2020年数学模拟方向卷 (4)
- 格式:docx
- 大小:836.40 KB
- 文档页数:8
2020年北师大版小学六年级下册小升初仿真模拟卷一.选择题(共10小题)1.看书时眼睛距离书本大约()比较好.A.30毫米B.30厘米C.30分米2.要直观表示王阿姨体温的变化情况,选用()统计图比较合适.A.条形B.折线C.扇形D.无法确定3.为了迎接长垣市创建国家卫生城市,我校举行了卫生知识竞答活动,小军考了96分,小华考了92分,小林考了94分,后来把小勇的成绩加入一起算,小勇考()分,不会改变原来小组的平均分.A.92B.94C.964.在含盐率为25%的盐水中,加入4克盐和16克的水,这时盐水的含盐率()A.大于25%B.等于25%C.小于25%D.无法确定5.一个三角形的三个内角度数比是3:4:5,则此三角形是()A.锐角三角形B.直角三角形C.钝角三角形6.在下面的4个几何体中,从左面看到形状是的图形是()A.B.C.D.7.描述路线时,要以路线上不同路段的()作观测点.A.方向B.距离C.标志物8.在浓度为16%的40千克盐水中,蒸发()水后可将浓度提高到20%.A.8千克B.9千克C.16千克D.4千克9.商场搞促销活动,原价80元的商品,现在八折出售,可以便宜()元.A.100B.64C.1610.若圆柱和圆锥等底等高,且两者体积相差9.6dm3,则圆柱体积是()dm3.A.28.8B.14.4C.48D.3.2二.填空题(共14小题)11.一个数省略万位后面的尾数得到的近似数是26万,这个数最小是,最大是.12.14:===%=(填小数).13.比较大小,在横线上填上“>”或“<”:.14.的分数单位是,再增加个这样的分数单位正好是最小的质数.15.七五折=:4=15÷=%=(填小数)16.小明骑自行车的速度是每分钟225米,可以记作,他20分钟能骑米.17.一幅地图的比例尺是1:20000,说明图上距离是实际距离的,图上1厘米的距离表示的实际距离是米.18.1.56÷3.4=÷34;1.34÷0.25=÷1.19.一个三角形的面积是16.2平方分米,高是8分米,它的底是分米.20.用一根铁丝围成一个长、宽、高分别为20厘米、18厘米、22厘米的长方体如改围成正方体,这个正方体的体积是立方厘米.21.圆的直径扩大为原来的3倍,它的周长扩大为原来的倍,面积扩大为原来的倍.22.用3个棱长8厘米的正方体拼成一个长方体,长方体的表面积是平方厘米.23.如图,小圆和大圆的半径的比是.面积的比是.24.小诗家今年一到三月的电表读数如表:(去年12月底的读数是165千瓦时)月份一二三读数/瓦时235328404小诗家一月份用电千瓦时;一至三月份共用电千瓦时.三.计算题(共3小题)25.口算下列各题.==1===1÷==÷3=5==26.递等式计算(能简算的要简算)2.8++7.2+9×4.25+÷6 2.5×3.2×1.2575.3×99+75.323.46﹣6.57﹣3.43×8.3﹣0.3×62.5%27.解方程.x×(+)=;6x﹣4.6=8;x+20%x=40.四.应用题(共6小题)28.一个数比它的40%多36,这个数是多少?29.一块长方形铁皮(如图)长25cm,宽20cm,从四个角各切掉一个边长为5cm的正方形,然后做成盒子,这个盒子用了多少铁皮?它的容积是多少?30.盒子里有大、小两种钢珠共30个,共重266克,已知大钢珠每个11克,小钢珠每个7克.盒中大钢珠、小钢珠各有多少个?31.求如图的体积:单位(厘米)32.从一块边长为4dm的正方形铁皮中剪下一个最大的圆,这块铁皮的利用率是多少?33.如图描述了小瑜昨天放学回家的行程情况:(1)从图中你可以看出哪些信息?(2)如果今天小明是径直回家,从学校走到家一共用了15分钟,请你帮小立画出回家的路线.参考答案与试题解析一.选择题(共10小题)1.【分析】根据生活经验、对长度单位和数据大小的认识可知:看书时,眼睛离书本的距离大约是30厘米,据此选择即可.【解答】解:看书时,眼睛离书本的距离大约是30厘米.故选:B.【点评】此题考查根据情景选择合适的计量单位,要注意联系生活实际、计量单位和数据的大小,灵活的选择.2.【分析】条形统计图能很容易看出数量的多少;折线统计图不仅容易看出数量的多少,而且能反映数量的增减变化情况;扇形统计图能反映部分与整体的关系;由此根据情况选择即可.【解答】解:要直观表示王阿姨体温的变化情况,选用折线统计图.故选:B.【点评】此题考查的目的是理解掌握条形统计图、折线统计图、扇形统计图的特点及作用.3.【分析】根据平均数的意义求出小军、小华和小林考试的平均分,就是小勇要考的分数.【解答】解:(96+92+94)÷3=282÷3=94(分)答:小勇考94分,不会改变原来小组的平均分.故选:B.【点评】此题主要考查平均数的意义及应用.4.【分析】在含盐率为25%的盐水中,加入4克盐和16克的水,则加入盐水的含盐率为4÷(4+16)=20%,25%>20%,即加入盐水的含盐率小于原来的盐水的含盐率,所以这时盐水的含盐率小于25%.【解答】解:4÷(4+16)=4÷20=20%25%>20%,即加入盐水的含盐率小于原来的盐水的含盐率,所以这时盐水的含盐率小于25%.故选:C.【点评】首先根据已知条件求出原来盐水的含盐率,然后进行判断是完成本题的关键.5.【分析】根据三角形的内角和是180°,按照比例计算出角的度数,再判断.【解答】解:180°÷(3+4+5)=15°,则15°×3=45°;15°×4=60°;15°×5=75°;三个角都是锐角,所以这个三角形是锐角三角形.故选:A.【点评】解答此题应明确三角形的内角度数的和是180°,求出三个角的度数,然后根据三角形的分类判定类型.6.【分析】根据观察物体的方法,A:从左面看,是4个正方形,下行2个,上行2个;B:从左面看,是三个正方形,上行1个,下行2个,左面对齐;C:从左面看,是三个正方形,上行1个,下行2个,左面对齐;C:从左面看,是三个正方形,上行1个,下行2个,右面对齐.由此选择即可.【解答】解:在下面的4个几何体中,从左面看到形状是的图形是A;故选:A.【点评】本题是考查从不同方向观察物体和几何图形.是培养学生的观察能力.7.【分析】描述路线时,需要找出不同的标志物作为观测点,据此解答即可.【解答】解:描述路线时,要以路线上不同路段的标志物作观测点.故选:C.【点评】此题主要考查描述线路时,如何选择观测点.8.【分析】用40千克减去浓度是20%的盐水的盐水的重量,就是应蒸发掉水的重量.因盐的重量不变,含盐20%的盐水中的盐等于含盐16%的盐水中的盐,既(40×16%)千克,含盐20%的盐水的重量就是(40×16%÷20%)千克,据此解答.【解答】解:40﹣40×16%÷20%,=40﹣32,=8(千克);答:蒸发8千克水后可将浓度提高到20%.故选:A.【点评】本题的关键是让学生理解浓度提高后,减少的是水的重量,盐的重量不变.9.【分析】把原价看作单位“1”,现在八折出售,也就是现价是原价的80%,降低的价格是原价的(1﹣80%),根据一个数乘百分数的意义,用乘法解答.