→→⎛⎫-⊥ ⎪⎝⎭,求实数λ的值; (2)若(),m x a y b x y R →→→=+∈,且23m =,m →与b →的夹角为6π,求x ,y 的值. 23.已知向量()1,2a =-,()3,1b =-.(1)若()a b a λ+⊥,求实数λ的值;(2)若2c a b =-,2d a b =+,求向量c 与d 的夹角. 24.已知向量(1,2),(,2),(3,1)==-=-OA OB m OC ,O 为坐标原点.(1)若AB AC ⊥求实数m 的值;(2)在(1)的条件下,求△ABC 的面积.25.已知,,a b c 是同一平面内的三个向量,其中()1,2a =.(1)若35b =,且//a b ,求b 的坐标;(2)若2c =,且()()2a c a c +⊥-,求a 与c 的夹角θ的余弦值.26.在平面直角坐标系xOy 中,已知向量(1,2)a =-,(1,)b k =.(1)若()a a b ⊥+,求实数k 的值;(2)若对于平面xOy 内任意向量c ,都存在实数λ、μ,使得c a b λμ=+,求实数k 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】利用AB 、AD 表示向量AC ,再利用平面向量数量积的运算性质可求得AC AD ⋅的值.【详解】()3343AC AD DC AD BD AD AD AB AD AB =+=+=+-=-, AD AB ⊥,则0⋅=AD AB ,所以,()224344216AC AD AD AB AD AD ⋅=-⋅==⨯=.故选:D.【点睛】方法点睛:求两个向量的数量积有三种方法:(1)利用定义:(2)利用向量的坐标运算;(3)利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用. 2.C解析:C【分析】根据向量求和的平行四边形法则可以得出2OA OB OA OC OA OM ⋅+⋅=⋅,再利用向量的数量积的运算可以得到22OA OM OA OM ⋅=-⋅,因为2OA OM +=,代入计算可求出最小值.【详解】解:在直角三角形ABC 中,2AB AC ==,则BC =M 为BC 的中点,所以AM =设OA x =,(0x ≤≤()2OA OB OA OC OA OB OC OA OM ⋅+⋅=⋅+=⋅)()2222OA OM xx x =-⋅=-= 221x ⎛=-- ⎝⎭所以当2x =,即22OA =时,原式取得最小值为1-. 故选:C.【点睛】方法点睛:(1)向量求和经常利用平行四边形法则转化为中线的2倍;(2)利用向量三点共线,可以将向量的数量积转化为长度的乘积; (3)根据向量之间模的关系,二元换一元,转化为二次函数求最值即可. 3.C 解析:C 【分析】 记a 与b 的夹角为θ,则a 在b 上的投影为1cos 2a θ=,然后向量垂直转化为数量积为0可计算λ. 【详解】 记a 与b 的夹角为θ,则a 在b 上的投影为cos a θ,则1cos 2a θ=, ∵()()2a b a b λ+⊥-,∴()()()221322221(2)022a b a b a b a b λλλλλλ+⋅-=-+-⋅=-+-⋅==, 故0λ=,故选:C . 【点睛】结论点睛:本题考查平面向量的数量积及其几何意义.向量垂直的数量积表示. (1)设,a b 向量的夹角为θ,则a 在b 方向上的投影是cos a b a b θ⋅=;(2)对两个非零向量,a b ,0a b a b ⊥⇔⋅=. 4.D解析:D【分析】首先根据题中所给的向量的坐标,结合向量数量积运算法则,求得其数量积为负数,从而得到其交集为钝角.因为()2,3a =,()4,2b =,222()23(2432)131410a b a a a b -⋅=-⋅=+-⨯+⨯=-=-<,所以向量a b -与a 的位置关系是夹角为钝角,故选:D.【点睛】该题考查的是有挂向量的问题,涉及到的知识点有向量数量积的运算律,数量积坐标公式,根据数量积的符号判断其交集,属于简单题目. 5.D解析:D【分析】设,D E 分别为,AB AC 的中点,连接,OD OE ,则OD AB ⊥,OE AC ⊥,从而得到·0?0OD AB OE AC ==,,坐标化构建m ,n 的方程组,解之即可.【详解】设,D E 分别为,AB AC 的中点,连接,OD OE ,则OD AB ⊥,OE AC ⊥,又OD AD AO =-, 即11222m OD AB mAB nAC AB nAC -=--=-, 同理122n OE AE AO AC mAB -=-=-, 因为212·||?02m OD AB AB nAB AC -=-=, 所以124502m n -⨯-=,又212·||?02n OE AC AC mAB AC -=-=, 所以129502n m -⨯-=,联立方程组124502129502m n n m -⎧⨯-=⎪⎪⎨-⎪⨯-=⎪⎩, 解得922811m n ⎧=-⎪⎪⎨⎪=⎪⎩,所以17211n m -=. 故选D【点睛】本题考查了数量积运算性质、向量垂直与数量积的关系、三角形外心的性质、向量基本定理,考查了推理能力与计算能力,属于中档题.6.C【分析】 根据向量的运算法则,求得12AM AD AB =+,2132MN AD AB =-+,再结合向量的数量积的运算公式,即可求解.【详解】由题意,作出图形,如图所示:由图及题意,根据向量的运算法则,可得12AM AD DM AD AB =+=+, 2132MN CN CM CB CD =-=-21213232BC DC AD AB =-+=-+, 所以2212121||||23234AM MN AD AB AD AB AD AB ⎛⎫⎛⎫⋅=+⋅-+=-⋅+⋅ ⎪ ⎪⎝⎭⎝⎭21936334=-⨯+⨯=. 故选C .【点睛】本题主要考查了向量的运算法则,以及平面向量的数量积的运算,其中解答中熟练应用向量的运算法则和向量的数量积的运算公式是解答的关键,着重考查推理与运算能力. 7.D解析:D【分析】根据向量的加法的几何意义即可求得结果.【详解】在ABC ∆中,M 是BC 的中点,又,AB a BC b ==,所以1122AM AB BM AB BC a b =+=+=+, 故选D.【点睛】该题考查的是有关向量的问题,涉及到的知识点有向量的加法运算,属于简单题目. 8.B解析:B【分析】由向量垂直可得0a b ⋅=,求得x ,及向量b 的坐标表示,再利用向量加法的坐标运算和向量模的坐标运算可求得模.【详解】由a b ⊥,可得0a b ⋅=,代入坐标运算可得x-4=0,解得x=4,所以a b + ()5,0=,得a b +=5,选B.【点睛】 求向量的模的方法:一是利用坐标()22,a x y a x y =⇒=+,二是利用性质2a a =,结合向量数量积求解.9.B解析:B【分析】首先设出点A (0,0)、C (x ,y )的坐标,由已知条件5AC =,3AB BC ⋅=列出关于x 、y 的方程组,然后根据向量的差的计算性质表示出向量BC 的坐标形式,并表示出向量BC 的模,将以上列出的关于x 、y 的式子整体带入即可求得BC .【详解】 设(0,0)A ,(),C x yBC AC AB =-()1,,22x y ⎛⎫ ⎝- =⎪⎪⎭1,22x y ⎛⎫-- ⎪ ⎪⎝⎭= 3AB BC ⋅=11,32222x y ⎛⎫⎛∴⋅--= ⎪ ⎪ ⎝⎭⎝⎭即38x y += (1)5AC =又2225x y ∴+= (2)(C x B ==将(1)(2)代入上式解得: 258132BC =-+=故选B【点睛】本题考查了向量的坐标运算以及向量模的计算,其中考查了整体代换的思想方法,属于中档题目,计算中选择合适的解题方法,尽量要避免通过解方程求解点C 的坐标然后再求解向量BC 的模,否则就会大大的增加计算量,甚至出现解题错误.10.A解析:A【分析】取MN 的中点A ,连接OA 、OP ,由点到直线的距离公式可得1OA =,于是推出1cos 2AON ∠=,1cos 2MON ∠=-,而||||cos 2OM ON OM ON MON ⋅=⋅∠=-, ()()PM PN OM OP ON OP⋅=-⋅-()224cos OM ON OPOP OM ON AOP =⋅+-⋅+=-∠,其中cos [1,1]AOP ∠∈-,从而得解.【详解】 解:取MN 的中点A ,连接OA 、OP ,则OA MN ⊥,∵222c a b =+,∴点O 到直线MN 的距离221OA a b ==+, 在Rt AON 中,1cos 2OA AON ON ∠==, ∴2211cos 2cos 12122MON AON ⎛⎫∠=∠-=⨯-=- ⎪⎝⎭, ∴1||||cos 2222OM ON OM ON MON ⎛⎫⋅=⋅∠=⨯⨯-=- ⎪⎝⎭,∴()()PM PN OM OP ON OP ⋅=-⋅-2()OM ON OP OP OM ON =⋅+-⋅+24222||||cos OP OA OP OA AOP =-+-⋅=-⋅∠ 24cos AOP =-∠,当OP ,OA 同向时,取得最小值,为242-=-;当OP ,OA 反向时,取得最大值,为246+=.∴PM PN ⋅的取值范围为[]2,6-.故选:A.【点睛】本题考查点到直线距离公式、向量的数量积运算、直线与圆的方程,考查函数与方程思想、转化与化归思想、分类讨论思想、数形结合思想,考查运算求解能力.11.B解析:B【分析】以A 为原点,以AB 所在的直线为x轴,建立平面直角坐标系,根据向量的坐标运算求得3)y x =-,当该直线与直线BC 相交时,||AP 取得最大值.【详解】解:ABC 中,5AB =,10AC =,25AB AC =,510cos 25A ∴⨯⨯=,1cos 2A =,60A ∴=︒,90B =︒; 以A 为原点,以AB 所在的直线为x 轴,建立如图所示的坐标系, 如图所示,5AB =,10AC =,60BAC ∠=︒,(0,0)A ∴,(5,0)B ,(5C,,设点P 为(,)x y ,05x ,03y,3255AP AB AC λ=-, (x ∴,3)(55y =,20)(55λ-,(32λ=-,)-,∴32x y λ=-⎧⎪⎨=-⎪⎩,3)y x ∴=-,①直线BC 的方程为5x =,②,联立①②,得5x y =⎧⎪⎨=⎪⎩此时||AP 最大, 22||5(23)37AP ∴=+=.故选:B .【点睛】本题考查了向量在几何中的应用问题,建立直角坐标系是解题的关键,属于中档题. 12.C解析:C【分析】不妨设(2,0),(0,2)a b ==,设(,),(,)c m n d x y ==,则由()()0c a c b -⋅-=求出点(,)a b 满足的关系(点(,)C a b 在一个圆上),而2d c -=表示点(,)D x y 在以(,)C a b 为圆心,2为半径的圆上,d 表示该圆上的点到原点的距离,由几何意义可得解.【详解】 ∵2a b ==,0a b ⋅=,∴不妨设(2,0),(0,2)a OA b OB ====,如图,设(,)c OC m n ==,(,)d OD x y ==,则()()(2,)(,2)(2)(2)0c a c b m n m n m m n n -⋅-=-⋅-=-+-=,即22(1)(1)2m n -+-=,∴点(,)C m n 在以(1,1)M 2M 上, 又2d c -=,∴(,)D x y 在以(,)C a b 为圆心,2为半径的圆C 上, 则2d OC ≤+,当且仅当D 在OC 延长线上时等号成立,又OC 的最大值是圆M 的直径2∴d 最大值为222.故选:C .【点睛】本题考查平面向量的数量积与向量的模,解题关键是引入坐标表示向量,用几何意义表示向量,求解结论.二、填空题13.【分析】将作为平面向量的一组基底再根据平面向量基本定理用表示出再由即可得出结论【详解】因为在中D 是的中点E 在边上且所以又所以即所以故答案为: 3【分析】将AB AC 、作为平面向量的一组基底,再根据平面向量基本定理用AB AC 、表示出AD EC ⋅,再由3AB AC AD EC ⋅=⋅即可得出结论.【详解】因为在ABC 中,D 是BC 的中点,E 在边AB 上,且2BE EA =, 所以111()()()223AD EC AB AC AC AE AB AC AC AB ⎛⎫⋅=+⋅-=+⋅-= ⎪⎝⎭22111263AC AB AB AC -+⋅, 又3AB AC AD EC ⋅=⋅,所以2211026AC AB -=,即||3AB AC =, 所以=3AB AC314.【分析】设根据得到取中点为D 又由中点坐标得到再由得到的范围然后由求解【详解】设如图所示:因为所以取中点为D 因为所以解得所以所以点C 是以D 为圆心半径为的圆上运动又因为所以当AOB 共线时取等号所以所以【解析:33+ 【分析】 设,,OA a OB b OC c ===,根据||2,||2||a b a b -==,得到||2,||2||AB OA OB ==,取AB 中点为D ,又()()2a c b c CA CB -⋅-=⋅=,由中点坐标得到232CB CA CD ⎛⎫+== ⎪⎝⎭,再由2OA OB AB -≤=,得到2||2OA OB OD ⎛⎫+= ⎪⎝⎭的范围,然后由||||||||3c OC OD DC OD =≤+≤+求解. 【详解】 设,,OA a OB b OC c ===, 如图所示:因为||2,||2||a b a b -==,所以||2,||2||AB OA OB ==,取AB 中点为D ,因为()()2a c b c CA CB -⋅-=⋅=,所以2222||||24AB CB CA CB CA CB CA =-=+-⋅=,解得228CB CA +=, 所以22212322CB CA CD CB CA CB CA ⎛⎫+==++⋅= ⎪⎝⎭所以点C 是以D 3的圆上运动,又因为2OA OB AB -≤=,所以2OB ≤,当A ,O ,B 共线时,取等号, 所以2221||222OA OB OD OB OA OB OA ⎛⎫+==++⋅ ⎪, ()2110432OB ==-≤,所以||||||||33c OC OD DC OD =≤+≤+≤.【点睛】 关键点点睛:平面向量的中点坐标公式的两次应用:一是CB CD ⎛= ||2,||2||AB OA OB ==求得定值,得到点C 是以D 为圆心的圆上,实现数形结合;二是||2OA OD ⎛= ⎝⎭2OA OB AB -≤=确定范围,然后由||||||c OC OD DC =≤+求解. 15.3或0【分析】由于三个平面向量两两夹角相等可得任意两向量的夹角是或由于三个向量的模已知当两两夹角为时直接算出结果;当两两夹角为时采取平方的方法可求出三个向量的和向量的模【详解】由题意三个平面向量两两 解析:3或0【分析】由于三个平面向量两两夹角相等,可得任意两向量的夹角是0或120︒,由于三个向量的模已知,当,,a b c →→→两两夹角为0时,直接算出结果;当,,a b c →→→两两夹角为120︒时,采取平方的方法可求出三个向量的和向量的模. 【详解】 由题意三个平面向量两两夹角相等,可得任意两向量的夹角是0或120︒,当,,a b c →→→两两夹角为0时,,,a b c →→→方向相同,则3a b c →→→++=;当,,a b c →→→两两夹角为120︒时,由于1a b c ===,则2222222a b c a b c a b a c b c →→→→→→→→→++=+++⋅+⋅+⋅111211cos120211cos120211cos1200=+++⨯⨯⨯︒+⨯⨯⨯︒+⨯⨯⨯︒=,则20a b c →→→++=,∴0a b c →→→++=.综上a b c →→→++的值为3或0.故答案为:3或0.【点睛】本题考查平面向量的模的求法,涉及向量的夹角和向量的数量积运算,解题的关键是理解向量夹角的定义,考查运算能力.16.【分析】利用平面向量数量积的运算律可求得的值利用平面向量数量积的定义可求得与的夹角的余弦值由此可求得与的夹角【详解】设与的夹角为则所以故答案为:【点睛】本题考查利用平面向量数量积的运算律与定义求向量 解析:3π【分析】利用平面向量数量积的运算律可求得a b ⋅的值,利用平面向量数量积的定义可求得a 与b 的夹角的余弦值,由此可求得a 与b 的夹角.【详解】 3a =,2b =,()()2223618a b a b a a b b +⋅-=-⋅-=-,2222618362183a b a b ∴⋅=-+=-⨯+=,设a 与b 的夹角为θ,则1cos 2a b a b θ⋅==⋅,0θπ≤≤,所以,3πθ=. 故答案为:3π. 【点睛】本题考查利用平面向量数量积的运算律与定义求向量的夹角,考查计算能力,属于中等题. 17.【分析】根据得到然后两边平方结合求得再由求解即可【详解】因为所以所以所以因为所以故答案为:【点睛】本题主要考查平面向量的数量积运算还考查了运算求解的能力属于中档题解析:52【分析】根据0a b c d +++=,得到++=-a b c d ,然后两边平方结合2a =,3b =,4c =,4d =,求得⋅+⋅+⋅a b a c b c ,再由()()a b b c +⋅+=2⋅+⋅+⋅+a b a c b c b 求解即可.【详解】因为0a b c d +++=,所以++=-a b c d ,所以()()22++=-a b c d ,所以()()()()2222222+++⋅+⋅+⋅=-a b c a b a c b c d , 因为2a =,3b =,4c =,4d =,所以132⋅+⋅+⋅=-a b a c b c , ()()a b b c +⋅+=252⋅+⋅+⋅+=a b a c b c b . 故答案为:52 【点睛】本题主要考查平面向量的数量积运算,还考查了运算求解的能力,属于中档题. 