第1课时 棱柱、棱锥、棱台的结构特征
- 格式:ppt
- 大小:4.68 MB
- 文档页数:32
第一章空间几何体第一讲棱柱、棱锥、棱台的结构特征一;学习目标1.通过对实物模型的观察,归纳认知棱柱、棱锥、棱台的结构特征.(重点)2.理解棱柱、棱锥、棱台之间的关系.(难点)3.能运用棱柱、棱锥、棱台的结构特征描述现实生活中简单物体的结构和有关计算.(易混点)二:核心素养通过对空间几何体概念的学习,培养直观想象、逻辑推理的数学核心素养.重点题型讲解题型一:棱柱的结构特征【例1】(1)下列命题中,正确的是( )A.有两个面互相平行,其余各面都是四边形的几何体叫棱柱B.棱柱中互相平行的两个面叫做棱柱的底面C.棱柱的侧面是平行四边形,但底面不是平行四边形D.棱柱的侧棱都相等,侧面是平行四边形小试身手1.下列关于棱柱的说法错误..的是( )A.所有棱柱的两个底面都平行B.所有的棱柱一定有两个面互相平行,其余每相邻面的公共边互相平行C.有两个面互相平行,其余各面都是四边形的几何体一定是棱柱D.棱柱至少有五个面题型二:棱锥、棱台的结构特征【例2】(1)下列关于棱锥、棱台的说法:①棱台的侧面一定不会是平行四边形;②棱锥的侧面只能是三角形;③由四个面围成的封闭图形只能是三棱锥;④棱锥被平面截成的两部分不可能都是棱锥.其中正确说法的序号是________.(2)判断如图所示的几何体是不是棱台,为什么?小试身手2.如图所示,观察以下四个几何体,其中判断正确的是 ( )A .①是棱台B .②是圆台C .③是棱锥D .④不是棱柱题型三[探究问题]【例3】 (1)某同学制作了一个对面图案均相同的正方体礼品盒,如图所示,则这个正方体礼品盒的平面展开图应该为(对面是相同的图案)( )(2)如图是三个几何体的平面展开图,请问各是什么几何体?课堂总结提能力1.在理解的基础上,要牢记棱柱、棱锥、棱台的定义,能够根据定义判断几何体的形状. 2.四棱柱及特殊四棱柱四棱柱――→底面是平行四边形平行六面体――→侧棱与底面垂直直平行六面体――→底面为矩形长方体――→底面为正方形正四棱柱――→侧棱与底面边长相等正方体 3.棱柱、棱台、棱锥关系图4.正棱锥与正棱台(1)底面是正多边形,且顶点在底面的射影是正多边形中心的棱锥,叫正棱锥. (2)正棱锥被平行于底面的平面所截,截面和底面之间的部分叫做正棱台.1.下面多面体中,是棱柱的有( )A.1个B.2个C.3个D.4个2.四棱柱有几条侧棱,几个顶点()A.四条侧棱、四个顶点B.八条侧棱、四个顶点C.四条侧棱、八个顶点D.六条侧棱、八个顶点3.下列命题中正确的是()A.三棱柱的侧面为三角形B.棱台的侧棱都相等,侧面都是全等的平行四边形C.棱台的底面是两个相似的正方形D.棱锥的侧面和底面可以都是三角形4.下列说法错误的是()A.多面体至少有四个面B.九棱柱有9条侧棱,9个侧面,侧面为平行四边形C.长方体、正方体都是棱柱D.三棱柱的侧面为三角形5.对有两个面互相平行,其余各面都是梯形的多面体,以下说法正确的是() A.是棱柱B.是棱锥C.是棱台D.一定不是棱柱、棱锥6.有一个多面体,共有四个面围成,每一个面都是三角形,则这个几何体为( ) A.四棱柱B.四棱锥C.三棱柱D.三棱锥7在正四棱柱ABCD-A1B1C1D1中,AB=1,AA1=3,点E为AB上的动点,则D1E+CE的最小值为()A.2 2 B.10C.5+1 D.2+2。
§1.1 第1课时棱柱、棱锥、棱台的结构特征基础过关1.三棱锥的四个面中可以作为底面的有()A.1个B.2个C.3个D.4个2.四棱柱有几条侧棱,几个顶点()A.四条侧棱、四个顶点B.八条侧棱、四个顶点C.四条侧棱、八个顶点D.六条侧棱、八个顶点3.观察如图所示的四个几何体,其中判断不正确的是()A.①是棱柱B.②不是棱锥C.③不是棱锥D.④是棱台4.如图,将装有水的长方体水槽固定底面一边后将水槽倾斜一个小角度,则倾斜后水槽中的水形成的几何体的形状是________.5.下列说法正确的有________(填序号).