【解答】解:80×(1﹣80%=80×0.2=16(元))答:可以便宜16元.故选:C.【点评】此题考查的目的是理解掌握“折”数与百分数之间的联系及应用,关键是确定单位“1”.10.【分析】因为等底等高的圆锥的体积是圆柱体积的,所以等底等底高的圆柱与圆锥的体积差相当于圆柱体积的(1),根据已知一个数的几分之几是多少,求这个数,用除法解答.【解答】解:9.6÷(1)===14.4(立方分米),答:圆柱的体积是14.4立方分米.故选:B.【点评】此题主要考查等底等高的圆柱和圆锥体积之间的关系及应用.二.填空题(共14小题)11.【分析】一个自然数省略“万”后的尾数得到的近似数约是26万,要求这个数最小是多少,就要考虑是用“五入”法求得的近似值,也就是千位上是5,其它各位上都是0,即最小是255000.要求这个数最大是多少,就要考虑是用“四舍”法求得的近似值,也就是千位上是4,其它各位上是9,最大是264999.【解答】解:一个数省略万位后面的尾数得到的近似数是26万,这个数最小是255000,最大是264999.故答案为:255000,264999.【点评】此题主要考查利用“四舍五入法”,省略万位后面的尾数求近似数.明确:用“四舍”法求出的近似数比准确数小;用“五入”法求出的近似数比准确数大.12.【分析】根据分数的性质,把的分子和分母同时乘6可化成;用的分子7做比的前项,分母5做比的后项可转化成比为7:5,根据比的性质,把7:5的前项和后项同时乘2可化成14:10,用的分子除以分母得小数商1.4,把1.4的小数点向右移动两位,同时添上百分号可化成140%;由此进行转化并填空.【解答】解:14:10===140%=1.4.故答案为:10,42,140,1.4.【点评】此题考查分数、比、小数和百分数之间的关系和转化,也考查了分数的性质和比的性质的运用.13.【分析】同分母分数大小比较:分子大的分数就大;同分子分数大小比较:分子相同,分母大的分数就小;分母不同的先通分再比较.据此解答即可.【解答】解:=,=<所以<.故答案为:<.【点评】此题考查了分数大小比较方法的灵活运用.14.【分析】把单位“1”平均分成5份,每份是,即这个分数的分数单位是,表示2个,是2个这样的分数单位;最小的质数是2,2=,即10个这样的分数单位是最小的质数,需要再增加10﹣2=8(个)这样的分数单位.【解答】解:的分数单位是,再增加8个这样的分数单位正好是最小的质数.故答案为:,8.【点评】此题是考查分数的意义、质数的意义等.分数(a、b均不为0),是这个分数的分数单位,a是分数单位的个数.15.【分析】根据折扣的意义七五折就是75%;把75%化成分母是100的分数并化简是,根据根据分数与除法的关系可得=3÷4,再根据商不变的性质被除数、除数都乘5就是15÷20;把75%的小数点向左移动两位去掉百分号就是0.75.【解答】解:七五折=3:4=15÷20=75%=0.75(填小数)故答案为:3,20,75,0.75.【点评】此题主要是考查除法、小数、比、百分数、折扣之间的关系及转化.利用它们之间的关系和性质进行转化即可.16.【分析】首先写出小明骑自行车每分钟行的路程,再加上一条斜线,并在斜线后面加上分,表示出小明骑自行车的速度;然后根据速度×时间=路程,用小明骑自行车的速度乘20,求出他20分钟可骑多少米即可.【解答】解:小明骑自行车的速度是每分钟225米,可以记作225米∕分.225×20=4500(米)答:小明骑自行车的速度是每分钟225米,可以记作225米∕分.他20分钟可骑4500米.故答案为:225米∕分、4500.【点评】此题主要考查了行程问题中速度、时间和路程的关系:速度×时间=路程,路程÷时间=速度,路程÷速度=时间,以及速度的表示方法,要熟练掌握.17.【分析】依据比例尺的意义,即图上距离与实际距离的比即为比例尺,即可求解.【解答】解:一幅地图的比例尺是1:20000,说明图上距离是实际距离的,图上1厘米的距离表示的实际距离是2000厘米,因为20000厘米=200米,所以图上1厘米的距离表示的实际距离是200米;故答案为:,200.【点评】此题主要考查比例尺的意义,解答时要注意单位的换算.18.【分析】在除法算式中,被除数和除数同时扩大或缩小相同的倍数(0除外),商不变;据此解答即可.【解答】解:根据商不变的性质可知,1.56÷3.4=15.6÷34;1.34÷0.25=5.36÷1.故答案为:15.6,5.36.【点评】解答此题应明确:只有被除数和除数同时扩大或缩小相同的倍数(0除外),商才不变.19.【分析】根据三角形的面积=底×高÷2,可以得到底边=三角形的面积×2÷高,然后代入数据计算即可解答本题.【解答】解:因为三角形的面积=底×高÷2,所以底边=三角形的面积×2÷高,16.2×2÷8=32.4÷8=4.05(分米)答:它的底是4.04分米,故答案为:4.05.【点评】此题主要三角形的周长和面积,明确三角形的面积=底×高÷2是解答本题的关键.20.【分析】首先根据长方体的棱长总和=(a+b+h)×4,求出这根铁丝的长度,然后用铁丝的长度除以12求出正方体的棱长,再根据正方体的体积公式:V=a3,把数据代入公式解答.【解答】解:(20+18+22)×4÷12=60×4÷12=240÷12=20(厘米),20×20×20=8000(立方厘米),答:这根正方体的体积是8000立方厘米.故答案为:8000.【点评】此题主要考查长方体、正方体的棱长总和公式、以及正方体的体积公式的灵活运用,关键是熟记公式.21.【分析】由圆的周长和面积公式可知:一个圆的直径扩大n倍,周长就扩大n倍,面积就扩大n2倍;据此解答.【解答】解:圆的直径扩大3倍,周长就扩大3倍,面积就扩大32=9倍.故答案为:3,9.【点评】考查了圆的周长公式和圆的面积公式:圆的周长C=πd,圆的面积S=πr2.22.【分析】三个正方体拼成一个长方体后,表面积比原来是减少了正方体的4个面的面积,由此即可解答.【解答】解:8×8×6×3﹣8×8×4=384×3﹣64×4=1152﹣256=896(平方厘米)答:长方体的表面积是896平方厘米.故答案为:896.【点评】此题解答关键是明白:三个正方体拼成一个长方体后,表面积比原来是减少了正方体的4个面的面积,体积等于3个正方体的体积和.23.【分析】设小圆的半径是r,则小圆的直径是2r,大圆的半径是2r,(1)进而求出小圆半径和大圆半径的比;(2)根据“圆的面积=πr2”分别计算出小圆和大圆的面积,然后进行比即可.【解答】解:设小圆的半径是r,则小圆的直径是2r,大圆的半径是2r,则:(1)r:2r=1:2(2)πr2:π(2r)2=πr2:4πr2=1:4答:小圆和大圆的半径的比是1:2.面积的比是1:4.故答案为:1:2,1:4.【点评】解答此题的关键:先假设出小圆和大圆的半径,进而结合题意,根据直径和半径之间的关系,圆的周长的计算方法和圆的面积的计算方法进行解答,继而得出结论.24.【分析】由于电表是连续计数,所以一月份的用电量就是用一月份电表的读数减去去年12月底电表的读数.