18.3【分析】由得出由得是中点在直角三角形中求出角再根据数量积的定义计算【详解】由得所以又所以是中点如图中所以所以故答案为:3【点睛】本题考查向量的数量积解题关键由已知数量积为0得出直角三角形由向量的线 解析:3【分析】由2AB BA BC =⋅得出AB AC ⊥,由0OA OC AB ++=得O 是BC 中点,在直角三角形中求出角C ,再根据数量积的定义计算.【详解】由2AB BA BC =⋅得22()0AB BA BC AB AB BC AB AB BC AB AC -⋅=+⋅=⋅+=⋅=,所以AB AC ⊥,又0OA OC AB OB OC ++=+=,所以O 是BC 中点,如图Rt ABC 中,1AB =,1OA OB OC ===,所以30C =︒,22213AC =-=,所以23cos303CA CB ⋅=⨯︒=.故答案为:3.【点睛】本题考查向量的数量积,解题关键由已知数量积为0得出直角三角形,由向量的线性运算得出O 是BC 中点.19.①②④【分析】射线与线段的公共点记为根据平面向量基本定理可得到由在阴影区域内可得实从而且得出结论【详解】解:设在阴影区域内则射线与线段有公共点记为则存在实数使得且存在实数使得从而且又由于故对于①中解解析:①②④【分析】射线OM 与线段AB 的公共点记为N ,根据平面向量基本定理,可得到(1)ON tOA t OB =+-,由M 在阴影区域内可得实1r ≥,从而(1)OM rtOA r t OB =+-,且(1)1rt r t r +-=≥得出结论【详解】解:设M 在阴影区域内,则射线OM 与线段AB 有公共点,记为N ,则存在实数(0,1]t ∈,使得(1)ON tOA t OB =+-,且存在实数1r ≥,使得OM rON =,从而(1)OM rtOA r t OB =+-,且(1)1rt r t r +-=≥.又由于01t ≤≤,故(1)0r t -≥.对于①中1,(1)2rt r t =-=,解得313,r t ==,满足1r ≥也满足(1)0r t -≥,故①满足条件.对于②中31,(1)43rt r t =-=,解得139,1213r t ==,满足1r ≥也满足(1)0r t -≥,故②满足条件,对于③31,(15)4rt r t =-=,解得19,152019r t ==,不满足1r ≥,故③不满足条件, 对于④,(189)49rt r t =-=,解得,4133r t ==,满足1r ≥也满足(1)0r t -≥,故④满足条件.故答案为:①②④.【点睛】本题主要考查平面向量基本定理,向量数乘的运算及其几何意义,属于中档题. 20.5或【分析】利用重心的性质把AG 用AMAN 表示再由MGN 三点共线得关于的方程再由三角形面积比得关于的另一方程联立即可求得实数入的值【详解】如图设因为G 为的重心所以因为三点共线所以即①②由①②解得或故 解析:5或54【分析】利用重心的性质,把AG 用AM 、AN 表示,再由M ,G ,N 三点共线得关于,u λ的方程,再由三角形面积比得关于,u λ的另一方程,联立即可求得实数入的值.【详解】如图,设AN AC μ→→=,因为G 为ABC 的重心, 所以11111(1)3333AG AB AC AM AN λμ=+=++, 因为,,M G N 三点共线, 所以111(1)133λμ++=,即112uλ+=①, 5425ABC AMN S S ∆∆=, 1sin 542125sin 2AB AC A AM AN A ⋅⋅∴=⋅⋅, 1154(1)25u λ∴+⋅=②, 由①②解得,559u λ=⎧⎪⎨=⎪⎩或 5456u λ⎧=⎪⎪⎨⎪=⎪⎩, 故答案为:5或54 【点睛】关键点点睛:根据重心及三点共线可求出λ和u 的关系,再根据三角形的面积比得出λ和u 的另一关系,联立方程求解是关键,属于中档题.三、解答题21.(1)32;(2)1t =-,31,2e ⎛⎫=- ⎪ ⎪⎝⎭,或31,2e ⎛⎫=- ⎪ ⎪⎝⎭. 【分析】 (1)对27a b +=进行平方,利用数量积公式可求得b ;(2)根据向量坐标运算的夹角公式可求得t ,设单位向量e 的坐标根据模长和共线可得答案.【详解】(1)向量a ,b 的夹角是23π,由27a b +=得()()()22222224144cos 73a b a b a b b b π+=++⋅=++=, 解得32b =,1b =-舍去,所以32b =. (2)()2,0a =,(),3b t =,由向量a ,b 的夹角是23π得221cos 322ta b π===-⨯⨯,解得1t =-,1t =舍去,因为(2,3)(3,a b t -=--=,设单位向量(,)e x y =,所以221x y +=,又e 与a b -共线, 所以3y =,求得212x y ⎧=-⎪⎪⎨⎪=⎪⎩,或212x y ⎧=⎪⎪⎨⎪=-⎪⎩, 所以31,2e ⎛⎫=- ⎪ ⎪⎝⎭,或31,2e ⎛⎫=- ⎪ ⎪⎝⎭. 【点睛】本题考查了向量的数量积、夹角、模长的运算,考查了向量的坐标运算及单位向量. 22.(1)12λ=;(2)1x =,1y =或1x=-,2y =. 【分析】(1)根据向量垂直的坐标运算即可求解;(2)由模的向量坐标运算及夹角的向量坐标运算联立方程即可求解.【详解】(1)∵()2,0a →=,(b →=,∴()2,a b λλ→→-=-,∵a a b λ→→→⎛⎫-⊥ ⎪⎝⎭, ∴0a b b λ→→→⎛⎫-⋅= ⎪⎝⎭,即240λ-=,∴12λ=. (2)∵()2,0a →=,(b →=,∴()2m x a y b x y →→→=+=+,又m →=,∴()222312x y y ++=,又cos 62m b m b π→→→→⋅===, 即23x y +=,由()22231223x y y x y ⎧++=⎪⎨+=⎪⎩, 解得11x y =⎧⎨=⎩或12x y =-⎧⎨=⎩, ∴1x =,1y =或1x =-,2y =.【点睛】本题主要考查了向量的坐标运算,考查了垂直关系,夹角公式,模的运算,属于中档题. 23.(1)1;(2)34π. 【分析】(1)先求得a λb +,然后利用()0a b a λ+⋅=列方程,解方程求得λ的值. (2)求得,c d 的坐标,利用夹角公式计算出c 与d 的夹角的余弦值,由此求得c 与d 的夹角.【详解】(1)由()1,2a =-,()3,1b =-得()13,2a b λλλ+=-+-,因为()a b a λ+⊥,所以()0a b a λ+⋅=,所以()()13220λλ--++-=, 即550λ-+=,解得1λ=;(2)由()1,2a =-,()3,1b =-得 ()25,5c a b =-=-,()25,0d a b =+=,所以25c d ⋅=-,52c =,5d =,设向量c 与d 的夹角为θ,则cos2θ==- 又因为[]0,θπ∈,所以34πθ=, 即向量c 与d 的夹角为34π. 【点睛】 本小题主要考查向量垂直的坐标表示,考查向量夹角的计算,考查向量线性运算的坐标表示,属于中档题.24.(1)1;(2)【分析】(1)根据向量(1,2),(,2),(3,1)==-=-OA OB m OC ,得到向量,AB AC ,再由AB AC ⊥,利用坐标运算求解.(2)由(1)得到 ,AB AC ,然后由12ABC S AB AC =⨯⨯求解. 【详解】(1)因为向量(1,2),(,2),(3,1)==-=-OA OB m OC ,所以向量(1,4),(4,1)AB m AC =--=--,又因为AB AC ⊥,所以4(1)40m --+=,解得 2m =.(2)由(1)知:(0,4),(4,1)AB AC =-=--, 所以4,17AB AC ==所以11422ABC S AB AC =⨯⨯=⨯= 【点睛】 本题主要考查平面向量的数量积的坐标运算,还考查了运算求解的能力,属于中档题.25.(1)(3,6)b =或(3,6)b =--;(2)10-. 【分析】(1)设(,)b x y =,由//a b ,和35b =,列出方程组,求得,x y 的值,即可求解; (2)由()()2a c a c +⊥-,求得3a c ⋅=-,结合夹角公式,即可求解.【详解】(1)设(,)b x y =,因为//a b ,所以2y x =, ①又因为35b =,所以2245x y +=, ②由①②联立,解得(3,6)b =或(3,6)b =--.(2)由已知()()2a c a c +⊥-,可得()()22220a c a c a c a c +⋅-=--⋅=, 又由5a =,2c =,解得3a c ⋅=-,所以35cos a c a c θ⋅==- 【点睛】本题主要考查了平面向量的坐标运算,以及平面向量的数量积的坐标运算的应用,意在考查运算与求解能力,属于基础题.26.(1)2k =-;(2)2k ≠-.【分析】(1)根据向量垂直,其数量积等于0,利用向量数量积公式得到对应的等量关系式,求得结果;(2)平面xOy 内任意向量c ,都存在实数λ、μ,使得c a b λμ=+,其等价结果为向量(1,2)a =-和向量(1,)b k =是两个不共线向量,根据坐标关系得到结果.【详解】(1)若()a a b ⊥+,则有()0a a b ⋅+=,即20a a b +⋅=,又因为(1,2)a =-,(1,)b k =,所以222[(1)2](1)120a a b k +⋅=-++-⋅+=,即5120k -+=,解得2k =-;(2)对于平面xOy 内任意向量c ,都存在实数λ、μ,使得c a b λμ=+,所以向量(1,2)a =-和向量(1,)b k =是两个不共线向量,所以121k -⋅≠⋅,即2k ≠-,所以实数k 的取值范围是2k ≠-.【点睛】该题考查的是有关向量的问题,涉及到的知识点有向量垂直的坐标表示,平面向量基本定理,一组向量可以作为基底的条件,属于基础题目.。
数学必修 4 平面向量综合练习题一、选择题【共 12 道小题】1、以下说法中正确的选项是 ()A. 两个单位向量的数量积为1B. 假设 a·b=a·c且 a≠0, 那么 b=cC.D. 假设 b⊥c, 那么(a+c) ·b=a·b参考答案与解析 : 解析: A 中两向量的夹角不确定 ;B 中假设 a⊥b,a ⊥c,b与 c 反方向那么不成立 ;C 中应为;D 中 b⊥c b·c=0, 所以 (a+c) ·b=a·b+c·b=a·b.答案: D主要考察知识点 : 向量、向量的运算2、设 e 是单位向量 ,=2e,=-2e,||=2, 那么四边形 ABCD是()A. 梯形B. 菱形C. 矩形D. 正方形参考答案与解析 : 解析:, 所以 ||=||,且 AB∥CD,所以四边形ABCD是平行四边形 .又因为 ||=||=2,所以四边形 ABCD是菱形 .答案: B主要考察知识点 : 向量、向量的运算3、 |a|=|b|=1,a 与 b 的夹角为90°, 且 c=2a+3b ,d=ka-4b, 假设 c⊥d, 那么实数 k 的值为 ()参考答案与解析 : 解析:∵ c⊥d, ∴c·d=(2a+3b) ·(ka-4b)=0, 即 2k- 12=0, ∴k=6.答案: A主要考察知识点 : 向量、向量的运算4、设 0≤θ< 2π, 两个向量=(cos θ, sin θ),=(2+sin θ, 2- cosθ) ,那么向量长度的最大值是 ()A. B. C.D.参考答案与解析 : 解析:=(2+sin θ - cosθ,2 - cosθ - sin θ),所以 ||=≤=.答案: C主要考察知识点 : 向量与向量运算的坐标表示5、设向量 a=(1,-3) , b=(-2,4), c=(-1,-2),假设表示向量4a、 4b-2c 、 2(a-c)、d 的有向线段首尾相接能构成四边形,那么向量 d 为 ()A.(2,6)B.(-2,6)C.(2,-6)D.(-2,-6)参考答案与解析: 解析:依题意,4a+4b-2c+2(a-c)+d=0,答案: D主要考察知识点: 向量与向量运算的坐标表示6、向量a=(3 , 4) , b=(-3 ,1) , a 与 b 的夹角为所以θ, 那么d=-6a+4b-4c=(-2 tan θ等于 (, -6).)A.参考答案与解析: 解析:由得a·b=3×(- 3)+4 ×1= -5 , |a|=5 , |b|=,所以 cosθ=.由于θ∈[ 0,π] ,所以 sin θ=.所以 tan θ==-3.答案: D主要考察知识点: 向量与向量运算的坐标表示7、向量 a 与b 不共线,=a+kb,=la+b(k、l ∈R),且与共线 , 那么k、l 应满足() A.k+l=0 B.k-l=0 C.kl+1=0D.kl-1=0参考答案与解析:解析:因为与共线,所以设=λ( λ∈ R) ,即la+b= λ(a+kb)= λa+λkb, 所以(l- λ)a+(1 - λk)b=0.因为 a 与 b 不共线 , 所以 l- λ=0 且 1- λk=0, 消去λ得 1-lk=0,即kl-1=0.答案: D主要考察知识点: 向量、向量的运算8、平面内三点A(-1,0),B(5,6),P(3,4),且AP=λPB,那么λ 的值为()C. D.参考答案与解析: 解析:因为=λ, 所以 (4 ,4)= λ(2 ,2).所以λ=.答案: C主要考察知识点: 向量与向量运算的坐标表示9、设平面向量a1,a2,a3 的和 a1+a2+a3=0,如果平面向量时针旋转30°后与bi 同向,其中i=1 , 2, 3,那么 ()b1,b2,b3满足 |bi|=2|ai|,且ai顺A.-b1+b2+b3=0 B.b1-b2+b3=0C.b1+b2-b3=0D.b1+b2+b3=0参考答案与解析: 解析:根据题意, 由向量的物理意义, 共点的向量模伸长为原来的 2 倍, 三个向量都顺时针旋转30°后合力为原来的 2 倍 , 原来的合力为零, 所以由 a1+a2+a3=0, 可得 b1+b2+b3=0.答案: D主要考察知识点: 向量、向量的运算10、设过点P(x , y) 的直线分别与x 轴的正半轴和y 轴的正半轴交于A、 B两点,点Q与点 P 关于y 轴对称,O为坐标原点,假设, 且·=1, 那么P 点的轨迹方程是()A.3x2+y2=1(x > 0,y >0)y2=1(x > 0,y > 0)C. x2-3y2=1(x > 0,y >0)参考答案与解析 : 解析:设P(x,y),那么Q(-x,y).D.设x2+3y2=1(x >0,yA(xA),xA,B(0,yByB0,> 0)=(x,y-yB)=(xAx,-y).∵=2PA,∴x=2(xA,x),y -yB=2y,xA=x,yB=3y(x >0,y > 0).又∵·=1,(- x,y) ·(-xA,yB)=1,∴(- x,y) ·(x,3y)=1,即x2+3y2=1(x > 0,y >0).答案: D主要考察知识点: 向量、向量的运算11、△ ABC 中,点 D 在 BC边上,且,假设, 那么 r+s 的值是 ()A. C.D .-3参考答案与解析: 解析:△ ABC 中,== ()=-,故r+s=0.答案: B主要考察知识点: 向量、向量的运算12、定义 a※b=|a||b|sinθ,θ 是向量 a 和b 的夹角, |a|、|b|分别为a、b 的模,点A(-3,2)、B(2,3),O是坐标原点,那么※等于 ()参考答案与解析 : 解析:由题意可知=(-3,2),=(2,3),计算得·=- 3×2+2×3=0,另一方面·=||||cos θ,∴c osθ=0,又θ∈ (0,π) ,从而sin θ=1,∴※=||||sinθ=13.答案: D主要考察知识点: 向量与向量运算的坐标表示二、填空题【共 4 道小题】1、 a+b+c=0, 且 |a|=3,|b|=5,|c|=7,那么向量a 与参考答案与解析: 解析:由得a+b=-c, 两边平方得b 的夹角是 ____________.a2+2a·b+b2=c2,所以2a·b=72 -32-52=15.设a 与b 的夹角为θ,那么cosθ===,所以θ=60°.答案: 60°主要考察知识点: 向量、向量的运算2、假设=2e1+e2,=e1-3e2,=5e1+λe2, 且 B、 C、 D 三点共线 , 那么实数λ=___________.参考答案与解析: 解析:由可得=(e1-3e2)-(2e1+e2)=-e1-4e2,=(5e1+λe2) -(e1-3e2)=4e1+(λ+3)e2.由于 B、 C、 D 三点共线 , 所以存在实数m使得,即-e1-4e2=m [4e1+(λ+3)e2] . 所以 -1=4m 且 - 4=m(λ+3), 消去 m得λ=13.答案: 13主要考察知识点: 向量、向量的运算3、 e1、 e2 是夹角为60°的两个单位向量, 那么 a=2e1+e2 和 b=2e2-3e1 的夹角是 __________.参考答案与解析: 解析:运用夹角公式cosθ=,代入数据即可得到结果.答案: 120°。
(数学必修4)第二章平面向量练习[基础训练一]一、选择题1.化简AC -BD +CD -AB 得( )A .AB B .C .BCD .02.设00,a b 分别是与,a b 向的单位向量,则下列结论中正确的是( )A .00a b =B .001a b ⋅=C .00||||2a b +=D .00||2a b += 3.已知下列命题中:(1)若k R ∈,且0kb =,则0k =或0b =, (2)若0a b ⋅=,则0a =或0b =(3)若不平行的两个非零向量b a ,,满足||||b a =,则0)()(=-⋅+b a b a(4)若a 与b 平行,则||||a b a b =⋅其中真命题的个数是( )A .0B .1C .2D .3 4.下列命题中正确的是( )A .若a ⋅b =0,则a =0或b =0B .若a ⋅b =0,则a ∥bC .若a ∥b ,则a 在b 上的投影为|a|D .若a ⊥b ,则a ⋅b =(a ⋅b)25.已知平面向量(3,1)a =,(,3)b x =-,且a b ⊥,则x =( )A .3-B .1-C .1D .36.已知向量)sin ,(cos θθ=,向量)1,3(-=则|2|-的最大值,最小值分别是( )A .0,24B .24,4C .16,0D .4,0 二、填空题1.若OA =)8,2(,OB =)2,7(-,则31AB =_________2.平面向量,a b 中,若(4,3)a =-=1,且5a b ⋅=,则向量=____。