①棱柱的侧面都是平行四边形;②棱锥的侧面为三角形,且所有侧面都有一个公共点;③棱台的侧面有的是平行四边形,有的是梯形;④棱台的侧棱所在直线均相交于同一点;⑤多面体至少有四个面.6.如图所示的几何体中,所有棱长都相等,分析此几何体的构成?有几个面、几个顶点、几条棱?7.如图,在边长为2a的正方形ABCD中,E,F分别为AB,BC的中点,沿图中虚线将3个三角形折起,使点A、B、C重合,重合后记为点P.问:(1)折起后形成的几何体是什么几何体?(2)这个几何体共有几个面,每个面的三角形有何特点?(3)每个面的三角形面积为多少?能力提升8.某同学制作了一个对面图案相同的正方体礼品盒(如图),则这个正方体礼品盒的表面展开图应该为()9.在正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有()A.20B.15C.12D.1010.在正方体上任意选择4个顶点,它们可能是如下各种空间图形的4个顶点,这些空间图形是________.(写出所有正确结论的编号)①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.11.长方体ABCD-A1B1C1D1(如图所示)中,AB=3,BC=4,A1A=5,现有一甲壳虫从A出发沿长方体表面爬行到C1来获取食物,试画出它的最短爬行路线,并求其路程的最小值.探究创新12.如图,在4×3的纸上用线条勾画出一个图形,使每一格作为一个面,能折成一个正方体.你能画出4个这样的图形吗?【参考答案】基础过关1.【解析】由于三棱锥的每一个面均可作为底面,应选D.【答案】D2.【解析】四棱柱有四条侧棱、八个顶点(可以结合正方体观察求得).【答案】C3.【解析】结合棱柱、棱锥、棱台的定义可知①是棱柱,②是棱锥,④是棱台,③不是棱锥,故B错误.【答案】B4.【解析】由于倾斜角度较小,所以倾斜后水槽中水形成的几何体的形状应为四棱柱.【答案】四棱柱5.【解析】棱柱是由一个平面多边形沿某一方向平移而形成的几何体,因而侧面是平行四边形,故①对.棱锥是由棱柱的一个底面收缩为一个点而得到的几何体,因而其侧面均是三角形,且所有侧面都有一个公共点,故②对.棱台是棱锥被平行于底面的平面所截后,截面与底面之间的部分,因而其侧面均是梯形,且所有的侧棱延长后均相交于一点(即原棱锥的顶点),故③错④对.⑤显然正确.因而正确的有①②④⑤.【答案】①②④⑤6.解:这个几何体是由两个同底面的四棱锥组合而成的八面体.有8个面,都是全等的正三角形;有6个顶点;有12条棱.7.解:(1)如图,折起后的几何体是三棱锥.(2)这个几何体共有4个面,其中△DEF为等腰三角形,△PEF为等腰直角三角形,△DPE 和△DPF均为直角三角形.(3)S△PEF=12a2,S△DPF=S△DPE=12×2a×a=a2,S△DEF=S正方形ABCD-S△PEF-S△DPF-S△DPE=(2a)2-12a2-a2-a2=32a2.能力提升8.【解析】两个☆不能并列相邻,B、D错误;两个※不能并列相邻,C错误,故选A.也可通过实物制作检验来判定.【答案】A9.【解析】正五棱柱任意不相邻的两条侧棱可确定一个平面,每个平面可得到正五棱柱的两条对角线,5个平面共可得到10条对角线,故选D.【答案】D10.【解析】在正方体ABCD-A1B1C1D1上任意选择4个顶点,它们可能是如下各种空间图形的4个顶点,这些空间图形是:①矩形,如四边形ACC1A1;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体,如A-A1BD;④每个面都是等边三角形的四面体,如A-CB1D1;⑤每个面都是直角三角形的四面体,如A-A1DC,所以填①③④⑤.【答案】①③④⑤11.解:把长方体的部分面展开,如图所示.对甲、乙、丙三种展开图利用勾股定理可得AC1的长分别为90、74、80,由此可见乙是最短线路,所以甲壳虫可以先在长方形ABB1A1内由A到E,再在长方形BCC1B1内由E 到C1,也可以先在长方形AA1D1D内由A到F,再在长方形DCC1D1内由F到C1,其最短路程为74.探究创新12. 解:。