一至三月份共用电量就是用三月份电表的读数减去去年12月底电表的读数.据此列式解答即可.【解答】解:235﹣165=70(千瓦时)404﹣165=239(千瓦时)答:小诗家一月份用电70千瓦时,一至三月份共用电239千瓦时.故答案为:70、239.【点评】此题考查的目的是理解掌握统计表的特点及作用,并且能够根据统计表提供的信息,解决有关的实际问题.三.计算题(共3小题)25.【分析】根据整数加乘除法的计算法则口算即可.【解答】解:==1==4=1÷==÷3=5==0.8【点评】本题属于基本的计算,在平时注意积累经验,逐步提高运算的速度和准确性.26.【分析】(1)根据加法交换律和结合律简算;(2)(4)(6)根据乘法分配律简算;(3)先把3.2分解成4×0.8,再根据乘法结合律简算;(5)根据减法的性质简算.【解答】解:(1)2.8++7.2+=(2.8+7.2)+(5+3)=10+9=19(2)9×4.25+÷6=9×4.25+4.25×=(9+)×4.25=10×4.25=42.5(3)2.5×3.2×1.25=2.5×(4×0.8)×1.25=(2.5×4)×(0.8×1.25)=10×1=10(4)75.3×99+75.3=75.3×(99+1)=75.3×100=7530(5)23.46﹣6.57﹣3.43=23.46﹣(6.57+3.43)=23.46﹣10=13.46(6)×8.3﹣0.3×62.5%=×(8.3﹣0.3)=×8=5【点评】本题考查了四则混合运算,注意运算顺序和运算法则,灵活运用所学的运算定律进行简便计算.27.【分析】(1)先化简方程,再依据等式的性质,方程两边同时除以求解;(2)依据等式的性质,方程两边同时加4.6,再同时除以6求解.(3)先化简方程,再依据等式的性质,方程两边同时除以120%求解.【解答】解:(1)x×(+)=x=x÷=÷x=;(2)6x﹣4.6=86x﹣4.6+4.6=8+4.66x=12.66x÷6=12.6÷6x=2.1;(3)x+20%x=40120%x=40120%x÷120%=40÷120%x=.【点评】等式的性质是解方程的依据,解方程时注意(1)方程能化简先化简,(2)等号要对齐.四.应用题(共6小题)28.【分析】把这个数看作单位“1”,一个数比它的40%多36,即这个数的(1﹣40%)是36,用除法即可求出这个数.【解答】解:36÷(1﹣40%)=36÷60%=60答:这个数是60.【点评】本题考查了分数除法文字题,关键是确定单位“1”,解答依据是:已知一个数的几分之几是多少,求这个数用除法计算.29.【分析】(1)这个盒子用的铁皮的面积是这个长方形的面积减去4个边长为5厘米的小正方形的面积;(2)做成长方体的长是25﹣5×2厘米,宽是20﹣5×2厘米;高是5厘米,由此求出容积.【解答】解:(1)20×25﹣5×5×4=500﹣100=400(平方厘米)(2)(25﹣5×2)×(20﹣5×2)×5=(25﹣10)×(20﹣10)×5=15×10×5=750(立方厘米)答:这个盒子用了400平方厘米铁皮;它的容积是750立方厘米.【点评】解决本题关键是找出长方体的长宽高和原来长方形的长和宽之间的关系,求出长宽高即可解决问题.30.【分析】假设全部都是大钢珠,则共重:11×30=330(克),比原来的克数重:330﹣266=64(克),因为一个大钢珠比一个小钢珠重11﹣7=4克,小钢珠的个数是:64÷(11﹣7)=16(个),进而得出大钢珠的个数;【解答】解:解法一:假设全是大钢珠.小钢珠:(30×11﹣266)÷(11﹣7)=16(个);大钢珠:30﹣16=14(个);解法二:假设全是小钢珠.大钢珠:(266﹣30×7)÷(11﹣7)=14(个);小钢珠:30﹣14=16(个);答:盒中大钢珠有14个,小钢珠16个.【点评】解答此题时应进行假设,然后进行分析得出结论;也可以用方程解答.31.【分析】观察图形可知,这个立体图形的体积等于底面直径是6厘米,高是8厘米+12厘米的圆柱体的体积的和的一半,据此利用圆柱体的体积公式计算即可解答问题.【解答】解:3.14×(6÷2)2×(12+8)÷2=3.14×9×20÷2=28.26×10=282.6(立方厘米)答:这个立体图形的体积是282.6立方厘米.【点评】此题考查了不规则图形的体积的计算方法,一般都是转化到规则图形中,利用体积公式计算即可解答.32.【分析】根据利用率=使用铁皮的面积÷铁皮的总面积×100%,铁皮的总面积就是正方形的面积,既(4×4)平方分米,使用的面积就是圆的面积,要使圆的面积最大,就要以这个正方形的边长作为圆的直径,圆的面积就是[3.14×(4÷2)2]平方分米.据此解答.【解答】解:[3.14×(4÷2)2]÷(4×4)×100%=[3.14×22]÷16×100%=[3.14×4]÷16×100%=12.56÷16×100%=78.5%;答:这块铁皮的利用率是78.5%.【点评】本题的关键是要使圆最大就要以这个正方形的边长为直径来作圆,然后根据利用率来求;注意要乘上100%.33.【分析】(1)从统计图中可知,小瑜放学没有直接回家,而是在路上逗留了一会,即折线与时间轴相持平的线段为小瑜逗留的时间,逗留的时间为15﹣5=10分钟;(2)先找到15分钟和300米对应的点,再连接此点与原点即可.【解答】解:(1)从统计图中可知,小瑜放学没有直接回家,而是在路上逗留了一会,即折线与时间轴相持平的线段为小瑜逗留的时间,逗留的时间为15﹣5=10分钟(2)作图如下:【点评】本题主要考查了如何从折线统计图中获取信息,然后再根据信息进行分析、计算及合理的作图即可.。
2020年中考数学模拟试卷(4月份)一、选择题(共8个小题)1.据统计,截至3月10日,全国已有7436万多名党员自愿捐款,共捐款76.8亿元,则76.8亿元用科学记数法可表示为()A.7.68×109元B.7.68×1010元C.76.8×108元D.0.768×1010元2.如图,在△ABC中,AB=AC,∠A=30°,直线a∥b,顶点C在直线b上,直线a交AB于点D,交AC与点E,若∠1=145°,则∠2的度数是()A.30°B.35°C.40°D.45°3.如图,表示的点在数轴上表示时,所在哪两个字母之间()A.C与D B.A与B C.A与C D.B与C4.如图,在菱形ABCD中,∠A=60°,AD=8.P是AB边上的一点,E,F分别是DP,BP的中点,则线段EF的长为()A.8B.2C.4D.25.如图,已知⊙O上三点A,B,C,半径OC=1,∠ABC=30°,切线PA交OC延长线于点P,则PA的长为()A.2B.C.D.6.如图,将△ABC绕点C(0,1)旋转180°得到△A′B′C,设点A的坐标为(a,b),则点A′的坐标为()A.(﹣a,﹣b)B.(﹣a,﹣b﹣1)C.(﹣a,﹣b+1)D.(﹣a,﹣b+2)7.已知反比例函数y=﹣,下列结论:①图象必经过(﹣2,4);②图象在二,四象限内;③y随x的增大而增大;④当x>﹣1时,则y>8.