3.若3a =,2b =,且a 与b 的夹角为060,则a b -= 。
4.把平面上一切单位向量归结到共同的始点,那么这些向量的终点 所构成的图形是___________。
5.已知)1,2(=a与)2,1(=b ,要使b t a +最小,则实数t 的值为___________。
三、解答题1.如图,ABCD 中,,E F 分别是,BC DC 的中点,G 为交点,若AB =a ,=b ,试以a ,b 为基底表示、BF 、CG .2.已知向量a 与b 的夹角为60,||4,(2).(3)72b a b a b =+-=-,求向量a 的模。
一、选择题1.已知向量()2,3a =,()4,2b =,那么向量a b -与a 的位置关系是( ) A .平行B .垂直C .夹角是锐角D .夹角是钝角2.如图,在ABC 中,13AN NC =,P 是BN 上的一点,若2299AP m AB BC ⎛⎫=++ ⎪⎝⎭,则实数m 的值为( )A .19B .13C .1D .33.已知函数()sin (0)2f x x a a π⎛⎫=>⎪⎝⎭,点A ,B 分别为()f x 图象在y 轴右侧的第一个最高点和第一个最低点,O 为坐标原点,若OAB 为钝角三角形,则a 的取值范围为( )A .10,(2,)2⎛⎫+∞ ⎪⎝⎭ B .30,(1,)3⎛⋃+∞ ⎝⎭C .33⎛⎫ ⎪ ⎪⎝⎭D .(1,)+∞4.在ABC ∆中,2AB =,3AC =,5cos 6A =,若O 为ABC ∆的外心(即三角形外接圆的圆心),且AO mAB nAC +=,则2n m -=( ) A .199B .4122-C .111-D .17115.已知M 、N 为单位圆22:1O x y +=上的两个动点,且满足1MN =,()3,4P ,则PM PN +的取值范围为( )A .53,53+⎡⎣B .103,103⎡-⎣C .523,523-+⎡⎣D .1023,1023-+⎡⎤⎣⎦6.在空间直角坐标系中,(3,3,0)A ,(0,0,1)B ,点(,1,)P a c 在直线AB 上,则 ( ) A .11,3a c ==B .21,3a c ==C .12,3a c ==D .22,3a c ==7.在ABC 中,D 是BC 的中点,E 是AD 的中点,那么下列各式中正确的是( ) A .DB DC =B .2AD DE =C .2AB AC AD += D .AB AC BC -=8.已知抛物线2:4C y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若2FP QF =,则||QF =( ) A .8B .4C .6D .39.已知O 是三角形ABC 内部一点,且20OA OB OC ++=,则OAB ∆的面积与OAC ∆的面积之比为( ) A .12B .1C .32D .210.在ABC ∆中,D 为BC 边上一点,且AD BC ⊥,向量AB AC +与向量AD 共线,若10AC =2BC =,0GA GB GC ++=,则AB CG=( )A .3B C .2D .211.在直角梯形ABCD 中,0AD AB ⋅=,30B ∠=︒,AB =2BC =,13BE BC =,则( )A .1163AE AB AD =+ B .1263AE AB AD =+ C .5163AE AB AD =+ D .5166AE AB AD =+ 12.已知平面上的非零..向量a ,b ,c ,下列说法中正确的是( ) ①若//a b ,//b c ,则//a c ; ②若2a b =,则2a b =±;③若23x y a b a b +=+,则2x =,3y =; ④若//a b ,则一定存在唯一的实数λ,使得a b λ=. A .①③B .①④C .②③D .②④二、填空题13.已知单位向量,a b 满足1a b +=,则|a b -=___________. 14.设1e ,2e 是单位向量,且1e ,2e 的夹角为23π,若12a e e =+,122b e e =-,则a 在b 方向上的投影为___________. 15.已知||1,||3,0OA OB OA OB ==⋅=|,点C 在AOB ∠内,且30AOC ∠=︒,设(,)OC mOA nOB m n R =+∈,则mn等于 . 16.已知点()0,1A ,()3,2B,向量()4,3AC =,则向量BC =______.17.在梯形ABCD 中,//AB CD ,2AB BC ==,1CD =,120BCD ∠=︒,P ,Q分别为线段BC 和CD 上的动点,且BP BC λ=,16DQ DC λ=,则AP BQ 的最大值为_____________.18.已知非零向量m →,n →满足4m →=3n →,cos m →〈,13n →〉=.若n →⊥t m n →→⎛⎫+ ⎪⎝⎭,则实数t的值为_____________.19.如图,在ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点5BA CA ⋅=,2BF CF ⋅=-,则BE CE ⋅的值是________.20.已知(2,1)a =,(3,4)b =,则a 在b 的方向上的投影为________.三、解答题21.在ABC 中,3AB =,6AC =,23BAC π∠=,D 为边BC 的中点,M 为中线AD 的中点.(1)求中线AD 的长;(2)求BM 与AD 的夹角θ的余弦值.22.在平面直角坐标系xOy 中,已知点()1,2A -,()1,1B ,()3,1C -. (Ⅰ)求AB 的坐标及AB ;(Ⅱ)当实数t 为何值时,()tOC OB AB +. 23.已知4,3,(23)(2)61a b a b a b ==-⋅+=. (1)求a 与b 的夹角为θ; (2)求a b +;(3)若AB =a ,BC =b ,求△ABC 的面积. 24.设()2,0a →=,(3b →=.(1)若a b b λ→→→⎛⎫-⊥ ⎪⎝⎭,求实数λ的值;(2)若(),m x a y b x y R →→→=+∈,且23m =,m →与b →的夹角为6π,求x ,y 的值. 25.设非零向量a ,b 不共线.(1)若(),1a t =,()5,b t =,且//a b ,求实数t 的值;(2)若OA a b =+,2OB a b =+,3OC a b =+.求证:A ,B ,C 三点共线. 26.已知向量a 、b 的夹角为3π,且||1a =,||3b =. (1)求||a b +的值; (2)求a 与a b +的夹角的余弦.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】首先根据题中所给的向量的坐标,结合向量数量积运算法则,求得其数量积为负数,从而得到其交集为钝角. 【详解】因为()2,3a =,()4,2b =,222()23(2432)131410a b a a a b -⋅=-⋅=+-⨯+⨯=-=-<,所以向量a b -与a 的位置关系是夹角为钝角, 故选:D. 【点睛】该题考查的是有挂向量的问题,涉及到的知识点有向量数量积的运算律,数量积坐标公式,根据数量积的符号判断其交集,属于简单题目.2.A解析:A 【解析】 因为2299AP m AB BC ⎛⎫=++ ⎪⎝⎭29mAB AC =+,设BP tBN =,而31()()(1)44AP AB BP AB t BC CN AB t BC AC t AB t AC =+=++=+-=-+,所以1m t =-且249t =,故811199m t =-=-=,应选答案A .3.B解析:B 【分析】首先根据题的条件,将三角形三个顶点的坐标写出来,之后根据三角形是钝角三角形,利用向量夹角为钝角的条件,从而转化为向量的数量积0OA OB ⋅<或0AB AO ⋅<,找出a 所满足的条件,最后求得结果. 【详解】 由题意得24,(0,0),(,1),(3,1)2T a O A a B a aππ==-,因为OAB 为钝角三角形,所以0OA OB ⋅<或0AB AO ⋅<,即2310a -<,或2220a -+<,从而0a <或1a >. 故选:B. 【点睛】该题考查的是有关利用钝角三角形求对应参数的取值范围,涉及到的知识点有正弦型函数图象上的特殊点的坐标,钝角三角形的等价转化,向量的数量积坐标公式,属于中档题.4.D解析:D 【分析】设,D E 分别为,AB AC 的中点,连接,OD OE ,则OD AB ⊥,OE AC ⊥,从而得到·0?0OD AB OE AC ==,,坐标化构建m ,n 的方程组,解之即可.【详解】设,D E 分别为,AB AC 的中点,连接,OD OE ,则OD AB ⊥,OE AC ⊥,又OD AD AO =-,即11222mOD AB mAB nAC AB nAC -=--=-, 同理122nOE AE AO AC mAB -=-=-, 因为212·||?02mOD AB AB nAB AC -=-=, 所以124502m n -⨯-=,又212·||?02nOE AC AC mAB AC -=-=, 所以129502nm -⨯-=,联立方程组124502129502mn n m -⎧⨯-=⎪⎪⎨-⎪⨯-=⎪⎩,解得922811 mn⎧=-⎪⎪⎨⎪=⎪⎩,所以17211n m-=.故选D【点睛】本题考查了数量积运算性质、向量垂直与数量积的关系、三角形外心的性质、向量基本定理,考查了推理能力与计算能力,属于中档题.5.B解析:B【分析】作出图形,可求得线段MN的中点Q的轨迹方程为2234x y+=,由平面向量加法的平行四边形法则可得出2PM PN PQ+=,求得PQ的取值范围,进而可求得PM PN+的取值范围.【详解】由1MN =,可知OMN为等边三角形,设Q为MN 的中点,且3sin602OQ OM==Q的轨迹为圆2234x y+=,又()3,4P,所以,33PO PQ PO-≤≤+,即3355PQ≤≤+.由平面向量加法的平行四边形法则可得2PM PN PQ+=,因此2103,103PM PN PQ ⎡⎤+=∈-+⎣⎦.故选:B. 【点睛】本题考查平面向量模长的取值范围的计算,考查了圆外一点到圆上一点距离的取值范围的计算,考查数形结合思想的应用,属于中等题.6. B解析:B 【解析】∵点P (a ,1,c )在直线AB 上, ∴存在实数λ使得AB BP λ=, ∴()()()0,0,13,3,0,1,1a c λ-=- , 化为()3,3,1(,,)a c λλλλ--=- ,∴3{31ac λλλλ-=-==- ,解得3{123a c λ=-==.本题选择B 选项.7.C解析:C 【解析】依题意ABC 如图所示:∵D 是BC 的中点 ∴DB CD =,故A 错误 ∵E 是AD 的中点 ∴2AD ED =,故B 错误∵AB AD DB =+,AC AD DC =+∴2AB AC AD DB AD DC AD +=+++=,故C 正确∴()AB AC AD DB AD DC DB DC CB -=+-+=-=,故D 错误 故选C8.D解析:D【分析】设点()1,P t -、(),Q x y ,由2FP QF =,可计算出点Q 的横坐标x 的值,再利用抛物线的定义可求出QF . 【详解】设点()1,P t -、(),Q x y ,易知点()1,0F ,()2,FP t =-,()1,QF x y =--,()212x ∴-=-,解得2x =,因此,13QF x =+=,故选D. 【点睛】本题考查抛物线的定义,解题的关键在于利用向量共线求出相应点的坐标,考查计算能力,属于中等题.9.A解析:A 【解析】由题意,O 是'AB C ∆的重心,'2OB OB =,所以OAB ∆的面积与OAC ∆的面积之比为12.故选A . 点睛:本题考查平面向量的应用.由重心的结论:若0OA OB OC ++=,则O 是ABC ∆的重心,本题中构造'AB C ∆,O 是'AB C ∆的重心,根据重心的一些几何性质,求出面积比值.10.B解析:B 【解析】取BC 的中点E ,则2AB AC AE +=与向量AD 共线,所以A 、D 、E 三点共线,即ABC ∆中BC 边上的中线与高线重合,则10AB AC ==因为0GA GB GC ++=,所以G 为ABC ∆的重心,则2222() 2.32BC GA GE AC ==-=所以2101,12AB CE CG CG===∴== 本题选择B 选项.11.C解析:C 【分析】先根据题意得1AD =,CD =2AB DC =,再结合已知和向量的加减法运算求解即可得的答案. 【详解】由题意可求得1AD =,CD =所以2AB DC =, 又13BE BC =, 则()1133AE AB BE AB BC AB BA AD DC =+=+=+++ 1111333AB AD DC ⎛⎫=-++ ⎪⎝⎭1111336AB AD AB ⎛⎫=-++ ⎪⎝⎭115116363AB AD AB AD ⎛⎫=-+=+ ⎪⎝⎭.故选:C. 【点睛】本题考查用基底表示向量,考查运算能力,是基础题.12.B解析:B 【分析】根据向量共线定理判断①④,由模长关系只能说明向量a ,b 的长度关系判断②,举反例判断③. 【详解】对于①,由向量共线定理可知,//a b ,则存在唯一的实数1λ,使得1λa b ,//b c ,则存在唯一的实数2λ,使得2λbc ,由此得出存在唯一的实数12λλ⋅,使得12a c λλ=⋅,即//a c ,则①正确;对于②,模长关系只能说明向量a ,b 的长度关系,与方向无关,则②错误; 对于③,当a b =时,由题意可得()5x y a a +=,则5x y +=,不能说明2x =,3y =,则③错误;由向量共线定理可知,④正确;故选:B. 【点睛】本题主要考查了向量共线定理以及向量的定义,属于中档题.二、填空题13.【分析】根据条件两边平方进行数量积运算可求得然后根据即可求得答案【详解】因为所以所以所以故答案为:【点睛】思路点睛:该题考查的是有关向量模的求解问题解题思路如下:(1)首先根据题中条件结合向量模的平【分析】根据条件1a b +=两边平方,进行数量积运算可求得21a b ⋅=-,然后根据2()a b a b -=-即可求得答案.【详解】因为1a b ==,1a b +=,所以2222()2221a b a b a a b b a b +=+=+⋅+=+⋅=,所以21a b ⋅=-, 所以22()223a b a b a b a b -=-=-=-⋅=,【点睛】思路点睛:该题考查的是有关向量模的求解问题,解题思路如下:(1)首先根据题中条件,结合向量模的平方等于向量的平方,求得21a b ⋅=-; (2)之后再应用向量的模的平方等于向量的平方来求解.14.【分析】根据平面向量数量积的定义求出与并计算出平面向量的模再利用公式即可求解【详解】由平面向量的数量积的定义可得即所以在方向上的投影为故答案为:【点睛】本题主要考查了平面向量的数量积的定义以及向量的【分析】根据平面向量数量积的定义求出12e e ⋅与a b ⋅,并计算出平面向量b 的模b ,再利用公式,即可求解. 【详解】由平面向量的数量积的定义,可得1221211cos11()322e e e e π⋅=⋅=⨯⨯-=-,222222111111()(2)22122a b e e e e e e e e ⋅=+-=+⋅-=--=,22221112221(2)4444()172e e e e e e b =-=-⋅+=-⨯-+=,即7b =,所以a 在b 方向上的投影为1727a b b⋅==.故答案为:714. 【点睛】本题主要考查了平面向量的数量积的定义,以及向量的投影的应用,其中解答中熟记平面向量的数量积的计算公式,以及向量的投影的计算是解答本题的关键,着重考查了推理与运算能力,属于中档试题.15.【详解】方法一:①又②③将②③代入①得:所以点在内所以方法二:以直线OAOB 分别为轴建立直角坐标系则设又得即解得故答案为:3解析:【详解】 方法一:3cos 2OA OC AOC OA OC⋅∠==⋅, ① 又()2OA OC OA mOA nOB m OA m ⋅=⋅+==, ②22222222||()||||23OC mOA nOB m OA n OB mnOA OB m n =+=++⋅=+, ③将②③代入①得:22323m n=+,所以229m n =,点C 在AOB ∠内, 所以3mn=. 方法二:以直线OA ,OB 分别为,x y 轴建立直角坐标系,则()(10,03A B ,, ,设()1cos30,sin 30=,2OC λλ⎫=︒︒⎪⎪⎝⎭, 又()(()1,0OC mOA nOB m n m =+=+=,得()1,=22m λ⎛⎫ ⎪ ⎪⎝⎭,即=212m λλ⎧⎪⎪⎨⎪=⎪⎩, 解得3mn=. 故答案为:3.16.【分析】根据向量的坐标运算即可求出【详解】因为所以故答案为:【点睛】本题考查了向量的坐标运算向量模的坐标公式属于基础题目【分析】根据向量的坐标运算即可求出. 【详解】 因为()0,1A ,()3,2B,所以()3,1AB =,()()()4,33,11,2BC AC AB =-=-=,21BC ==【点睛】本题考查了向量的坐标运算,向量模的坐标公式,属于基础题目.17.