其中错误的结论有()个A.3B.2C.1D.08.函数y=ax+b和y=ax2+bx+c在同一直角坐标系内的图象大致是()A.B.C.D.二、填空题(3分×8=24分)9.因式分解:a2b﹣b=.10.关于x的方程mx2﹣2x+3=0有两个不相等的实数根,那么m的取值范围是.11.如图,在矩形ABCD中,AB=2DA,以点A为圆心,AB为半径的圆弧交DC于点E,交AD的延长线于点F,设DA=2,图中阴影部分的面积为.12.△ABC三个顶点的坐标分别为A(2,2),B(4,2),C(6,4).以原点O为位似中心,将△ABC缩小得到△DEF,其中点D与A对应,点E与B对应,△DEF与△ABC 对应边的比为1:2,这时点F的坐标是.13.如图所示是一个几何体的三视图,如果一只蚂蚁从这个几何体的点B出发,沿表面爬到AC的中点D处,则最短路线长为.14.将2019个边长为1的正方形按如图所示的方式排列,点A,A1,A2,A3…A2019和点M,M1,M2…M2018是正方形的顶点,连接AM1,AM2,AM3…AM2018分别交正方形的边A1M,A2M1,A3M2…A2018M2017于点N1,N2,N3…N2018,四边形M1N1A1A2的面积是S1,四边形M2N2A2A3的面积是S2,…,则S2018为.作图题(保留作图痕迹)15.已知△ABC,在△ABC中作一半圆满足以下要求:①圆心在边BC上;②该半圆面积最大.四、解答题(共9小题,满分76分)16.(16分)计算化简题(1)解不等式组:;(2)解一元二次方程:x(x﹣2)=6x﹣3x2;(3)用配方法求二次函数y=2x2﹣2x﹣1的顶点坐标;(4)先化简,再求值:,其中x=﹣1.17.近年来网约车十分流行,初三某班学生对“美团”和“滴滴”两家网约车公司各10名司机月收入进行了一项抽样调查,司机月收入(单位:千元)如图所示:根据以上信息,整理分析数据如下:平均月收入/千元中位数/千元众数/千元方差/千元2“美团”①66 1.2“滴滴”6②4③(1)完成表格填空;(2)若从两家公司中选择一家做网约车司机,你会选哪家公司,并说明理由.18.据交管部门统计,高速公路超速行驶是引发交通事故的主要原因.我县某校数学课外小组的几个同学想尝试用自己所学的知识检测车速,渝黔高速公路某路段的限速是:每小时80千米(即最高时速不超过80千米),如图,他们将观测点设在到公路l的距离为0.1千米的P处.这时,一辆轿车由綦江向重庆匀速直线驶来,测得此车从A处行驶到B处所用的时间为3秒(注:3秒=小时),并测得∠APO=59°,∠BPO=45°.试计算AB并判断此车是否超速?(精确到0.001).(参考数据:sin59°≈0.8572,cos59°≈0.5150,tan59°≈1.6643)19.如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=,BD=2,求OE的长.20.从青岛到济南有南线和北线两条高速公路:南线全长400千米,北线全长320千米.甲、乙两辆客车分别由南线和北线从青岛驶往济南,已知客车甲在南线高速公路上行驶的平均速度比客车乙在北线高速公路上快20千米/小时,两车恰好同时到达济南,求两辆客车从青岛到济南所用的时间是多少小时?21.如图,已知一次函数y=﹣x+4与反比例函数的图象相交于点C与点A(﹣2,a).(1)求反比例函数的表达式及C点坐标.(2)根据图象回答,在什么范围时,一次函数的值大于反比例函数的值.(3)求三角形AOC的面积.22.小李在景区销售一种旅游纪念品,已知每件进价为6元,当销售单价定为8元时,每天可以销售200件.市场调查反映:销售单价每提高1元,日销量将会减少10件,物价部门规定:销售单价不能超过12元,设该纪念品的销售单价为x(元),日销量为y(件),日销售利润为w(元).(1)求y与x的函数关系式.(2)要使日销售利润为720元,销售单价应定为多少元?(3)求日销售利润w(元)与销售单价x(元)的函数关系式,当x为何值时,日销售所获利润最大,并求出此时的利润率.23.观察下列等式:,,,将以上三个等式两边分别相加得:=1﹣.(1)观察发现=;+……+=.(2)初步应用利用(1)的结论,解决下列问题:①把拆成两个分子为1的正的真分数之差,即=;②把拆成两个分子为1的正的真分数之和,即=.(3)深入探究定义“◆”是一种新的运算,若◆2=,◆3=,◆4=,则◆9计算的结果是.(4)拓展延伸第一次用一条直径将圆周分成两个半圆(如图),在每个分点标上质数k,记2个数的和为a1,第二次将两个半圆都分成圆,在新产生的分点标相邻的已标的两个数的和的,记4个数的和为a2;第三次将四个圆分成圆,在新产生的分点标相邻的已标的两个数的和的,记8个数的和为a3;第四次将八个圆分成圆,在新产生的分点标相邻的已标的两个数的和的,记16个数的和为a4;……如此进行了n次.①a n=(用含k、n的代数式表示);②a n=4420,求+……+的值.24.如图,在矩形ABCD中,CD=3cm,BC=4cm,连接BD,并过点C作CN⊥BD,垂足为N,直线l垂直BC,分别交BD、BC于点P、Q.直线l从AB出发,以每秒1cm 的速度沿BC方向匀速运动到CD为止;点M沿线段DA以每秒1cm的速度由点D向点A匀速运动,到点A为止,直线1与点M同时出发,设运动时间为t秒(t>0).(1)线段CN=;(2)连接PM和QN,当四边形MPQN为平行四边形时,求t的值;(3)在整个运动过程中,当t为何值时△PMN的面积取得最大值,最大值是多少?参考答案一、选择题(3分×8=24分)1.据统计,截至3月10日,全国已有7436万多名党员自愿捐款,共捐款76.8亿元,则76.8亿元用科学记数法可表示为()A.7.68×109元B.7.68×1010元C.76.8×108元D.0.768×1010元【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.解:76.8亿元=7680000000元=7.68×109元.故选:A.2.如图,在△ABC中,AB=AC,∠A=30°,直线a∥b,顶点C在直线b上,直线a交AB于点D,交AC与点E,若∠1=145°,则∠2的度数是()A.30°B.35°C.40°D.45°【分析】先根据等腰三角形的性质和三角形的内角和可得∠ACB=75°,由三角形外角的性质可得∠AED的度数,由平行线的性质可得同位角相等,可得结论.解:∵AB=AC,且∠A=30°,∴∠ACB=75°,在△ADE中,∵∠1=∠A+∠AED=145°,∴∠AED=145°﹣30°=115°,∵a∥b,∴∠AED=∠2+∠ACB,∴∠2=115°﹣75°=40°,3.如图,表示的点在数轴上表示时,所在哪两个字母之间()A.C与D B.A与B C.A与C D.B与C【分析】确定出8的范围,利用算术平方根求出的范围,即可得到结果.解:∵6.25<8<9,∴2.5<<3,则表示的点在数轴上表示时,所在C和D两个字母之间.故选:A.4.