【分析】根据平面向量的线性运算与数量积运算求的解析式根据题意求出的取值范围再根据对勾函数的性质求最大值【详解】解:梯形中则解得;设则在上单调递增;时取得最大值故答案为:【点睛】本题主要考查了平面向量解析:76【分析】根据平面向量的线性运算与数量积运算,求AP BQ 的解析式,根据题意求出λ的取值范围,再根据对勾函数的性质求最大值. 【详解】解:梯形ABCD 中,//AB CD ,2AB BC ==,1CD =,120BCD ∠=︒,BP BCλ=,16DQ DCλ=,则61()()()()6AP BQ AB BP BC CQ AB BC BC CDλλλ-=++=++2611666AB BC AB CD BC CB CDλλλλ--=+++26116122cos12021221()662λλλλ--=⨯⨯︒-⨯⨯+⨯+⨯⨯⨯-125536λλ=+-,011016λλ⎧⎪⎨⎪⎩,解得116λ;设125()536fλλλ=+-,则()fλ在1,16⎡⎤⎢⎥⎣⎦上单调递增;1λ∴=时()fλ取得最大值76,故答案为:76.【点睛】本题主要考查了平面向量的线性运算以及平面向量的数量积的运算问题,同时也考查了函数的最值问题,其中解答中根据向量的线性运算和数量积的运算,求得AP BQ的解析式是解答的关键,着重考查了分析问题和解答问题的能力,属于中档题.18.【分析】利用向量的数量积公式向量垂直的性质直接直解【详解】非零向量满足=⊥解得故答案为:【点睛】本题主要考查了向量的数量积公式向量垂直的性质等基础知识考查运算能力属于中档题解析:4-【分析】利用向量的数量积公式、向量垂直的性质直接直解.【详解】非零向量m→,n→满足4m→=3n→,cos m→〈,13n→〉=,n→⊥t m n→→⎛⎫+⎪⎝⎭,n→∴⋅22+||||cos,||t m n t m n n t m n m n n→→→→→→→→→→⎛⎫+=⋅=<>+⎪⎝⎭223||||034t n n →→=⨯+=, 解得4t =-, 故答案为:4- 【点睛】本题主要考查了向量的数量积公式、向量垂直的性质等基础知识,考查运算能力,属于中档题.19.【分析】将均用表示出来进而将表示成与相关可以求出同时可用表示即可求出结果【详解】因为因此故答案为:【点睛】研究向量的数量积一般有两个思路一是建立平面直角坐标系利用坐标研究向量的数量积;二是利用一组基解析:58【分析】将,,,BA CA BF CF 均用,BC AD 表示出来,进而将BA CA ⋅,BF CF ⋅表示成与,FD BC相关,可以求出 2223,827FD BC ==,同时BE CE ⋅可用,FD BC 表示,即可求出结果.【详解】因为222211436=52244AD BC FD BC BA CA BC AD BC AD ()()--⋅=-⋅--==,2211114223234FD BCBF CF BC AD BC AD ()()-⋅=-⋅--==-,因此2223,827FD BC ==,222211416.224458ED BC FD BC BE CE BC ED BC ED ()()--⋅=-⋅--===故答案为:58. 【点睛】研究向量的数量积,一般有两个思路,一是建立平面直角坐标系,利用坐标研究向量的数量积;二是利用一组基底表示所有向量,两种思路实质相同,但坐标法更易理解和化简. 对于涉及中线的向量问题,一般利用向量加、减法的平行四边形法则进行求解.20.2【分析】根据向量在的方向上的投影为结合向量的数量积的坐标运算和模的计算公式即可求解【详解】由题意向量可得则在的方向上的投影为故答案为:【点睛】本题主要考查了平面向量数量积的坐标运算和模计算公式的应解析:2 【分析】根据向量a 在b 的方向上的投影为a b b⋅,结合向量的数量积的坐标运算和模的计算公式,即可求解. 【详解】由题意,向量(2,1)a =,(3,4)b =,可得231410a b ⋅=⨯+⨯=,2345b =+=,则a 在b 的方向上的投影为1025a b b⋅==. 故答案为:2. 【点睛】本题主要考查了平面向量数量积的坐标运算和模计算公式的应用,以及向量的投影的概念与计算,其中解答熟记平面向量的数量积、模及投影的计算公式是解答的关键,着重考查推理与运算能力.三、解答题21.(12 【分析】 (1)由于()12AD AB AC =+,进而根据向量的模的计算求解即可; (2)由于3144BM AB AC =-+,()12AD AB AC =+,进而根据向量数量积得278BM AD ⋅=,故57cos BM AD BM AD θ⋅==. 【详解】解:(1)由已知,236cos 93AB AC π⋅=⨯=-, 又()12AD AB AC =+, 所以()222124AD AB AB AC AC =+⋅+()1279183644=-+=, 所以33AD =. (2)由(1)知,()131444BM AM AB AB AC AB AB AC =-=+-=-+,所以()293117199361681616BM=⨯-⨯-+⨯=,从而3194BM =. ()311442BM AD AB AC AB AC ⎛⎫⋅=-+⋅+= ⎪⎝⎭()3212799368888-⨯-⨯-+⨯=,所以27cos8BM AD BM ADθ⋅=== 解法2:(1)以点A 为原点,AB 为x 轴,过点A 且垂直于AB 的直线为y 轴建系,则()0,0A ,()3,0B ,(C -,因为D 为边BC 的中点,所以D ⎛ ⎝⎭,AD ⎛= ⎝⎭,所以332AD =.(2)因为M 为中线AD 的中点,由(1)知,0,4M ⎛⎫⎪ ⎪⎝⎭,所以3,4BM ⎛⎫=- ⎪ ⎪⎝⎭,所以9164BM ==,278BM AD ⋅=,所以27cos819BM AD BM ADθ⋅===. 【点睛】本题考查向量的数量积运算,向量夹角的计算,考查运算求解能力与化归转化思想,是中档题.本题解题的关键在于向量表示中线向量()12AD AB AC =+,进而根据向量模的计算公式计算.22.(Ⅰ)(2,1)AB =-,5AB =Ⅱ)3t = 【分析】(Ⅰ)根据点A ,B 的坐标即可求出(2,1)AB =-,从而可求出||AB ;(Ⅱ)可以求出(13,1)tOC OB t t +=-+,根据()//tOC OB AB +即可得出2(1)(1)(13)30t t t +---=-=,解出t 即可.【详解】(Ⅰ)∵()1,2A -,()1,1B ,∴(2,1)AB =- ∴2||2AB ==(Ⅱ)∵()3,1C -,∴(13,1)tOC OB t t +=-+. ∵()tOC OB AB +∴2(1)(1)(13)30t t t +---=-=,∴3t =【点睛】考查根据点的坐标求向量的坐标的方法,根据向量的坐标求向量长度的方法,以及平行向量的坐标关系.23.(1)23π;(23) 【分析】(1)将已知条件中的式子展开,利用公式求得6a b ⋅=-,根据向量夹角公式求得1cos 2θ=-,结合角的范围,求得结果;(2)利用向量的模的平方和向量的平方是相等的,从而求得结果; (3)根据向量所成角,求得三角形的内角,利用面积公式求得结果. 【详解】(1)因为(23)(2)61a b a b -⋅+=, 所以2244361aa b b-⋅-=.又4,3a b ==, 所以6442761a b -⋅-=, 所以6a b ⋅=-, 所以61cos 432a ba b θ⋅-===-⨯. 又0≤θ≤π,所以23πθ=. (2)2222()2a b a b a a b b +=+=+⋅+ =42+2×(-6)+32=13,所以13a b +=; (3)因为AB 与BC 的夹角23πθ=, 所以∠ABC =233πππ-=. 又4,3AB a BC b ====,所以S △ABC =14322⨯⨯⨯= 【点睛】该题考查的是有关向量与解三角形的综合题,涉及到的知识点有向量数量积,向量夹角公式,向量的平方和向量模的平方是相等的,三角形面积公式,属于简单题目. 24.(1)12λ=;(2)1x =,1y =或1x =-,2y =. 【分析】(1)根据向量垂直的坐标运算即可求解;(2)由模的向量坐标运算及夹角的向量坐标运算联立方程即可求解. 【详解】(1)∵()2,0a →=,(b →=,∴()2,a b λλ→→-=-,∵a a b λ→→→⎛⎫-⊥ ⎪⎝⎭, ∴0a b b λ→→→⎛⎫-⋅= ⎪⎝⎭,即240λ-=, ∴12λ=. (2)∵()2,0a →=,(b →=,∴()2m x a y b x y →→→=+=+,又m →=,∴()222312x y y ++=,又cos 62m bm bπ→→→→⋅===, 即23x y +=,由()22231223x y y x y ⎧++=⎪⎨+=⎪⎩, 解得11x y =⎧⎨=⎩或12x y =-⎧⎨=⎩,∴1x =,1y =或1x =-,2y =.【点睛】本题主要考查了向量的坐标运算,考查了垂直关系,夹角公式,模的运算,属于中档题. 25.(1)2)证明见解析. 【分析】(1)利用平面向量的坐标运算和共线定理列方程求出t 的值;(2)根据条件得到2AC AB =且有公共点A ,即可得到结论. 【详解】解:(1)∵(),1a t =,()5,b t =,且//a b ,故250t t -=⇒=, 即实数t 的值为:5±;(2)证明:∵OA a b =+,2OB a b =+,3OC a b =+. ∴AB OB OA b =-=,2AC OC OA b =-=,即2AC AB =且有公共点A , 故A ,B ,C 三点共线. 【点睛】本题考查向量平行的坐标表示,用向量法证明三点共线,属于基础题.26.(12 【分析】(1)利用定义得出a b ⋅,再结合模长公式求解即可;(2)先得出()a a b ⋅+,再由数量积公式得出a 与a b +的夹角的余弦. 【详解】 (1)313cos32a b π⋅=⨯⨯=2223()||2||122a b a b a a b b ∴+=+=+⋅+=+⨯=(2)235()||122a ab a a b ⋅+=+⋅=+= 5()2cos ,26113a ab a a b a a b⋅+∴+===⨯⋅+ 【点睛】本题主要考查了利用定义求模长以及求夹角,属于中档题.。
一、选择题:( 本大题共10 小题,每题 4分,共40分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的 .)1.设点P 〔3,-6〕,Q 〔-5,2〕,R 的纵坐标为-9,且P 、Q 、R 三点共线,那么R 点的横坐标为〔 〕。
A 、-9B 、-6C 、9D 、6 2. =(2,3), =(-4,7) ,那么 在 b 上的投影为〔 〕。
b A 、B、C 、D 、3.设点A 〔1,2〕,B 〔3,5〕,将向量按向量 =〔-1,-1〕平移后得向量为〔〕。
A 、〔2,3〕B 、〔1,2〕C 、〔3,4〕D 、〔4,7〕4.假设(a+b+c)(b+c-a)=3bc ,且sinA=sinBcosC ,那么 ABC 是〔 〕。
A 、直角三角形 B 、等边三角形C 、等腰三角形 D 、等腰直角三角形5.| |=4,| b|=3, 与b 的夹角为60°,那么| +b|等于〔 〕。
A 、B、C、D 、6.O 、A 、B 为平面上三点,点C 分有向线段所成的比为 2,那么〔 〕。
A 、B、C 、D、7.O 是 ABC 所在平面上一点,且满足条件 , 那么点O 是 ABC 的〔 〕。
A 、重心 B 、垂心 C 、内心D 、外心 8.设 、b 、 均为平面内任意非零向量且互不共线,那么以下4个命题: (1)( ·b)2= 2·b 2 (2)| +b |≥| -b|(3)| +b|2=(+b)2(4)(b)-(a)b与不一定垂直。
其中真命题的个数是〔〕。
A、1B、2C、3D、49.在ABC中,A=60°,b=1,,那么等于〔〕。
A、B、C、D、10.设、b不共线,那么关于x的方程x2+b x+=0的解的情况是〔〕。
A、至少有一个实数解B、至多只有一个实数解C、至多有两个实数解D、可能有无数个实数解二、填空题:〔本大题共4小题,每题4分,总分值16分.〕.11.在等腰直角三角形ABC中,斜边AC=22,那么ABCA=_________12.ABCDEF为正六边形,且AC=a,AD=b,那么用a,b表示AB为______.13.有一两岸平行的河流,水速为1,速度为的小船要从河的一边驶向对岸,为使所行路程最短,小船应朝________方向行驶。
高中数学第二章平面向量综合测试题(含解析)新人教A版必修4 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第二章平面向量综合测试题(含解析)新人教A版必修4)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第二章平面向量综合测试题(含解析)新人教A版必修4的全部内容。
平面向量 综合测试题(时间:120分钟 满分:150分)学号:______ 班级:______ 姓名:______ 得分:______一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1。
向量a ,b ,c ,实数λ,下列命题中真命题是( )A .若a ·b =0,则a =0或b =0B .若λ a =0,则λ=0或a =0C .若a 2=b 2,则a =b 或a =-bD .若a ·b =a ·c ,则b =c2.已知向量a =(1,0)与向量b =(-1,错误!),则向量a 与b 的夹角是( )A 。
错误!B 。
错误!C.错误! D 。
错误!3。
设P 是△ABC 所在平面内的一点,错误!+错误!=2错误!,则( )A 。
错误!+错误!=0 B.错误!+错误!=0C.错误!+错误!=0D.错误!+错误!+错误!=04.已知向量a =(2,3),b =(-1,2),若m a +n b 与a -2b 共线,则错误!=( )A .-2B .2C .-错误!D 。
错误!5.若向量a ,b ,c 满足a ∥b 且a ⊥c ,则c ·(a +2b )=( )A .4B .3C .2D .06.已知点A (-1,1),B (1,2),C (-2,-1),D (3,4),则向量错误!在错误!方向上的投影为( )A 。
一、选择题1.已知a 与b 的夹角为60,4a =,则a b λ-(R λ∈)的最小值为( ) A .23B .72C .103D .432.已知向量,a b ,满足||1,||2a b ==,若对任意模为2的向量c ,均有||||27a c b c ⋅+⋅≤,则向量,a b 的夹角的取值范围是( )A .0,3π⎡⎤⎢⎥⎣⎦B .,3ππ⎡⎤⎢⎥⎣⎦C .2,63ππ⎡⎤⎢⎥⎣⎦D .20,3π⎡⎤⎢⎥⎣⎦3.延长正方形CD AB 的边CD 至E ,使得D CD E =.若动点P 从点A 出发,沿正方形的边按逆时针方向运动一周回到A 点,若λμAP =AB +AE ,下列判断正确的是( )A .满足2λμ+=的点P 必为CB 的中点 B .满足1λμ+=的点P 有且只有一个C .λμ+的最小值不存在D .λμ+的最大值为34.已知O 为坐标原点,点M 的坐标为(2,﹣1),点N 的坐标满足111x y y x x +≥⎧⎪-≤⎨⎪≤⎩,则OM ON ⋅的最大值为( )A .2B .1C .0D .-1 5.若平面向量与的夹角为,,,则向量的模为( ) A .B .C .D .6.如下图,四边形OABC 是边长为1的正方形,点D 在OA 的延长线上,且2OD =,点P 为BCD 内(含边界)的动点,设(,)OP OC OD R αβαβ=+∈,则αβ+的最大值等于( )A.3 B.2 C .52D.327.已知非零向量,OA a OB b==,且BC OA⊥,C为垂足,若(0)OC aλλ=≠,则λ等于( )A.a ba b⋅B.2a ba⋅C.2a bb⋅D.a ba b⋅8.如图,正方形ABCD的边长为6,点E,F分别在边AD,BC上,且2DE AE=,2CF BF=.若有(7,16)λ∈,则在正方形的四条边上,使得PE PFλ=成立的点P有()个.A.2 B.4 C.6 D.09.已知抛物线2:4C y x=的焦点为F,准线为l,P是l上一点,Q是直线PF与C 的一个交点,若2FP QF=,则||QF=()A.8 B.4 C.6 D.310.已知O是三角形ABC内部一点,且20OA OB OC++=,则OAB∆的面积与OAC∆的面积之比为()A.12B.1 C.32D.211.已知ABC∆为等边三角形,则cos,AB BC=( )A .3B.12-C.12D312.ABC是边长为23的正三角形,O是ABC的中心,则()()OA OB OA OC+⋅+=()A.2 B.﹣2 C.634-D.634-二、填空题13.已知平面向量,,a b c满足()()||2,||2||a cbc a b a b-⋅-=-==.则c的最大值是________.14.在日常生活中,我们会看到如图所示的情境,两个人共提一个行李包.假设行李包所受重力为G,作用在行李包上的两个拉力分别为1F,2F,且12F F=,1F与2F的夹角为θ.给出以下结论:①θ越大越费力,θ越小越省力; ②θ的范围为[]0,π; ③当2πθ=时,1F G =;④当23πθ=时,1F G =.其中正确结论的序号是______.15.已知向量2a =,1b =,223a b -=,则向量a ,b 的夹角为_______. 16.设123,,e e e 为单位向量,且()312102e e ke k =+>,若以向量12,e e 为邻边的三角形的面积为12,则k 的值为__________. 17.已知||1,||3,0OA OB OA OB ==⋅=|,点C 在AOB ∠内,且30AOC ∠=︒,设(,)OC mOA nOB m n R =+∈,则mn等于 . 18.已知点()0,1A ,()3,2B,向量()4,3AC =,则向量BC =______.19.已知夹角为θ的两个单位向量,a b ,向量c 满足()()0a c b c -⋅-=,则c 的最大值为______.20.已知a →,b →为单位向量,2c a b →→→=-,且,3a b π→→<>=,则,a c →→〈〉=________.三、解答题21.已知在等边三角形ABC 中,点P 为线段AB 上一点,且()01AP AB λλ=≤≤. (1)若等边三角形ABC 的边长为6,且13λ=,求CP ; (2)若CP AB PA PB ⋅≥⋅,求实数λ的取值范围. 22.已知||6a =,||4=b ,(2)(3)72a b a b -⋅+=-. (1)求向量a ,b 的夹角θ; (2)求|3|a b +.23.已知a ,b ,c 是同一平面内的三个向量,其中()1,2a =,()3,b k =-,()2,4c =-.(1)若()//(2)ma c a c +-,求m ; (2)若()a a b ⊥+,c a b λμ=+,求λμ+.24.已知在直角坐标系中(O 为坐标原点),()2,5OA =,()3,1OB =,(),3OC x =. (1)若A ,B ,C 共线,求x 的值;(2)当6x =时,直线OC 上存在点M 使MA MB ⊥,求点M 的坐标.25.对于任意实数a ,b ,c ,d ,表达式ad bc -称为二阶行列式(determinant ),记作a b c d,(1)求下列行列式的值:①1001;②1326;③251025--; (2)求证:向量(),p a b =与向量(),q c d =共线的充要条件是0a b c d=;(3)讨论关于x ,y 的二元一次方程组111222a xb yc a x b y c +=⎧⎨+=⎩(12120a a b b ≠)有唯一解的条件,并求出解.(结果用二阶行列式的记号表示).26.已知单位向量1e ,2e 的夹角为60︒,向量12a e e =+,21b e te =-,t R ∈. (1)若//a b ,求t 的值; (2)若2t =,求向量a ,b 的夹角.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据向量的模的表示方法得22222a b a a b b λλλ-=-⋅+,再配方即可得答案. 【详解】解:根据向量模的计算公式得:()()222222216421212a b a a b b b bb λλλλλλ-=-⋅+=-+=-+≥,当且仅当2b λ=时等号成立;所以23a b λ-≥,当且仅当2b λ=时等号成立; 故选:A. 【点睛】方法点睛:向量模的计算公式:22a a a a =⋅=2.B解析:B 【分析】根据向量不等式得到7a b +≤,平方得到1a b ⋅≤,代入数据计算得到1cos 2α≤得到答案. 【详解】由||1a =,||2b =,若对任意模为2的向量c ,均有||||27a c b c ⋅+⋅≤ 可得:()()27a b c a b c a c b c +⋅≤+⋅≤⋅+⋅≤ 可得:()227a b +⋅≤,7a b +≤平方得到2227a b a b ++⋅≤,即1a b ⋅≤1cos 1,cos ,23a b a b παααπ⋅=⋅≤∴≤∴≤≤故选:B 【点睛】本题考查了向量夹角的计算,利用向量三角不等式的关系进行求解是解题的关键.3.D解析:D 【解析】试题分析:设正方形的边长为1,建立如图所示直角坐标系,则,,,,A B C D E 的坐标为(0,0),(1,0),(1,1),(0,1),(1,1)-,则(1,0),(1,1)AB AE ==-设(,)AP a b =,由λμAP =AB +AE 得(,)(,)a b λμμ=-,所以{a b λμμ=-=,当P 在线段AB 上时,01,0a b ≤≤=,此时0,a μλ==,此时a λμ+=,所以01λμ≤+≤;当P 在线段BC 上时,,此时,1b a b μλμ==+=+,此时12b λμ+=+,所以13λμ≤+≤;当P 在线段CD 上时,,此时1,1a a μλμ==+=+,此时2a λμ+=+,所以13λμ≤+≤;当P 在线段DA 上时,0,01,a b =≤≤,此时,b a b μλμ==+=,此时2b λμ+=,所以02λμ≤+≤;由以上讨论可知,当2λμ+=时,P 可为BC 的中点,也可以是点D ,所以A 错;使1λμ+=的点有两个,分别为点B 与AD 中点,所以B 错,当P 运动到点A 时,λμ+有最小值0,故C 错,当P 运动到点C 时,λμ+有最大值3,所以D 正确,故选D .考点:向量的坐标运算.【名师点睛】本题考查平面向量线性运算,属中档题.平面向量是高考的必考内容,向量坐标化是联系图形与代数运算的渠道,通过构建直角坐标系,使得向量运算完全代数化,通过加、减、数乘的运算法则,实现了数形的紧密结合,同时将参数的取值范围问题转化为求目标函数的取值范围问题,在解题过程中,还常利用向量相等则坐标相同这一原则,通过列方程(组)求解,体现方程思想的应用.4.A解析:A 【分析】根据题意可得,OM ON ⋅=2x ﹣y ,令Z =2x ﹣y ,做出不等式组所表示的平面区域,做直线l 0:2x ﹣y =0,然后把直线l 0向可行域内平移,结合图象可判断取得最大值时的位置. 【详解】根据题意可得,OM ON ⋅=2x ﹣y ,令Z =2x ﹣y做出不等式组所表示的平面区域,如图所示的△ABC 阴影部分:做直线l 0:2x ﹣y =0,然后把直线l 0向可行域内平移, 到点A 时Z 最大, 而由x+y=11x ⎧⎨=⎩ 可得A (1,0),此时Z max =2. 故选:A . 【点睛】本题主要考查了利用线性规划求解最优解及目标函数的最大值,解题的关键是正确作出不等式组所表示的平面区域,并能判断出取得最大值时的最优解的位置.利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(ax by +型)、斜率型(y bx a++型)和距离型(()()22x a y b +++型).(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值。
综合检测(二)(时间120分钟,满分150分)、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四 个选项中,只有一项是符合题目要求的)a ,b ,c 满足 a / b ,且 a 丄c ,贝U c (a + 2b )=( )C. 2•.a 丄c ,-'a c = 0.又•••a//b ,二可设b = a 则 c (a + 2b ) = c(1 + 2 ?)a2.已知向量a = (1,0)与向量b = (—1,^/3),则向量a 与b 的夹角是( )nA -6C.2n【答案】A. 2C-6'•'1= (1 + x,3), u= (1 — x,1), 1/u•••(1+ X)x 1-3X (1 — X) — 0,.・.x=2第二章平面向量1.若向量【解析】【答案】 D x k B1 . c o mn B.3【解析】cos〈a ,b 〉=器=T^•••0,b 〉 2n=3 .3.已知 a = (1,2), b —(X ,1),11= a + b, u= a — b,且1/ u 则x 的值为()【解析】【答案】A4.已知|a| = 2|b|, |b|M 0,且关于x的方程x2+ |a|x + ab= 0有实根,则a与b的夹角的取值范围是()n A. [0,6】n , B. [3, n> 0. C. [5,劭n ,D. [6, n【解析】|a|2— 4a b=a f — 4|a||b|cos〈a, b〉= 4|b|2— 8|b|2 cos〈a,b〉-cos a, b〉1W2,〈a, b〉€ [0, n .a,b〉【答案】5.已知|a| = 1, |b| = 6, a (b—a) = 2,则向量a与b的夹角是( )nA.6nB.4nC.nnD-22 2【解析】--a (b—a) = a b— a = 2,.・.|a||b|cos B—|a| = 2,1 n•••1x 6x cos — 1 = 2,.・.cos = 2,又0W 0W n 二=3,故选 C.【答案】 C6.已知OA= (2,2), 5B= (4,1),在x轴上一点P使A P B P有最小值,则P点的坐标是( )A. (—3,0)B. (3,0)C. (2,0)D. (4,0)【解析】设P(x,0),.・.AP= (x—2,—2), BP= (x —4,— 1),A AP BP= (x—2)(x —4)+ 22 2=x —6x+ 10= (x—3) +1,当x= 3时,AP BP取最小值,此时P(3,0).【答案】 B7•若a,b是非零向量,且a丄b,|a|M |b|,则函数f(x)= (x a+ b) (x b—a)是( )A .一次函数且是奇函数B.一次函数但不是奇函数C•二次函数且是偶函数D.二次函数但不是偶函数【解析】..a丄b,.・.a b= 0,•••f(x) = (x a + b) (x b—a) = x2(a b)+ (|b|2—|a|2)x—a b= (|bf—a|2)x,又|a|M|b|.•••f(x )是一次函数且为奇函数,故选A.【答案】 A> —> AB AC —> AB AC 18 已知非零向量AB与AC满足(=+=) BC = 0且===2则^ ABC |AB| AC| |AB| |AC|A .等边三角形B.直角三角形C.等腰非等边三角形D.三边均不相等的三角形【解析】AB和钥分别是与AB, AC同向的两个单位向量.|AB| AC|AB AC AB AC f兰+号是/BAC角平分线上的一个向量,由+弋)BC = 0知该向|AB| |AC| |AB| |AC|AB AC 1量与边BC垂直,.・.ZABC是等腰三角形.由 f f = 2知/BAC= 60 : •••ZABC是|AB|| AC|等边三角形.【答案】 A9. (2013 湖北高考)已知点 A(— 1,1), B(1,2), C(-2,— 1), D(3,4),则向量 AB 在CD 方向上的投影为()A鉅C .-寥【解析】 由已知得AB = (2,1), CD = (5,5),因此AB 在CD 方向上的投影为AB CD _ _鉅|CD| 5©2【答案】 A10•在直角三角形ABC 中,点D 是斜边AB 的中点,点P 为线段CD 的中点'则-()D. 10【解析】--PA ^ CA — CP ,7 2 7 2 7 7 7 2 IPAl = CA — 2CP CA+CP .—7 —7 —7 —7 少 7 少 —7 —7 —7 Q •.•PB _ CB — CP ,・.|PB| _ CB — 2CP CB +CP .—7 2 —7 2 —7 2 —7 2 —7 —7 —7 —7 2 —7 2 —7 —7 —7 •••|PAr + |PBr_ (CA + CB ) — 2CP (CA + CB) + 2CP _ AB — 2CP 2CD + 2CP又AB 2= 16CP 2, CD = 2CP ,代入上式整理得 |FA|2+ |PB|2= 10|CPf ,故所求 值为10.【答案】 D二、填空题(本大题共5小题,每小题5分,共25分,将答案填在题中的横 线上)C. 5 ,211.已知向量a= (2,1), ab= 10, l a + b| = 5 迄,则|b| 等于【解析】••l a+ b|a5 72,A(a + b)2a50,即a2+ b2+ 2a b a50, 又a|=V5, a b= 10,••5+|bf+ 2X 10a 50.解得|b| = 5.【答案】 5」「4si n a— 2cos a12•已知a a g), b a(sin a, cos a,且a// b•则5^5 + 3前 a【解析】••a//b,.・.3cos aa sin a,4sin a— 2cos a 4tan a— 2 4 X 3— 2 55cos a+ 3sin a 5+ 3tan a 5+ 3X 3 75【答案】513.(2013课标全国卷n )已知正方形ABCD的边长为2, E为CD的中点,贝UAE BDa【解析】如图,以A为坐标原点,AB所在的直线为x轴,AD所在的直线为y 轴,建立平面直角坐标系,则A(0,0), B(2,0), D(0,2), E(1,2),••AE= (1,2), BDa (-2,2),••AE BD a 1X (-2) + 2X 2a2.【答案】 22 n14.已知e1, e2是夹角为~的两个单位向量,a a& —2e2, b a k e1 + e2,若a b a 0,则实数k的值为【解析】 由题意a b = 0,即有(81 — 2e 2) (*01 + e 2)= 0•••k e 1+ (1 — 2k) 81 82— 2e 2= 0.又•••|e i |= |e 2|= 1,〈e i ,e 2>2 n•'•k— 2+ (1 — 2k) cos -3 = 0, 1 — 2k 5 • k — 2= ~2~,•-k =4.【答案】515. (2012 安徽高考)设向量 a = (1,2m), b = (m + 1,1), c = (2, m).若(a + c ) 丄 b,则 a i = .【解析】 a + c = (1,2m) + (2, m) = (3,3m).••(a + c)丄 b,•••(a + c ) b = (3,3m) (m + 1,1)= 6m + 3= 0,••a = (1,— 1), la , 12 + (-1丫【答案】迈三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或 演算步骤)16.(本小题满分12分)(2013江苏高考)已知a = (cos a, sin a, b = (cos B, sin 9, 0< 3<a<n.(1)若 |a — b | = 72,求证:a 丄 b ;⑵设c = (0,1),若a + b = c ,求a 9的值. 【解】(1)证明由题意得a — b l 2 = 2, 即(a — b )2= a 2 — 2a b + b 2 = 2. 又因为 a 2= b 2= laj |b |2 = 1,2n ~3所以 2-2a b = 2, 即卩 a b = 0,故 a 丄b.⑵因为 a + b = (cos a+ cos B, sin 计 sin f) = (0,1),Icos a+ cos 3= 0, 所以1 Isin a+ sin 3= 1,由此得,cos a= cos( — 3),由 0v 3< n 得 0v n — 3^ n. a= n — 3代入 sin a+ sin 3= 1, 得 sin a= sin十“ 5 n n 所以 a=E, 3=6.【解】AC = OC — OA = (7,— 1 — m),BC = OC - 0B = (5- n ,— 2). ••A 、B 、C 三点共线,••• AC//BC ,•••—14+ (m + 1)(5 — n) = 0. 又OA 丄OB.--—■2n + m = 0.3由①②解得 m = 6, n = 3或m = 3, n =q.18.(本小题满分12分)已知a , b 是两个非零向量,当a +t b (t € R )的模取最 小值时.(1)求t 的值; ⑵求证:b 丄(a + t b ).【解】 (1)(a + t b )2= a + kb |2+ 2a t b,|a + t b |最小,即 |a |2+ |t b |2+ 2a t b 最小,又0V a< n 故 17.(本小题满分 12分)平面内三点A 、B 、C 在一条直线上,0A =(— 2, m),0B = (n,1), 0C = (5, —1),且OA 丄OB ,求实数m 、n 的值.即 t 2|b |2 + [af + 2t|a ||b |cos 〈a , b 〉最小.|a |cos 〈 a , b 〉故当t =— 石 时, |b||a +t b | 最小.2|a |cos 〈 a , b 〉 2(2)证明:b (a +1b ) = ab + t|b | ------------------ = ------ |a ||b |cos 〈 a,b 〉— |b|b | = |a ||b |cos |b|a ,b 〉一 |a ||b |cos 〈a , b 〉= 0,故 b 丄(a +1b ).19.(本小题满分13分)△ ABC 内接于以O 为圆心,1为半径的圆,且3OA +4OB + 5OC = 0. (1)求数量积 O A O B , O B OC , OC OA ; (2)求^ ABC 的面积.xKb 1. Com【解】 (1)V3OA + 4OB + 5OC = 0,••3OA + 4OB = 0-5OC , -— -—2 -— 2 即(3OA + 4OB) = (0- 5OC).—7 2 —7 —z —z 2 —7 2可得 9OA + 24OA OB + 16OB = 25OC . 又•••|OA|=|OB|=|OC| = 1,•••OA OB = 0.同理 OB OC =-5,OCOA =- 5.1 —— —— 1 —— —— (2)S Z ABC = S A OAB + Sz oBc + S ZOAC = 2|OA| | OB|sin ZAOB + 2|OB| |OC|sin /BOC + 2|OC| |OA|sin HOC. 又 |O A|= |OB|= |OC|=1.•'S^ABC^ 2(sin ZAOB+sin /BOC + sin ZAOC).由(1)OAOB= |0A| |OB|cos /AOB= cos ZAOB= 0得sin ZAOB= 1.T T T T 4OB OC= |OB| |OC| cos /BOC = cos /BOC=- 5,./ 3-sin /BOC=5,同理sin /AOC=5.5-S/yxBC = 5.20.(本小题满分13分)在平面直角坐标系xOy中,已知点A(- 1,-2),B(2,3), C( - 2,- 1).(1)求以线段AB、AC为邻边的平行四边形的两条对角线的长;(2)设实数t满足(AB-tOC) 0C= 0,求t的值.【解】(1 )由题设知AB= (3,5), AC= (—1,1),则AB + AC= (2,6), AB- AC= (4,4).所以AB+ AC| = 2^10, AB-AC匸4寸2.故所求的两条对角线长分别为4迈,2>/10.X K b心m⑵由题设知OC= (-2,- 1), AB-tOC = (3+ 2t,5 +1).由(AB-tOC) OC= 0,得(3 + 2t,5 +1) (—2,- 1)= 0,从而5t=—11,所以t115.图121.(本小题满分13分)如图1,平面内有三个向量OA, OB, OC,其中O A与OB的夹角为120°, OA与OC的夹角为30°且|5A|=|OB匸1,|oC| = 2 羽若oC = QA+ QB(入空R),求H卩的值.【解】法一:作CD //OB交直线OA于点D,作CE //OA交直线OB于点E,贝U OC = OD+ OE,由已知/OCD = /COE= 120 —30 = 90 ° 在Rt△)CD 中,OD = ^3。