如图,在菱形ABCD中,∠A=60°,AD=8.P是AB边上的一点,E,F分别是DP,BP的中点,则线段EF的长为()A.8B.2C.4D.2【分析】如图连接BD.首先证明△ADB是等边三角形,可得BD=8,再根据三角形的中位线定理即可解决问题.解:如图连接BD.∵四边形ABCD是菱形,∴AD=AB=8,∵∠A=60°,∴△ABD是等边三角形,∴BA=AD=8,∵PE=ED,PF=FB,∴EF=BD=4.5.如图,已知⊙O上三点A,B,C,半径OC=1,∠ABC=30°,切线PA交OC延长线于点P,则PA的长为()A.2B.C.D.【分析】连接OA,根据圆周角定理求出∠AOP,根据切线的性质求出∠OAP=90°,解直角三角形求出AP即可.解:连接OA,∵∠ABC=30°,∴∠AOC=2∠ABC=60°,∵过点A作⊙O的切线交OC的延长线于点P,∴∠OAP=90°,∵OA=OC=1,∴AP=OA tan60°=1×=,故选:B.6.如图,将△ABC绕点C(0,1)旋转180°得到△A′B′C,设点A的坐标为(a,b),则点A′的坐标为()A.(﹣a,﹣b)B.(﹣a,﹣b﹣1)C.(﹣a,﹣b+1)D.(﹣a,﹣b+2)【分析】设点A′的坐标是(x,y),根据旋转变换的对应点关于旋转中心对称,再根据中点公式列式求解即可.解:根据题意,点A、A′关于点C对称,设点A′的坐标是(x,y),则=0,=1,解得x=﹣a,y=﹣b+2,∴点A′的坐标是(﹣a,﹣b+2).故选:D.7.已知反比例函数y=﹣,下列结论:①图象必经过(﹣2,4);②图象在二,四象限内;③y随x的增大而增大;④当x>﹣1时,则y>8.其中错误的结论有()个A.3B.2C.1D.0【分析】根据反比例函数的性质,可得答案.解:①当x=﹣2时,y=4,即图象必经过点(﹣2,4);②k=﹣8<0,图象在第二、四象限内;③k=﹣8<0,每一象限内,y随x的增大而增大,错误;④k=﹣8<0,每一象限内,y随x的增大而增大,若0>x>﹣1,﹣y>8,故④错误,故选:B.8.函数y=ax+b和y=ax2+bx+c在同一直角坐标系内的图象大致是()A.B.C.D.【分析】根据a、b的符号,针对二次函数、一次函数的图象位置,开口方向,分类讨论,逐一排除.解:当a>0时,二次函数的图象开口向上,一次函数的图象经过一、三或一、二、三或一、三、四象限,故A、D不正确;由B、C中二次函数的图象可知,对称轴x=﹣>0,且a>0,则b<0,但B中,一次函数a>0,b>0,排除B.故选:C.二、填空题(3分×8=24分)9.因式分解:a2b﹣b=b(a+1)(a﹣1).【分析】先提取公因式b,再对余下的多项式利用平方差公式继续分解.解:a2b﹣b=b(a2﹣1)=b(a+1)(a﹣1).故答案为:b(a+1)(a﹣1).10.关于x的方程mx2﹣2x+3=0有两个不相等的实数根,那么m的取值范围是m<且m≠0.【分析】根据一元二次方程的定义以及根的判别式的意义可得△=4﹣12m>0且m≠0,求出m的取值范围即可.解:∵一元二次方程mx2﹣2x+3=0有两个不相等的实数根,∴△>0且m≠0,∴4﹣12m>0且m≠0,∴m<且m≠0,故答案为:m<且m≠0.11.如图,在矩形ABCD中,AB=2DA,以点A为圆心,AB为半径的圆弧交DC于点E,交AD的延长线于点F,设DA=2,图中阴影部分的面积为π﹣2.【分析】根据直角三角形30°角所对的直角边等于斜边的一半可得∠AED=30°,然后求出DE,再根据阴影部分的面积=S扇形AEF﹣S△ADE列式计算即可得解.解:∵AB=2DA,AB=AE(扇形的半径),∴AE=2DA=2×2=4,∴∠DAE=90°﹣30°=60°,DE===2,∴阴影部分的面积=S扇形AEF﹣S△ADE,=﹣×2×2,=π﹣2.故答案为:π﹣2.12.△ABC三个顶点的坐标分别为A(2,2),B(4,2),C(6,4).以原点O为位似中心,将△ABC缩小得到△DEF,其中点D与A对应,点E与B对应,△DEF与△ABC 对应边的比为1:2,这时点F的坐标是(3,2)或(﹣3,﹣2).【分析】根据以原点O为位似中心的位似变换的性质计算,得到答案.解:∵以原点O为位似中心,将△ABC缩小得到△DEF,△DEF与△ABC对应边的比为1:2,∴△DEF与△ABC的相似比为1:2,∵C(6,4).∴点C的对应点F的坐标为(6×,4×)或(﹣6×,﹣4×).即(3,2)或(﹣3,﹣2),故答案为:(3,2)或(﹣3,﹣2).13.如图所示是一个几何体的三视图,如果一只蚂蚁从这个几何体的点B出发,沿表面爬到AC的中点D处,则最短路线长为3.【分析】将圆锥的侧面展开,设顶点为B',连接BB',AE.线段AC与BB'的交点为F,线段BF是最短路程.解:如图将圆锥侧面展开,得到扇形ABB′,则线段BF为所求的最短路程.∵=4π,∴n=120即∠BAB′=120°.∵E为弧BB′中点,∴∠AFB=90°,∠BAF=60°,∴BF=AB•sin∠BAF=6×,∴最短路线长为3.故答案为:14.将2019个边长为1的正方形按如图所示的方式排列,点A,A1,A2,A3…A2019和点M,M1,M2…M2018是正方形的顶点,连接AM1,AM2,AM3…AM2018分别交正方形的边A1M,A2M1,A3M2…A2018M2017于点N1,N2,N3…N2018,四边形M1N1A1A2的面积是S1,四边形M2N2A2A3的面积是S2,…,则S2018为.【分析】设左边第一个正方形左上角的顶点为O,先判定△M1MN1∽△M1OA,利用相似三角形的性质求出MN1的长,进而得出S1,同理得出S2,按照规律得出S n,最后n 取2018,计算即可得出答案.解:如图所示,设左边第一个正方形左上角的顶点为O∵将2019个边长为1的正方形按如图所示的方式排列∴OA∥MA1∥M1A2∥M2A3∥…∥M2018A2019∴△M1MN1∽△M1OA∴==∴MN1=∴四边形M1N1A1A2的面积是S1=1﹣×1×=;同理可得:==∴四边形M2N2A2A3的面积S2=1﹣×1×=;…∴四边形M n N n A n A n+1的面积S n=1﹣=∴S2018=故答案为:.作图题(保留作图痕迹)15.已知△ABC,在△ABC中作一半圆满足以下要求:①圆心在边BC上;②该半圆面积最大.【分析】根据角平分线上的点到角的两边距离相等即可画出满足要求的半圆.解:根据题意作图,如图,圆O在三角形ABC内部的半圆即为所求.四、解答题(共9小题,满分76分)16.(16分)计算化简题(1)解不等式组:;(2)解一元二次方程:x(x﹣2)=6x﹣3x2;(3)用配方法求二次函数y=2x2﹣2x﹣1的顶点坐标;(4)先化简,再求值:,其中x=﹣1.【分析】(1)分别解两个不等式后取公共部分即可确定不等式组的解集;(2)用因式分解法解一元二次方程即可;(3)先配方成顶点式,然后求其顶点坐标即可;(4)先化简,再代入求值即可.解:(1)分别求得两个不等式的解集为:,所以不等式组的解集为:﹣1<x≤3;(2)移项后因式分解得:2x(x﹣2)=0,∴x=0或x﹣2=0,∴方程的解为:x1=0,x2=2;(3)原函数可以变形为:所以顶点坐标;(4)原式×=,当x=﹣1时,原式=﹣1.17.