一、选择题1.已知点G 是ABC 的重心,(),AG AB AC R λμλμ=+∈,若120,2,A AB AC ∠=︒⋅=-则AG 的最小值是( )A .3 B .2 C .12D .232.已知O 为坐标原点,点M 的坐标为(2,﹣1),点N 的坐标满足111x y y x x +≥⎧⎪-≤⎨⎪≤⎩,则OM ON ⋅的最大值为( )A .2B .1C .0D .-13.已知函数()sin (0)2f x x a a π⎛⎫=>⎪⎝⎭,点A ,B 分别为()f x 图象在y 轴右侧的第一个最高点和第一个最低点,O 为坐标原点,若OAB 为钝角三角形,则a 的取值范围为( )A .10,(2,)2⎛⎫+∞ ⎪⎝⎭ B .30,(1,)⎛⎫⋃+∞ ⎪⎝⎭C .3,1⎛⎫ ⎪ ⎪⎝⎭D .(1,)+∞4.已知向量()1,2a =,()2,3b =-,若向量c 满足()//c a b +,()c a b ⊥+,则c =( ) A .7793⎛⎫ ⎪⎝⎭,B .7739⎛⎫-- ⎪⎝⎭,C .7739⎛⎫ ⎪⎝⎭,D .7793⎛⎫-- ⎪⎝⎭,5.若平面向量与的夹角为,,,则向量的模为( ) A .B .C .D .6.在矩形ABCD 中,|AB |=6,|AD |=3.若点M 是CD 的中点,点N 是BC 的三等分点,且BN =13BC ,则AM ·MN =( ) A .6B .4C .3D .27.若2a b c ===,且0a b ⋅=,()()0a c b c -⋅-≤,则a b c +-的取值范围是( )A .[0,222]B .[0,2]C .[222,222]-+D .[222,2]-8.已知向量a ,b 满足||3,||2a b ==,且对任意的实数x ,不等式a xb a b +≥+恒成立,设a ,b 的夹角为θ,则tan θ的值为( )A B .2-C .D 9.已知向量(cos ,sin )a θθ=,向量(3,1)b =-,则2a b -的最大值,最小值分别是( )A .0B .4,C .16,0D .4,010.在ABC ∆中,060BAC ∠=,5AB =,6AC =,D 是AB 上一点,且5AB CD ⋅=-,则BD 等于( )A .1B .2C .3D .411.在边长为2的菱形ABCD 中,60BAD ∠=︒,点E 是AB 边上的中点,点F 是BC 边上的动点,则DE DF ⋅的取值范围是( )A .⎡⎣B .2⎣C .⎤⎦D .[]0,312.已知平面上的非零..向量a ,b ,c ,下列说法中正确的是( ) ①若//a b ,//b c ,则//a c ; ②若2a b =,则2a b =±;③若23x y a b a b +=+,则2x =,3y =; ④若//a b ,则一定存在唯一的实数λ,使得a b λ=. A .①③B .①④C .②③D .②④二、填空题13.已知平面向量,,a b c 满足()()||2,||2||a c b c a b a b -⋅-=-==.则c 的最大值是________.14.已知向量(12,2)a t =-+,(2,44)b t =-+,(1,)c λ=(其中t ,)R λ∈.若(2)c a b ⊥+,则λ=__.15.向量,a b 满足(1,3),2,()(3)12a b a b a b ==+⋅-=,则a 在b 方向上的投影为__________.16.已知向量2a =,1b =,223a b -=,则向量a ,b 的夹角为_______. 17.如图,正方形ABCD 的边长为2,E 是以CD 为直径的半圆弧上一点,则AD AE ⋅的最大值为______.18.在△ABC 中,BD =2DC ,过点D 的直线与直线AB ,AC 分别交于点E ,F ,若AE =x AB ,AF =y AC (x >0,y >0),则x +y 的最小值为_____.19.已知O 为ABC 内一点,且满足305OA OB OC =++,延长AO 交BC 于点D .若BD DC λ=,则λ=_____.20.已知平面向量a ,b 满足3a b +=,3a b -=,则向量a 与b 夹角的取值范围是______.三、解答题21.在ABC 中,3AB =,6AC =,23BAC π∠=,D 为边BC 的中点,M 为中线AD 的中点.(1)求中线AD 的长;(2)求BM 与AD 的夹角θ的余弦值. 22.已知()3,0a =,(1,3)b =. (Ⅰ)求a b ⋅和b 的值;(Ⅱ)当()k k ∈R 为何值时,向量a 与k +a b 互相垂直? 23.已知123PP P 三个顶点的坐标分别为123(cos ,sin ),(cos ,sin ),(cos ,sin )P P P ααββγγ,且1230OP OP OP ++=(O 为坐标原点).(1)求12POP ∠的大小; (2)试判断123PP P 的形状.24.如图,在正方形ABCD 中,点E 是BC 边上中点,点F 在边CD 上.(1)若点F 是CD 上靠近C 的三等分点,设EF AB AD λμ=+,求λ+μ的值.(2)若AB =2,当AE BF ⋅=1时,求DF 的长.25.在ABCD 中,2AB =,23AC =AB 与AD 的夹角为3π. (Ⅰ)求AD ;(Ⅱ)求AC 和BD 夹角的余弦值. 26.已知向量a 、b 的夹角为3π,且||1a =,||3b =. (1)求||a b +的值; (2)求a 与a b +的夹角的余弦.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先根据重心得到()13AG AB AC =+,设0,0AB x AC y =>=>,利用数量积计算4xy =,再利用重要不等式求解()2219A AGB AC =+的最小值,即得结果.【详解】点G 是ABC 的重心,设D 为BC 边上的中点,则()2133AG AD AB AC ==+, 因为120,2,A AB AC ∠=︒⋅=-设0,0AB x AC y =>=>,则cos1202xy ︒=-,即4xy =,故()()()222211144249999AG x y x B ACy A =+-≥-=+=,即23AG ≥, 当且仅当2x y ==时等号成立,故AG 的最小值是23. 故选:D. 【点睛】 关键点点睛:本题的解题关键在于通过重心求得向量关系()13AG AB AC =+,利用数量积得到定值,才能利用重要不等式求最值,突破难点,要注意取条件的成立.2.A解析:A【分析】根据题意可得,OM ON ⋅=2x ﹣y ,令Z =2x ﹣y ,做出不等式组所表示的平面区域,做直线l 0:2x ﹣y =0,然后把直线l 0向可行域内平移,结合图象可判断取得最大值时的位置. 【详解】根据题意可得,OM ON ⋅=2x ﹣y ,令Z =2x ﹣y做出不等式组所表示的平面区域,如图所示的△ABC 阴影部分:做直线l 0:2x ﹣y =0,然后把直线l 0向可行域内平移, 到点A 时Z 最大,而由x+y=11x ⎧⎨=⎩ 可得A (1,0), 此时Z max =2. 故选:A . 【点睛】本题主要考查了利用线性规划求解最优解及目标函数的最大值,解题的关键是正确作出不等式组所表示的平面区域,并能判断出取得最大值时的最优解的位置.利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(ax by +型)、斜率型(y bx a++型)和距离型(()()22x a y b +++型).(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值。
一、选择题1.如图,B 是AC 的中点,2BE OB =,P 是平行四边形BCDE 内(含边界)的一点,且(),OP xOA yOB x y R =+∈,则下列结论正确的个数为( )①当0x =时,[]2,3y ∈②当P 是线段CE 的中点时,12x =-,52y =③若x y +为定值1,则在平面直角坐标系中,点P 的轨迹是一条线段 ④x y -的最大值为1- A .1 B .2C .3D .42.若平面向量与的夹角为,,,则向量的模为( ) A .B .C .D .3.若12,e e 是夹角为60︒的两个单位向量,则向量1212,2a e e b e e =+=-+的夹角为( ) A .30B .60︒C .90︒D .120︒4.在AOB ∆中,0,5,25,OA OB OA OB AB ⋅===边上的高为,OD D 在AB 上,点E 位于线段OD 上,若34OE EA ⋅=,则向量EA 在向量OD 上的投影为( ) A .12或32B .1C .1或12D .325.已知1a ,2a ,1b ,2b ,()*k b k ⋅⋅⋅∈N是平面内两两互不相等的向量,121a a-=,且对任意的1,2i = 及1,2,,j k =⋅⋅⋅,{}1,2i j a b -∈,则k 最大值为( ) A .3B .4C .5D .66.在矩形ABCD 中,|AB |=6,|AD |=3.若点M 是CD 的中点,点N 是BC 的三等分点,且BN =13BC ,则AM ·MN =( ) A .6B .4C .3D .27.已知正方形ABCD 的边长为2,EF 为该正方形内切圆的直径,P 在ABCD 的四边上运动,则PE PF ⋅的最大值为( )A B .1C .2D .8.已知向量,a b 满足2(1,2),(1,)+==a b m b m ,且a 在b ,则实数m =( )A .2±B .2C .5±D 9.已知两个非零向量a ,b 的夹角为23π,且=2a b -,则·ab 的取值范围是( ) A .2,03⎛⎫- ⎪⎝⎭B .[)2,0-C .2,03⎡⎫-⎪⎢⎣⎭D .[)1,0-10.在直角梯形ABCD 中,0AD AB ⋅=,30B ∠=︒,AB =,2BC =,13BE BC =,则( )A .1163AE AB AD =+ B .1263AE AB AD =+ C .5163AE AB AD =+ D .5166AE AB AD =+ 11.已知向量a 、b 、c 满足0a b c ++=,且a b c <<,则a b ⋅、b c ⋅、a c ⋅中最小的值是( ) A .a b ⋅B .a c ⋅C .b c ⋅D .不能确定12.已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,向量(,)m a b b c =++,(,)n c b a =-,若//m n ,则C =( )A .56πB .23π C .3π D .6π 二、填空题13.已知平面向量a ,b ,c ,d 满足1a b ==,2c =,0a b ⋅=,1c d -=,则2a b d ++的取值范围为______.14.已知向量1e ,2e 是平面α内的一组基向量,O 为α内的定点,对于α内任意一点P ,当12OP xe ye =+时,则称有序实数对(),x y 为点P 的广义坐标,若点A 、B 的广义坐标分别为()11,x y 、()22,x y ,对于下列命题: ① 线段A 、B 的中点的广义坐标为1212,22x x y y ++⎛⎫⎪⎝⎭;② A 、B③ 向量OA 平行于向量OB 的充要条件是1221x y x y =; ④ 向量OA 垂直于向量OB 的充要条件是12120x x y y +=. 其中的真命题是________(请写出所有真命题的序号)15.如图,在Rt ABC ∆中,2,60,90AB BAC B =∠=︒∠=︒,G 是ABC ∆的重心,则GB GC ⋅=__________.16.在平面内,定点,,A B C 满足DA DB DC ==,2DA DB DB DC DC DA ⋅=⋅=⋅=-,动点,P M 满足1AP PM MC ==,则2BM 的最大值为________.17.如图,设圆M 的半径为2,点C 是圆M 上的定点,A ,B 是圆M 上的两个动点,则CA CB ⋅的最小值是________.18.如图,在等腰三角形ABC 中,已知1AB AC ==,120A ∠=︒,E F 、分别是边AB AC 、上的点,且,AE AB AF AC λμ==,其中(),0,1λμ∈且41λμ+=,若线段EF BC 、的中点分别为M N 、,则MN 的最小值是_____.19.已知O 为ABC 内一点,且满足305OA OB OC =++,延长AO 交BC 于点D .若BD DC λ=,则λ=_____.20.已知平面向量a ,b 满足3a b +=,3a b -=,则向量a 与b 夹角的取值范围是______.三、解答题21.平面内给定三个向量(3,2),(1,2),(4,1)a b c ==-=. (1)求32a b c +-;(2)求满足a mb nc =+的实数m 和n ; (3)若()(2)a kc b a +⊥-,求实数k . 22.已知向量a 与b 的夹角为3π,且1a =,2b =. (1)求a b +;(2)求向量a b +与向量a 的夹角的余弦值. 23.已知向量,a b 满足:16,()2a b a b a ==⋅-=,. (1)求向量a 与b 的夹角; (2)求2a b -.24.如图,正六边形ABCDEF 的边长为1.M ,N 分别是BC ,DE 上的动点,且满足BM DN =.(1)若M ,N 分别是BC ,DE 的中点,求AM AN ⋅的值; (2)求AM AN ⋅的取值范围.25.已知向量()1,1,3,(0)2u sin x v sin x cos x ωωωω⎛⎫=-=+> ⎪⎝⎭且函数()f x u v =⋅,若函数f (x )的图象上两个相邻的对称轴距离为2π. (1)求函数f (x )的解析式; (2)将函数y =f (x )的图象向左平移12π个单位后,得到函数y =g (x )的图象,求函数g (x )的表达式并其对称轴;(3)若方程f (x )=m (m >0)在0,2x π⎡⎤∈⎢⎥⎣⎦时,有两个不同实数根x 1,x 2,求实数m 的取值范围,并求出x 1+x 2的值.26.在ABC 中,D 是线段AB 上靠近B 的一个三等分点,E 是线段AC 上靠近A 的一个四等分点,4DF FE =,设AB m =,BC n =. (1)用m ,n 表示AF ;(2)设G 是线段BC 上一点,且使//EG AF ,求CG CB的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】利用向量共线的充要条件判断出①错,③正确;利用向量的运算法则求出OP ,求出x ,y 判断出②正确,利用三点共线解得④正确 【详解】当0x =时,OP yOB =,则P 在线段BE 上,故13y ≤≤,故①错 当P 是线段CE 的中点时,13()2OP OE EP OB EB BC =+=++ ()11153(2)32222OB OB AB OB OB OB OA OA OB =+-+=-+-=-+,故②对x y +为定值1时,A ,B ,P 三点共线,又P 是平行四边形BCDE 内(含边界)的一点,故P 的轨迹是线段,故③对如图,过P 作//PM AO ,交OE 于M ,作//PN OE ,交AO 的延长线于N , 则:OP ON OM =+;又OP xOA yOB =+;0x ∴≤,1y ≥;由图形看出,当P 与B 重合时:01OP OA OB =⋅+⋅;此时x 取最大值0,y 取最小值1;所以x y -取最大值1-,故④正确 所以选项②③④正确. 故选:C 【点睛】结论点睛:若OC xOA yOB =+,则,,A B C 三点共线1x y ⇔+=.2.C解析:C 【解析】,,又,,则,故选3.B解析:B 【分析】首先分别求出12a e e =+与122b e e =-+的数量积以及各自的模,利用数量积公式求之. 【详解】 由已知,1212e e ⋅=,所以(()1212)2e e e e +-+=32,|12e e +3,|122e e -+3, 设向量1212,2a e e b e e =+=-+的夹角为α,则312cos ,2333παα==∴=⋅.故答案为B 【点睛】(1)本题主要考查向量的夹角的求法,意在考查学生对该知识的掌握水平和分析推理计算能力.(2) 求两个向量的夹角一般有两种方法,方法一:·cos ,ab a b a b=,方法二:设a =11(,)x y ,b =22(,)x y ,θ为向量a 与b 的夹角,则121222221122cos x y x yθ=+⋅+.4.A解析:A 【解析】Rt AOB 中,0OA OB ⋅=,∴2AOB π∠=,∵5OA =,25OB =,∴225AB OA OB += , ∵AB 边上的高线为OD ,点E 位于线段OD 上,建立平面直角坐标系,如图所示; 则)5,0A、(025B ,、设(),D m n ,则OAD BAO ∽,∴OA ADAB OA=, ∴1AD =,∴15AD AB =, 即()(155,255m n =-,,求得45m =, ∴4525D ⎝⎭;则45254525OE OD λλ⎫===⎪⎪⎝⎭⎝⎭, 45255,EA ⎛⎫= ⎪ ⎪⎭;∵34OE EA ⋅=, ∴2454525354⎫⎫⋅-=⎪⎪⎪⎪⎭⎝⎭, 解得34λ=或14λ=;∴向量EA 在向量OD 上的投影为))452511ED OD OE λλ⎛⎫=-=-- ⎪⎪⎝⎭, 当34λ=时,5512ED ⎛== ⎝⎭;当14λ=时,353532ED ==⎝⎭. 即向量EA 在向量OD 上的投影为12或32,故选A.5.D解析:D 【分析】根据向量的几何意义把抽象问题具体化,转化到圆与圆的位置关系问题. 【详解】如图所示,设11OA a =,22OA a =,此时121A A =,由题意可知:对于任意的1,2i = 及1,2,,j k =⋅⋅⋅,{}1,2i j a b -∈, 作j j OB b =则有1j A B 等于1或2,且2j A B 等于1或2, 所以点(1,2,,)j B j k =同时在以(1,2)i A i =为圆心,半径为1或2的圆上,由图可知共有6个交点满足条件,故k 的最大值为6.故选:D. 【点睛】本题主要考查平面向量的线性运算和平面向量的应用.6.C解析:C 【分析】根据向量的运算法则,求得12AM AD AB =+,2132MN AD AB =-+,再结合向量的数量积的运算公式,即可求解. 【详解】由题意,作出图形,如图所示:由图及题意,根据向量的运算法则,可得12AM AD DM AD AB =+=+, 2132MN CN CM CB CD =-=-21213232BC DC AD AB =-+=-+,所以2212121||||23234AM MN AD AB AD AB AD AB ⎛⎫⎛⎫⋅=+⋅-+=-⋅+⋅ ⎪ ⎪⎝⎭⎝⎭21936334=-⨯+⨯=.故选C .【点睛】本题主要考查了向量的运算法则,以及平面向量的数量积的运算,其中解答中熟练应用向量的运算法则和向量的数量积的运算公式是解答的关键,着重考查推理与运算能力.7.B解析:B 【分析】作出图形,利用平面向量的线性运算以及数量积的运算性质可得出21P OP E PF =⋅-,求得OP 的最大值,由此可求得PE PF ⋅的最大值. 【详解】 如下图所示:由题可知正方形ABCD 的内切圆的半径为1,设该内切圆的圆心为O ,()()()()2221PE PF OE OP OF OP OP OE OP OE OP OE OP ⋅=-⋅-=-+⋅--=-=-,由图象可知,当点P 为ABCD 的顶点时,2OP 取得最大值2,所以PE PF ⋅的最大值为1.故选:B. 【点睛】本题考查平面向量数量积最值的计算,考查计算能力,属于中等题.8.A解析:A 【分析】根据2(1,2),(1,)+==a b m b m 可得0,2m a ⎛⎫= ⎪⎝⎭,结合||cos a θ=,列出等式,即可解出答案. 【详解】因为向量,a b 满足2(1,2),(1,)a b m b m +==,22(0,)a a b b m =+-=,所以20,,22m m a a b ⎛⎫=⋅= ⎪⎝⎭,若向量,a b 的夹角为θ,则2225||(||cos )152m b a m a b θ=+⋅=⋅=, 所以42516160m m --=,即()()225440m m +-=,解得2m =±. 故选:A . 【点睛】本题主要考查向量的投影及平面向量数量积公式,属于中档题.平面向量数量积公式有两种形式,一是||||cos a b a b θ⋅=,二是1212a b x x y y ⋅=+,主要应用以下几个方面:(1)求向量的夹角,cos ||||a ba b θ⋅=⋅(此时a b ⋅往往用坐标形式求解);(2)求投影,a 在b 上的投影是||a bb ⋅;(3),a b 向量垂直则0a b ⋅=;(4)求向量ma nb +的模(平方后需求a b ⋅). 9.C解析:C 【分析】对=2a b -两边平方后,结合2·cos 3a b a b π=⋅进行化简可得:224a b b +⋅+=;由基本不等式可得222a b a b +⋅,于是推出403a b<⋅,再结合平面向量数量积即可得解. 【详解】因为2a b -=,所以 2224a a b b -⋅+=,所以2222cos 43b b a a π-⋅+=,即224a a b b +⋅+=, 由基本不等式的性质可知,222a ba b +⋅,403a b∴<⋅, 所以212·cos ,0323a b a b a b π⎡⎫=⋅⋅=-⋅∈-⎪⎢⎣⎭. 故选:C . 【点睛】本题主要考查平面向量数量积运算,考查利用基本不等式求最值,难度一般.对于平面向量的模长问题,一般采用平方处理,然后结合平面向量数量积的运算公式求解即可.10.C解析:C 【分析】先根据题意得1AD =,CD =2AB DC =,再结合已知和向量的加减法运算求解即可得的答案. 【详解】由题意可求得1AD =,CD =所以2AB DC =, 又13BE BC =, 则()1133AE AB BE AB BC AB BA AD DC =+=+=+++ 1111333AB AD DC ⎛⎫=-++ ⎪⎝⎭1111336AB AD AB ⎛⎫=-++ ⎪⎝⎭115116363AB AD AB AD ⎛⎫=-+=+ ⎪⎝⎭.故选:C. 【点睛】本题考查用基底表示向量,考查运算能力,是基础题.11.C解析:C 【分析】由0a b c ++=,可得2222222().2()a b c a b b c a b c =-+=-+、2222()a c b a c =-+,利用||||||a b c <<,即可比较. 【详解】解:由0a b c ++=,可得()c a b =-+,平方可得2222()a b c a b =-+. 同理可得2222()b c a b c =-+、2222()a c b a c =-+,||||||a b c <<,∴222a b c <<则a b 、b c 、a c 中最小的值是b c . 故选:C . 【点睛】本题考查了向量的数量积运算,属于中档题.12.B解析:B 【分析】由//m n ,可得()()()0a b a c b b c +⨯--⨯+=.结合余弦定理,可求角C . 【详解】(,),(,)m a b b c n c b a =++=-,且//m n ,()()()0a b a c b b c ∴+⨯--⨯+=,整理得222c a b ab =++. 又22212cos ,cos 2c a b ab C C =+-∴=-.()20,,3C C ππ∈∴=.故选:B. 【点睛】本题考查向量共线的坐标表示和余弦定理,属于基础题.二、填空题13.【分析】用几何意义求解不妨设则在圆心在原点半径为2的圆上设则在以为圆心半径为1的圆上运动后形成的轨迹是圆心在原点大圆半径为3小圆半径为1的圆环表示圆环内的点与定点的距离由图形可得最大值和最小值【详解解析:3⎡⎤⎣⎦【分析】用几何意义求解.不妨设()1,0a =,()0,1b =,(),c x y =,则(,)C x y 在圆心在原点,半径为2的圆上,设(),d x y '=',则(,)D x y ''在以C 为圆心半径为1的圆上,C 运动后,D 形成的轨迹是圆心在原点,大圆半径为3,小圆半径为1的圆环,2a b d ++表示圆环内的点D 与定点()2,1P --的距离,由图形可得最大值和最小值.【详解】令()1,0a =,()0,1b =,(),c x y =,设C 的坐标为(),x y ,C 的轨迹为圆心在原点,半径为2的圆上.设(),d x y '=',D 的坐标为(),x y '',D 的轨迹为圆心在原点,大圆半径为3,小圆半径为1的圆环上.()22,1a b d d ++=---表示D 与点()2,1P --的距离,由图可知,故2a b d ++的取值范围为0,53⎡⎤+⎣⎦. 故答案为:0,53⎡⎤+⎣⎦【点睛】本题考查向量模的几何意义,考查模的最值,解题关键是设()1,0a =,()0,1b =,(),c x y =,(),d x y '=',固定,a b 后得出了,C D 的轨迹,然后由模2a b d ++的几何意义得出最值.14.①③【分析】根据点的广义坐标分别为利用向量的运算公式分别计算①②③④得出结论【详解】点的广义坐标分别为对于①线段的中点设为M 根据=()=中点的广义坐标为故①正确对于②∵(x2﹣x1)A 两点间的距离为解析:①③ 【分析】根据点A 、B 的广义坐标分别为()11,x y 、()22,x y ,1112OA x e y e ∴=+,2122OB x e y e =+,利用向量的运算公式分别计算①②③④,得出结论.【详解】点A 、B 的广义坐标分别为()11,x y 、()22,x y ,1112OA x e y e ∴=+,2122OB x e y e =+,对于①,线段A 、B 的中点设为M ,根据OM =12(OA OB +)=12112211()()22x x e y y e +++∴中点的广义坐标为1212,22x x y y ++⎛⎫⎪⎝⎭,故①正确. 对于②,∵AB =(x 2﹣x 1)()1212e y y e +-,∴A 、B 12e ,故②不一定正确.对于③,向量OA 平行于向量OB ,则t OA OB =,即(11,x y )=t ()22,x y ,1221x y x y ∴=,故③正确.对于④,向量OA 垂直于向量OB ,则OA OB =0,221211221121220x x e x y x y e e y y e ∴+++=(),故④不一定正确.故答案为①③. 【点睛】本题在新情境下考查了数量积运算性质、数量积定义,考查了推理能力与计算能力,属于中档题.15.【解析】分析:建立平面直角坐标系结合平面向量数量积的坐标运算整理计算即可求得最终结果详解:建立如图所示的平面直角坐标系则:由中心坐标公式可得:即据此有:结合平面向量数量积的坐标运算法则可得:点睛:求 解析:209-【解析】分析:建立平面直角坐标系,结合平面向量数量积的坐标运算整理计算即可求得最终结果.详解:建立如图所示的平面直角坐标系,则:()0,2A ,()0,0B ,()C ,由中心坐标公式可得:2003G ⎫++⎪⎪⎝⎭,即23G ⎫⎪⎭, 据此有:233GB ⎛⎫=-- ⎪⎝⎭,4233GC ⎛⎫=-⎪⎭, 结合平面向量数量积的坐标运算法则可得:222203339GB GC ⎛⎛⎫⎛⎫⋅=--⨯-=- ⎪ ⎪⎝⎝⎭⎝⎭.点睛:求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.16.【分析】由可得为的外心又可得为的垂心则为的中心即为正三角形运用向量的数量积定义可得的边长以为坐标原点所在直线为轴建立直角坐标系求得的坐标再设由中点坐标公式可得的坐标运用两点的距离公式可得的长运用三角 解析:494【分析】由DA DB DC ==,可得D 为ABC ∆的外心,又DA DB DB DC DC DA ⋅=⋅=⋅,可得D 为ABC ∆的垂心,则D 为ABC ∆的中心,即ABC ∆为正三角形.运用向量的数量积定义可得ABC ∆的边长,以A 为坐标原点,AD 所在直线为x 轴建立直角坐标系xOy ,求得,B C 的坐标,再设(cos ,sin ),(02)P θθθπ≤<,由中点坐标公式可得M 的坐标,运用两点的距离公式可得BM 的长,运用三角函数的恒等变换公式,结合正弦函数的值域,即可得到最大值. 【详解】解: 由DA DB DC ==,可得D 为ABC ∆的外心, 又DA DB DB DC DC DA ⋅=⋅=⋅,可得()0,(DB DA DC DC DB ⋅-=⋅ )0DA -=,即0DB AC DC AB ⋅=⋅=, 即有,DB AC DC AB ⊥⊥,可得D 为ABC ∆的垂心, 则D 为ABC ∆的中心,即ABC ∆为正三角形, 由2DA DB ⋅=-,即有||||cos1202DA DB ︒⋅=-, 解得||2DA =,ABC ∆的边长为4cos3023︒=以A 为坐标原点,AD 所在直线为x 轴建立直角坐标系xOy , 可得B(3,3),C(3,3),D(2,0)-, 由||1AP =,可设(cos ,sin ),(02)P θθθπ≤<,由PM MC =,可得M 为PC 中点,即有3cos 3sin (2M θθ++,则2223cos3sin||3=3+2BMθθ⎛⎫++⎛⎫-+⎪⎪ ⎪⎝⎭⎝22(3cos)(33sin)376cos63sin4θθθθ-+-+=+=3712sin64πθ⎛⎫+-⎪⎝⎭=,当sin16πθ⎛⎫-=⎪⎝⎭,即23πθ=时,取得最大值,且为494.故答案为:494.【点睛】本题考查向量的定义和性质,以及模的最值的求法,注意运用坐标法,转化为三角函数的最值的求法,考查化简整理的运算能力,属于中档题.17.【分析】延长BC作圆M的切线设切点为A1切线与BD的交点D结合数量积的几何意义可得点A运动到A1时在上的投影最小设将结果表示为关于的二次函数求出最值即可【详解】如图延长BC作圆M的切线设切点为A1切解析:2-【分析】延长BC,作圆M的切线,设切点为A1,切线与BD的交点D,结合数量积的几何意义可得点A运动到A1时,CA在CB上的投影最小,设CP x=,将结果表示为关于x的二次函数,求出最值即可.【详解】如图,延长BC,作圆M的切线,设切点为A1,切线与BD的交点D,由数量积的几何意义,CA CB⋅等于CA在CB上的投影与CB之积,当点A运动到A1时,CA在CB上的投影最小;设BC中点P,连MP,MA1,则四边形MPDA1为矩形;设CP=x,则CD=2-x,CB=2x,CA CB⋅=()()222224212x x x x x--⋅=-=--,[]02x∈,,所以当1x =时,CA CB ⋅最小,最小值为2-, 故答案为:2-. 【点睛】本题考查平面向量数量积的几何意义,考查了学生的作图能力以及分析问题解决问题的能力,属于中档题.18.【分析】根据条件及向量数量积运算求得连接由三角形中线的性质表示出根据向量的线性运算及数量积公式表示出结合二次函数性质即可求得最小值【详解】根据题意连接如下图所示:在等腰三角形中已知则由向量数量积运算 解析:77【分析】根据条件及向量数量积运算求得AB AC ⋅,连接,AM AN ,由三角形中线的性质表示出,AM AN .根据向量的线性运算及数量积公式表示出2MN ,结合二次函数性质即可求得最小值. 【详解】根据题意,连接,AM AN ,如下图所示:在等腰三角形ABC 中,已知1AB AC ==,120A ∠=︒则由向量数量积运算可知1cos 11cos1202AB AC AB AC A ⋅=⋅=⨯⨯=- 线段EF BC 、的中点分别为M N 、则()()1122AM AE AF AB AC λμ=+=+ ()12AN AB AC =+ 由向量减法的线性运算可得11112222MN AN AM AB AC λμ⎛⎫⎛⎫=-=-+-⎪ ⎪⎝⎭⎝⎭所以2211112222MN AB AC λμ⎡⎤⎛⎫⎛⎫=-+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦222211111111222222222AB AC AB AC λμλμ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+⨯-⨯-⨯⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭221111111112222222222λμλμ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+⨯-⨯-⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭因为41λμ+=,代入化简可得22221312111424477MN μμμ⎛⎫=-+=-+ ⎪⎝⎭因为(),0,1λμ∈且41λμ+=10,4μ⎛⎫∴∈ ⎪⎝⎭所以当17μ=时, 2MN 取得最小值17因而minMN==故答案为: 7【点睛】本题考查了平面向量数量积的综合应用,向量的线性运算及模的求法,二次函数最值的应用,属于中档题.19.【分析】将已知条件转化为结合得到设列出关于的方程组由此求得【详解】由于所以所以即因为即化简得设所以解得故答案为:【点睛】本小题主要考查平面向量的基本定理考查平面向量的线性运算考查化归与转化的数学思想解析:53【分析】将已知条件转化为1539AO AB AC =+,结合BD DC λ=,得到111AD AB AC λλλ=+++,设AO k AD =,列出关于,k λ的方程组,由此求得λ. 【详解】 由于305OA OB OC =++,所以()()350OA AB AO AC AO +-+-=,所以935AO AB AC =+,即1539AO AB AC =+. 