近年来网约车十分流行,初三某班学生对“美团”和“滴滴”两家网约车公司各10名司机月收入进行了一项抽样调查,司机月收入(单位:千元)如图所示:根据以上信息,整理分析数据如下:平均月收入/千元中位数/千元众数/千元方差/千元2“美团”①666 1.2“滴滴”6② 4.54③7.6(1)完成表格填空;(2)若从两家公司中选择一家做网约车司机,你会选哪家公司,并说明理由.【分析】(1)利用平均数、中位数、众数及方差的定义分别计算后即可确定正确的答案;(2)根据平均数一样,中位数及众数的大小和方差的大小进行选择即可.解:(1)①美团平均月收入:1.4+0.8+0.4+1+2.4=6千元;②滴滴中位数为4.5千元;③方差:[5×(6﹣4)2+2×1+2×9+36]=7.6千元2;故答案为:6,4.5,7.6;(2)选美团,因为平均数一样,中位数、众数美团大于滴滴,且美团方差小,更稳定.18.据交管部门统计,高速公路超速行驶是引发交通事故的主要原因.我县某校数学课外小组的几个同学想尝试用自己所学的知识检测车速,渝黔高速公路某路段的限速是:每小时80千米(即最高时速不超过80千米),如图,他们将观测点设在到公路l的距离为0.1千米的P处.这时,一辆轿车由綦江向重庆匀速直线驶来,测得此车从A处行驶到B处所用的时间为3秒(注:3秒=小时),并测得∠APO=59°,∠BPO=45°.试计算AB并判断此车是否超速?(精确到0.001).(参考数据:sin59°≈0.8572,cos59°≈0.5150,tan59°≈1.6643)【分析】在直角△OAP中,直角△OBP中,利用三角函数即可求得OA,OB,求得AB 的长,即可求解.解:设该轿车的速度为每小时x千米.∵AB=AO﹣BO,∠BPO=45°,∴BO=PO=0.1千米.又AO=OP×tan59°=0.1×1.6643=0.16643(千米),∴AB=AO﹣BO=0.16643﹣0.1=0.1×0.6643=0.06643(千米),(1分)即AB≈0.066千米.(1分)3秒=小时,∴x=0.06643×1200≈79.716千米/时.∵79.716<80,∴该轿车没有超速.(1分)19.如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=,BD=2,求OE的长.【分析】(1)先判断出∠OAB=∠DCA,进而判断出∠DAC=∠DCA,得出CD=AD =AB,即可得出结论;(2)先判断出OE=OA=OC,再求出OB=1,利用勾股定理求出OA,即可得出结论.解:(1)∵AB∥CD,∴∠OAB=∠DCA,∵AC为∠DAB的平分线,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD=AB,∵AB∥CD,∴四边形ABCD是平行四边形,∵AD=AB,∴▱ABCD是菱形;(2)∵四边形ABCD是菱形,∴OA=OC,BD⊥AC,∵CE⊥AB,∴OE=OA=OC,∵BD=2,∴OB=BD=1,在Rt△AOB中,AB=,OB=1,∴OA==2,∴OE=OA=2.20.从青岛到济南有南线和北线两条高速公路:南线全长400千米,北线全长320千米.甲、乙两辆客车分别由南线和北线从青岛驶往济南,已知客车甲在南线高速公路上行驶的平均速度比客车乙在北线高速公路上快20千米/小时,两车恰好同时到达济南,求两辆客车从青岛到济南所用的时间是多少小时?【分析】首先设甲客车从青岛到济南速度是x千米/小时,由题意得等量关系:甲客车行驶400千米所用时间=乙客车行驶320千米所用时间,根据等量关系列出方程,解出x 的值,然后利用路程除以速度可得时间.解:设甲客车从青岛到济南速度是x千米/小时,由题意得:=,解得:x=100,经检验:x=100是分式方程的解,则x﹣20=100﹣20=80,400÷100=4(千米/小时),答:两辆客车从青岛到济南所用的时间是4小时.21.如图,已知一次函数y=﹣x+4与反比例函数的图象相交于点C与点A(﹣2,a).(1)求反比例函数的表达式及C点坐标.(2)根据图象回答,在什么范围时,一次函数的值大于反比例函数的值.(3)求三角形AOC的面积.【分析】(1)把A点坐标代入一次函数可求得a的值,再代入反比例函数解析式可求得k的值,联立两函数解析式可求得C点的坐标;(2)当一次函数图象在反比例函数图象的上方时满足条件,根据图象可得出x的范围;(3)求出一次函数与x轴的交点坐标,根据S△AOC=S△AOB+S△BOC,利用三角形的面积公式即可求出△AOC的面积.解:(1)∵A点在一次函数图象上,∴a=2+4=6,可得A点坐标为(﹣2,6),又∵A点在反比例函数图象上,∴k=﹣2×6=﹣12,∴反比例函数解析式为y=﹣;联立两函数解析式可得,解得,或,∴C点坐标为(6,﹣2);(2)根据图象可知,当x<﹣2或0<x<6时,一次函数的值大于反比例函数的值;(3)设直线AB与x轴的交点为B,由直线AB的解析式为y=﹣x+4可知,B(4,0),∴S△AOC=S△AOB+S△BOC=×4×6+×4×2=12+4=16.22.小李在景区销售一种旅游纪念品,已知每件进价为6元,当销售单价定为8元时,每天可以销售200件.市场调查反映:销售单价每提高1元,日销量将会减少10件,物价部门规定:销售单价不能超过12元,设该纪念品的销售单价为x(元),日销量为y(件),日销售利润为w(元).(1)求y与x的函数关系式.(2)要使日销售利润为720元,销售单价应定为多少元?(3)求日销售利润w(元)与销售单价x(元)的函数关系式,当x为何值时,日销售所获利润最大,并求出此时的利润率.【分析】(1)根据“销售单价每提高1元日销量将会减少10件”可写出函数表达式y =200﹣10(x﹣8),化简即可;(2)利润=(单价﹣定价)×日销售量,通过这个公式可得出日销售利润的函数表达式,将w=720代入表达式,即可求出销售单价的值;(3)根据第二问即可写出日销售利润w(元)与销售单价x(元)的函数关系式,根据二次函数的性质,即可得出答案.解:(1)根据题意得,y=200﹣10(x﹣8)=﹣10x+280,故y与x的函数关系式为y=﹣10x+280;(2)根据题意得,(x﹣6)(﹣10x+280)=720,解得;x1=10,x2=24(不合题意舍去).答:要使日销售利润为720元,销售单价应定为10元;(3)根据题意得,w=(x﹣6)(﹣10x+280)=﹣10(x﹣17)2+1210,∵﹣10<0,∴当x<17时,w随x的增大而增大,∴当x=12时,w所获利润最大,为960元,答:当x为12时,日销售利润最大,最大利润960元,利润率为100%.23.观察下列等式:,,,将以上三个等式两边分别相加得:=1﹣.(1)观察发现=﹣;+……+=.(2)初步应用利用(1)的结论,解决下列问题:①把拆成两个分子为1的正的真分数之差,即=;②把拆成两个分子为1的正的真分数之和,即=+.(3)深入探究定义“◆”是一种新的运算,若◆2=,◆3=,◆4=,则◆9计算的结果是.(4)拓展延伸第一次用一条直径将圆周分成两个半圆(如图),在每个分点标上质数k,记2个数的和为a1,第二次将两个半圆都分成圆,在新产生的分点标相邻的已标的两个数的和的,记4个数的和为a2;第三次将四个圆分成圆,在新产生的分点标相邻的已标的两个数的和的,记8个数的和为a3;第四次将八个圆分成圆,在新产生的分点标相邻的已标的两个数的和的,记16个数的和为a4;……如此进行了n次.①a n=k(用含k、n的代数式表示);②a n=4420,求+……+的值.【分析】(1)观察发现:先根据题中所给出的列子进行猜想,写出猜想结果即可;根据第一空中的猜想计算出结果;(2)利用=﹣求解可得;(3)根据◆9=++…+计算可得;(4)①由a1=2k=k,a2=4k=k,a3=k,a4=10k=k可得a n=k;②由k=2×2×5×13×17知k(n+1)(n+2)=2×2×3×5×13×17=5×51×52,据此可得k=5,n=50,再进一步求解可得.解:(1)观察发现:﹣;+……+=1﹣++…+﹣=;故答案为:﹣,.(2)初步应用①==;②由=﹣,得=+,即=+;故答案为:,+.(3)◆9=++…+=﹣=,故答案为:;(4)①∵a1=2k=k,a2=4k=k,a3=k,a4=10k=k,……∴a n=k,故答案为:k.②∵k=4420,且k为质数,对4420分解质因数可知4420=2×2×5×13×17,∴k=2×2×5×13×17,∴k(n+1)(n+2)=2×2×3×5×13×17=5×51×52,∴k=5,n=50,∴a n=(n+1)(n+2),=•,∴+……+=×(++……+)=×(﹣)=.24.如图,在矩形ABCD中,CD=3cm,BC=4cm,连接BD,并过点C作CN⊥BD,垂足为N,直线l垂直BC,分别交BD、BC于点P、Q.直线l从AB出发,以每秒1cm 的速度沿BC方向匀速运动到CD为止;点M沿线段DA以每秒1cm的速度由点D向点A匀速运动,到点A为止,直线1与点M同时出发,设运动时间为t秒(t>0).(1)线段CN=;(2)连接PM和QN,当四边形MPQN为平行四边形时,求t的值;(3)在整个运动过程中,当t为何值时△PMN的面积取得最大值,最大值是多少?【分析】(1)由矩形的性质和勾股定理可求BD的长,由三角形的面积公式可求CN的长;(2)由勾股定理可求DN的长,通过证明△DMN∽△DAB,可得,可得DM的值,即可求t的值;(3)分两种情况讨论,利用三角形面积公式列出△PMN的面积与t的关系式,可求△PMN的面积的最大值.解:(1)∵四边形ABCD是矩形∴BC=AD=4cm,∠BCD=90°=∠A,∴BD==5cm,∵S△BCD=BC×CD=×BD×CN∴CN=故答案为:(2)在Rt△CDN中,DN==∵四边形MPQN为平行四边形时∴PQ∥MN,且PQ⊥BC,AD∥BC∴MN⊥AD∴MN∥AB∴△DMN∽△DAB∴即∴DM=cm∴t=s(3)∵BD=5,DN=∴BN=如图,过点M作MH⊥BD于点H,∵sin∠MDH=sin∠BDA=∴∴MH=t当0<t<∵BQ=t,∴BP=t,∴PN=BD﹣BP﹣DN=5﹣﹣t=﹣t∴S△PMN=×PN×MH=×t×(﹣t)=﹣t2+t∴当t=s时,S△PMN有最大值,且最大值为,当t=s时,点P与点N重合,点P,点N,点M不构成三角形;当<t≤4时,如图,∴PN=BP﹣BN=t﹣∴S△PMN=×PN×MH=×t×(t﹣)=t2﹣t当<t≤4时,S△PMN随t的增大而增大,∴当t=4时,S△PMN最大值为,∵>∴综上所述:t=4时,△PMN的面积取得最大值,最大值为.。
中考数学四模试卷题号一二三四总分得分一、选择题(本大题共8小题,共24.0分)1.-2的绝对值等于()A. -B.C. -2D. 22.已知地球上海洋面积约为316 000 000km2,数据316 000 000用科学记数法可表示为()A. 3.16×109B. 3.16×107C. 3.16×108D. 3.16×1063.下图是由5个相同的小正方体组成的立体图形,这个立体图形的俯视图是A. B. C. D.4.把不等式组的解集表示在数轴上如图,正确的是()A. B.C. D.5.如图,将一副直角三角板按图中所示位置摆放,保持两条斜边互相平行,则∠1的度数是()A. 30°B. 25°C. 20°D. 15°6.如图,A、B两点被池塘隔开,在AB外选一点C,连结AC、BC.分别取AC、DC的中点写D、E,连结DE,若测得DE=40m,则A、B两点之间的距离是()A. 40mB. 60mC. 80mD. 100m7.如图,在平面直角坐标系中,边长为1的正方形ABCD的顶点A、C在函数y=x的图象上运动,下列各点可能落入正方形内部的是()A. (1,3)B. (2,3.2)8.如图,△ABC的顶点A,C落在坐标轴上,且顶点B的坐标为(-5,2),将△ABC沿x轴向右平移得到△A1B1C1,使得点B1恰好落在函数y=上,若线段AC扫过的面积为48,则点C1的坐标为()A. (3,2)B. (5,6)C. (8,6)D. (6,6)二、填空题(本大题共6小题,共18.0分)9.比较大小:______5(填“>”“<”或“=”)10.计算:(﹣m)3•m4=________.11.关于x的一元二次方程x2-3x+k=0有两个不相等的实数根,则k的取值范围是______.12.某水库堤坝的横断面如图所示,经测量知tan A=,堤坝高BC=50m,则AB=______m.13.如图,在平面直角坐标系中,点A是抛物线y=ax2+bx+c的顶点,点B(0,2)是抛物线与y轴的交点,直线BC平行于x轴,交抛物线于点C,D为x轴上任意一点,若S△ABC=3,S△BCD=2,则点A的坐标为______.14.如图,BD是菱形ABCD的对角线,E是边AD的中点,F是边AB上的一点,将△AEF沿EF所在的直线翻折得到△A′EF,连结A′C.若AB=5,BD=6,当点A′到∠A 的两边的距离相等时,A′C的长是______.三、计算题(本大题共2小题,共12.0分)15.先化简,再求值:(2a-3)(2a+3)-(a+1)(4a-2),其中a=.16.列方程组解应用题.某校七年级学生在三月份参加了“学雷锋,献爱心”活动.活动中,1班,2班和3班的同学为希望小学的学生购买了学习用品:书包和词典.已知1班、2班购买的情况如下表:书包(个)词典(本)累计花费(元)七年级1班32124七年级2班23116四、解答题(本大题共8小题,共66.0分)17.将牌面数字分别是4,5,6,8的四张扑克牌背面朝上(背面完全相同)洗匀后放在桌面上(1)从中随机抽出一张牌,牌面数字是偶数的概率是______;(2)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽出一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是8的整数倍的概率.18.