因为BD DC λ=,即()AD AB AC AD λ-=-, 化简得111AD AB AC λλλ=+++, 设11k k AO k AD AB AC λλλ==+++,所以1 13519kkλλλ⎧=⎪⎪+⎨⎪=⎪+⎩,解得53λ=.故答案为:53【点睛】本小题主要考查平面向量的基本定理,考查平面向量的线性运算,考查化归与转化的数学思想方法,属于中档题.20.【分析】由已知得由得由不等式可知再由得最后由可得解【详解】由得即由得即由得由得所以故答案为:【点睛】本题考查了向量及其模的运算考查了向量的夹角公式和基本不等式考查了计算能力属于中档题解析:0,3π⎡⎤⎢⎥⎣⎦【分析】由已知,得22222923a ab ba ab b+⋅⎧⎪⎨⎪+=-⋅+=⎩②①,由+①②,得226a b+=,由不等式可知3a b ≤,再由-①②,得32a b⋅=,最后由cos,a ba ba b⋅=可得解.【详解】由3a b+=,3a b-=,得()()2239baab⎧⎪⎨⎪-==+⎩,即22222923a ab ba ab b+⋅⎧⎪⎨⎪+=-⋅+=⎩②①由+①②,得226a b+=,即226a b+=由-①②,得32a b⋅=由222a b a b +≥,得3a b ≤1cos ,2a b a b a b⋅=≥所以,0,3a b π≤≤.故答案为:0,3π⎡⎤⎢⎥⎣⎦【点睛】本题考查了向量及其模的运算,考查了向量的夹角公式和基本不等式,考查了计算能力,属于中档题.三、解答题21.(1)6;(2)58,99m n ==;(3)1118k =-.【分析】(1)利用向量加法的坐标运算得到()320,6a b c +-=,再求模长即可;(2)先写mb nc +的坐标,再根据a mb nc =+使对应横纵坐标相等列方程组,解方程组即得结果;(3)利用向量垂直则数量积为零,再利用数量积的坐标运算列关系求出参数即可. 【详解】解:(1)由(3,2),(1,2),(4,1)a b c ==-=,得3(9,6),(1,2),2(8,2)a b c ==-=∴()()32918,6220,6a b c +-=--+-=,∴23206a b c +-=+=;(2)()(),2,4,mb m m nc n n =-=, ∴()4,2mb nc n m m n +=-+,a mb nc =+,∴()4,2(3,2)a n m m n ==-+,故4322n m m n -=⎧⎨+=⎩,解得58,99m n ==;(3)(3,2),(4,)a kc k k ==,∴()34,2a kc k k +=++,(3,2),2(2,4)a b ==-,∴()25,2b a -=-,()()2a kc b a +⊥-,∴()()20a kc b a +⋅-=,即()()534220k k -+++=,解得1118k =-. 【点睛】 结论点睛:若()()1122,,,a x y b x y == ,则//a b 等价于12210x y x y -=;a b ⊥等价于12120x x y y +=.22.(1;(2. 【分析】(1)由已知利用平面向量数量积公式可得1a b ⋅=,平方后根据向量数量积的运算可求||a b +的值.(2)结合(1),根据已知条件,由向量夹角的余弦公式即可求解.【详解】(1)向量a 与b 的夹角为3π,且||1a =,||2b =, ∴||||cos a b a b a ⋅=<,112cos12132b π>=⨯⨯=⨯⨯=.222||()2142a b a b a b a b ∴+=+=++⋅=++=.(2)设向量a b +与向量a 的夹角θ,22()||27cos ||||||||||||71a b a a a b a a b a b a a b a a b a θ+⋅+⋅+⋅∴=====+⋅+⋅+⋅⨯. 【点睛】本题主要考查了向量数量积的运算及计算公式,向量夹角的余弦公式,属于中档题.23.(1)π3;(2) 【分析】(1)设向量a 与b 的夹角θ,利用向量的数量积公式计算()2a b a ⋅-=,可得向量的夹角;(2)利用向量的模长公式:2a a =,代入计算可得. 【详解】 (1)设向量a 与b 的夹角θ, ()16cos 12a b a a b θ⋅-=⋅-=-=,解得1cos 2θ=, 又[]0πθ∈,,π3θ∴= (2)由向量的模长公式可得:()222a b a b -=-==. 【点睛】 本题主要考查向量数量积公式的应用,向量模长的计算,求向量的模长需要熟记公式2a a =,考查学生的逻辑推理与计算能力,属于基础题.24.(1)118;(2)31.2⎡⎤⎢⎥⎣⎦. 【分析】 (1)首先以点A 为坐标原点建立平面直角坐标系.求AM ,AN 的坐标,再求数量积;(2)首先利用BM DN =,设BM DN t ==,表示向量AM ,AN ,利用数量积的坐标表示转化为二次函数求取值范围. 【详解】 (1)如图,以AB 所在直线为x 轴,以A 为坐标原点建立平面直角坐标系.因为ABCDEF 是边长为1的正六边形,且M ,N 分别是BC ,DE 的中点, 所以53,44M ⎛⎫ ⎪ ⎪⎝⎭,132N ⎛ ⎝, 所以5311848AM AN ⋅=+=. (2)设BM DN t ==,则[]0,1t ∈.所以31,22t M ⎛⎫+ ⎪ ⎪⎝⎭,(13N t -. 所以()()223113*********t AM AN t t t t t ⎛⎫⋅=+⋅-+=-++=--+ ⎪⎝⎭. 当0t =时,AM AN ⋅取得最小值1;当1t =时,AM AN ⋅取得最大值32. 所以AM AN ⋅的取值范围为31.2⎡⎤⎢⎥⎣⎦. 【点睛】本题考查数量积的坐标表示,重点考查计算能力,属于基础题型.25.(1)()26f x sin x π⎛⎫=- ⎪⎝⎭;(2)()2g x sin x =, 对称轴为,42k x k Z ππ=+∈;(3)112m ≤<,,1223x x π+=. 【分析】 (1) 根据向量()1,1,3,(0)2u sin x v sin x cos x ωωωω⎛⎫=-=+> ⎪⎝⎭和函数()f x u v =⋅,利用数量积结合倍角公式和辅助角法得到,()26πω⎛⎫=-⎪⎝⎭f x sin x ,再根据函数f (x )的图象上两个相邻的对称轴距离为2π求解. (2)依据左加右减,将函数y =f (x )的图象向左平移12π个单位后,得到函数()22126g x sin x sin x ππ⎡⎤⎛⎫=+-= ⎪⎢⎥⎝⎭⎣⎦,令2,2ππ=+∈x k k Z 求其对称轴. (3)作出函数f (x )在0,2π⎡⎤⎢⎥⎣⎦上图象,根据函数y =f (x )与直线y =m 在0,2π⎡⎤⎢⎥⎣⎦上有两个交点求解.再令2,62x k k Z πππ-=+∈,求对称轴. 【详解】(1)()()21122ωωωωωω=-=-f x sin x sin x x sin x xcos x ,1222226πωωω⎛⎫=-=- ⎪⎝⎭sin x cos x sin x ∵函数f (x )的图象上两个相邻的对称轴距离为2π, ∴22T π=, ∴2(0)2ππωω=>, ∴ω=1, 故函数f (x )的解析式为()sin 26f x x π⎛⎫=-⎪⎝⎭; (2)依题意,()22126g x sin x sin x ππ⎡⎤⎛⎫=+-= ⎪⎢⎥⎝⎭⎣⎦, 令2,2ππ=+∈x k k Z ,则,42ππ=+∈k x k Z , ∴函数g (x )的对称轴为,42ππ=+∈k x k Z ;(3)∵0,2x π⎡⎤∈⎢⎥⎣⎦, ∴52,666x πππ⎡⎤-∈-⎢⎥⎣⎦, ∴12,162sin x π⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦, 函数f (x )在0,2π⎡⎤⎢⎥⎣⎦上的草图如下,依题意,函数y =f (x )与直线y =m 在0,2π⎡⎤⎢⎥⎣⎦上有两个交点,则112m ≤<, 令2,62x k k Z πππ-=+∈,则,32k x k Z ππ=+∈, ∴函数f (x )在0,2π⎡⎤⎢⎥⎣⎦上的对称轴为3x π=,则1223x x π+=. 【点睛】 本题主要考查了平面向量和三角函数,三角函数的图象和性质及其应用,还考查了数形结合的思想和运算求解的能力,属于中档题.26.(1)1135AF m n =+(2)310CG CB = 【分析】(1)依题意可得23AD AB =、14AE AC =,再根据DE AE AD =-,AF AD DF =+计算可得;(2)设存在实数λ,使得(01)CG CB λλ=<<,由因为//EG AF ,所以存在实数μ, 使AF EG μ=,再根据向量相等的充要条件得到方程组,解得即可;【详解】解:(1)因为D 是线段AB 上靠近B 的一个三等分点,所以23AD AB =.因为E 是线段AC 上靠近A 的一个四等分点,所以14AE AC =, 所以1243DE AE AD AC AB =-=-. 因为4DF FE =,所以4185515DF DE AC AB ==-, 则2183515AF AD DF AB AC AB =+=+- 2111()15535AB AB BC AB BC =++=+. 又AB m =,BC n =. 所以11113535AF AB BC m n =+=+. (2)因为G 是线段BC 上一点,所以存在实数λ,使得(01)CG CB λλ=<<, 则33()44EG EC CG AC CB AB BC BC λλ=+=+=+- 3333()()4444AB BC m n λλ=+-=+- 因为//EG AF ,所以存在实数μ,使AF EG μ=,即1133[()]3544m n m n μλ+=+-, 整理得31,4331(),45μμλ⎧=⎪⎪⎨⎪-=⎪⎩解得310λ=, 故310CGCB =. 【点睛】本题考查平面向量的线性运算及平面向量共线定理的应用,属于中档题.。
[基础训练A 组] 一、选择题
1.化简AC - BD + CD - AB
得( )
A .A
B B .DA
C .BC
D .0 2.设00,a b 分别是与,a b
向的单位向量,则下列结论中正确的是( )
A .00a b =
B .0
01a b ⋅=
C .00||||2a b +=
D .00||2a b +=
3.已知下列命题中:
(1)若k R ∈,且0kb = ,则0k =或0b =
,
(2)若0a b ⋅= ,则0a = 或0b =
(3)若不平行的两个非零向量b a ,,满足||||b a =,则0)()(=-⋅+b a b a
(4)若a 与b 平行,则||||a b a b =⋅
其中真命题的个数是( )
A .0
B .1
C .2
D .3
4.下列命题中正确的是( )
A .若a ⋅b =0,则a =0或b =0
B .若a ⋅b =0,则a ∥b
C .若a ∥b ,则a 在b 上的投影为|a|
D .若a ⊥b ,则a ⋅b =(a ⋅b)2
5.已知平面向量(3,1)a = ,(,3)b x =- ,且a b ⊥
,则x =( )
A .3-
B .1-
C .1
D .3
6.已知向量)sin ,(cos θθ=a ,向量)1,3(-=b 则|2|b a -的最大值,
最小值分别是( )
A .0,24
B .24,4
C .16,0
D .4,0
二、填空题
1.若OA =)8,2(,OB =)2,7(-,则
3
1
AB =_________ 2.平面向量,a b 中,若(4,3)a =-
,b =1,且5a b ⋅= ,则向量b =____。
3.若3a = ,2b = ,且a 与b 的夹角为0
60,则a b -= 。
4.把平面上一切单位向量归结到共同的始点,那么这些向量的终点 所构成的图形是___________。
5.已知)1,2(=a
与)2,1(=b ,要使b t a +最小,则实数t 的值为___________。
三、解答题
1.如图,ABCD 中,,E F 分别是,BC DC 的中点,G 为交点,若AB =a
,AD =b ,试以a ,b 为基底表
示DE 、BF 、CG
.
2.已知向量 a 与b 的夹角为60
,||4,(2).(3)72b a b a b =+-=- ,求向量a 的模。
A
G E
F C
B D
3.已知点(2,1)B -,且原点O 分→
AB 的比为3-,又(1,3)b →
=,求→
b 在→
AB 上的投影。
4.已知(1,2)a =
,)2,3(-=b ,当k 为何值时,
(1)ka b + 与3a b -
垂直?
(2)ka + b 与3a -
b 平行?平行时它们是同向还是反向?
[综合训练B 组] 一、选择题
1.下列命题中正确的是( )
A .OA O
B AB -= B .0AB BA +=
C .00AB ⋅=
D .AB BC CD AD ++=
2.设点(2,0)A ,(4,2)B ,若点P 在直线AB 上,且AB = 2AP
,
则点P 的坐标为( ) A .(3,1) B .(1,1)- C .(3,1)或(1,1)- D .无数多个
3.若平面向量b 与向量)2,1(-=a 的夹角是o
180,且53||=b ,则=b ( )
A .)6,3(-
B .)6,3(-
C .)3,6(-
D .)3,6(-
4.向量(2,3)a = ,(1,2)b =-
,若ma b + 与2a b - 平行,则m 等于
A .2-
B .2
C .2
1
D .12-
5.若,a b 是非零向量且满足(2)a b a -⊥
,(2)b a b -⊥ ,则a 与b 的夹角是( )
A .6π
B .3π
C .32π
D .6
5π
6.设3(,sin )2a α= ,1(cos ,)3b α= ,且//a b
,则锐角α为( )
A .030
B .060
C .075
D .0
45
二、填空题
1.若||1,||2,a b c a b ===+
,且c a ⊥ ,则向量a 与b 的夹角为 .
2.已知向量(1,2)a →
=,(2,3)b →
=-,(4,1)c →
=,若用→
a 和→
b 表示→
c ,则→
c =____。
3.若1a = ,2b = ,a 与b 的夹角为060,若(35)a b +⊥ ()ma b - ,则m 的值为 .
4.若菱形ABCD 的边长为2,则AB CB CD -+=
__________。
5.若→
a =)3,2(,→
b =)7,4(-,则→
a 在→
b 上的投影为________________。
三、解答题
1.求与向量(1,2)a = ,(2,1)b = 夹角相等的单位向量c
的坐标.
2.试证明:平行四边形对角线的平方和等于它各边的平方和.
3.设非零向量,,,a b c d
,满足()()d a c b a b c =-
,求证:a d ⊥
4.已知(cos ,sin )a αα= ,(cos ,sin )b ββ=
,其中0αβπ<<<.
(1)求证:a b + 与a b -
互相垂直;
(2)若ka →
+→
b 与a k →
-→
b 的长度相等,求βα-的值(k 为非零的常数).
[提高训练C 组]
一、选择题
1.若三点(2,3),(3,),(4,)A B a C b 共线,则有( )
A .3,5a b ==-
B .10a b -+=
C .23a b -=
D .20a b -= 2.设πθ20<≤,已知两个向量()θθsin ,cos 1=OP ,
()θθcos 2,sin 22-+=OP ,则向量21P P 长度的最大值是( )
A .2
B .3
C .23
D .32 3.下列命题正确的是( )
A .单位向量都相等
B .若a 与b 是共线向量,b 与c 是共线向量,则a 与c 是共线向量( )
C .||||b a b a -=+,则0a b ⋅=
D .若0a 与0b 是单位向量,则001a b ⋅=
4.已知,a b 均为单位向量,它们的夹角为0
60,那么3a b += ( )
A .7
B .10
C .13
D .4
5.已知向量a ,b 满足1,4,a b ==
且2a b ⋅= ,则a 与b 的夹角为
A .
6π B .4π C .3π D .2
π 6.若平面向量b 与向量)1,2(=a 平行,且52||=b ,则=b ( )
A .)2,4(
B .)2,4(--
C .)3,6(-
D .)2,4(或)2,4(--
二、填空题
1.已知向量(cos ,sin )a θθ=
,向量(3,1)b =- ,则2a b - 的最大值是 .
2.若(1,2),(2,3),(2,5)A B C -,试判断则△ABC 的形状_________.
3.若(2,2)a =-
,则与a 垂直的单位向量的坐标为__________。
4.若向量||1,||2,||2,a b a b ==-= 则||a b +=。
5.平面向量b a ,中,已知(4,3)a =-
,1b = ,且5a b =
,则向量=b ______。
三、解答题
1.已知,,a b c
是三个向量,试判断下列各命题的真假.
(1)若a b a c ⋅=⋅ 且0a ≠
,则b c =
(2)向量a 在b 的方向上的投影是一模等于cos a θ (θ是a 与b 的夹角),方向与a 在b 相同或相反的一个
向量.
2.证明:对于任意的,,,a b c d R ∈,恒有不等式2
2
2
2
2
()()()ac bd a b c d +≤++
3.平面向量13(3,1),(,)22
a b =-=
,若存在不同时为0的实数k 和t ,使
2
(3),,x a t b y ka tb =+-=-+ 且x y ⊥ ,试求函数关系式()k f t =。
4.如图,在直角△ABC 中,已知BC a =,若长为2a 的线段PQ 以点A 为中点,问BC PQ 与 的夹角θ取何值时CQ BP ⋅的值最大?并求出这个最大值。