如图,在△ABC中,AB=AC,点D是边BC的中点,过点A、D分别作BC与AB的平行线,相交于点E,连结EC、AD.求证:四边形ADCE是矩形.19.为发展学生的核心素养,培养学生的综合能力,某学校计划开设四门选修课:乐器、舞蹈、绘画、书法,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行整理,绘制成如下两幅不完整的统计图.请结合图中所给信息解答下列问题:(1)本次调查的学生共有______人,在扇形统计图中,m的值是______.(2)分别求出参加调查的学生中选择绘画和书法的人数,并将条形统计图补充完整.(3)该校共有学生2000人,估计该校约有多少人选修乐器课程?20.如图,AB是⊙O的直径,点C是AB延长线上的点,CD与⊙O相切于点D,连结BD、AD(1)求证:∠BDC=∠A;(2)若∠C=45°,⊙O的半径为1,求图中阴影部分的面积(结果保留根号和π)21.甲、乙两车分别从相距420km的A、B两地相向而行,乙车比甲车先出发1小时,两车分别以各自的速度匀速行驶,途经C地(A、B、C三地在同一条直线上).甲车到达C地后因有事立即按原路原速返回A地,乙车从B地直达A地,甲、乙两车距各自出发地的路程y(千米)与甲车行驶所用的时间x(小时)的关系如图所示,结合图象信息回答下列问题:(1)甲车的速度是______千米/时,乙车的速度是______千米/时;(2)求甲车距它出发地的路程y(千米)与它行驶所用的时间x(小时)之间的函数关系式;(3)甲车出发多长时间后两车相距90千米?请你直接写出答案.22.探究:如图①点E、F分别在正方形ABCD的边BC、CD上,连结AE、AF、EF,将△ABE、△ADF分别沿AE、AF折叠,折叠后的图形恰好能拼成与△AEF完全重合的三角形.若BE=2,DF=3,求AB的长;拓展:如图②点E、F分别在四边形BACD的边BC、CD上,且∠B=∠D=90°.连结AE、AF、EF将△ABE、△ADF分别沿AE、AF折叠,折叠后的图形恰好能拼成与△AEF 完全重合的三角形.若∠EAF=30°,AB=4,则△ECF的周长是______.23.如图,在矩形ABCD中,AB=3,BC=4.点P从点A出发,沿A-B-C运动,速度为每秒1个单位长度.点Q从点C出发,沿C-A-D运动,沿C-A运动时的速度为每秒1个单位长度,沿A-D运动时的速度为每秒3个单位长度.P、Q两点同时出发,当点Q到达点D时,P、Q两点同时停止运动.连结PQ、CP.设△APQ的面积为S,点P的运动时间为t(秒).(1)当t=6时,求AQ的长.(2)当点Q沿C-A运动时,用含t的代数式表示点Q到AB、BC的距离.(3)求S与t的函数关系式.(4)在点P运动的过程中,直接写出△APQ与△CPQ同时为钝角三角形时t的取值范围.24.在平面直角坐标系中,若x轴上的点A与y轴上的点B同时在某函数的图象上则称△AOB为该函数图象的“截距三角形”,如图①,△AOB为直线l的“截距三角形”.(1)某一次函数图象的“截距三角形”是等腰直角三角形,请写出一个符合条件的函数表达式(写出一个即可);(3)如图③,在(2)的条件下,在第一象限的抛物线上任取一点P,过点P作x 轴的平行线与抛物线在第一象限的“截距三角形”的直角边或直角边的延长线交于点D,与斜边或斜边的延长线交于点E,设点P的横坐标为m,线段DE的长度为d.求d与m之间的函数关系式;(4)如图④,在(3)的条件下,过点E作EF∥y轴交x轴于点F.求四边形ODEF 的周长不变时m的取值范围.答案和解析1.【答案】D【解析】解:根据绝对值的性质,|-2|=2.故选:D.根据绝对值的性质:一个负数的绝对值是它的相反数解答即可.本题考查了绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0,难度适中.2.【答案】C【解析】解:316 000 000用科学记数法可表示为3.16×108,故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】C【解析】解:从上面看共有2行,上面一行有3个正方形,第二行中间有一个正方形,故选:C.从上面看到的平面图形即为该组合体的俯视图,据此求解.本题考查了简单组合体的三视图的知识,解题的关键是了解俯视图的定义,属于基础题,难度不大.4.【答案】B【解析】解:解不等式2x+3>1,得:x>-1,解不等式3x+4≥5x,得:x≤2,则不等式组的解集为-1<x≤2,故选:B.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了,确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键5.【答案】D【解析】解:∵AB∥CD,∴∠C=∠2=60°,∵∠A=45°,∴∠1=60°-45°=15°,故选:D.根据平行线的性质可得∠C=∠2=60°,再根据三角形内角与外角的性质可得∠1的度数.此题主要考查了平行线的性质,关键是掌握两直线平行,同位角相等.【解析】解:∵D、E分别是AC、DC的中点,∴AB=2DE=80(m),故选:C.根据三角形中位线定理解答.本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.7.【答案】C【解析】解:作正方形ABCD的内切圆,则内切圆半径为,∴点在正方形内部时,点一定在圆的内切圆内部,点(1,3)到直线y=x的距离为>,不可能;(2,3.2)到直线y=x的距离为>,不可能;(3,3-)到直线y=x的距离为<,可能;(4,3+)到直线y=x的距离为>,不可能;故选:C.作正方形ABCD的内切圆,则内切圆半径为,点在正方形内部时,点一定在圆的内切圆内部,只要判断点到y=x的距离和半径的关键即可求解;本题考查一次函数的性质,正方形的性质,点与圆的位置关系;能够将点与正方形问题转化为点与圆的问题是解题的关键.8.【答案】C【解析】解:B1的纵坐标是2,把y=2代入y=得x==3,则B1的坐标是(3,2),则平移的距离是3-(-5)=8(单位长度).则AA1=8.则C1的纵坐标是=6,则C1的坐标是(8,6).B和B1的纵坐标相同,据此把y=2代入反比例函数的解析式求得B1的坐标,则平移的距离即可求得,线段AC扫过的部分是平行四边形,利用平行四边形的面积公式求得C1的纵坐标,则坐标即可求得.本题考查了图形的平移以及反比例函数的性质,正确求得平移的距离是关键.9.【答案】<【解析】解:∵19<25∴<故答案为:<根据19<25即可作答.此题主要考查了实数大小比较的方法和估算无理数的大小,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.【解析】解:(-m)3•m4=-m7,故答案为:-m7根据同底数幂的乘法解答即可.此题考查同底数幂的乘法,关键是根据同底数幂的乘法的法则解答.11.【答案】k<【解析】解:根据题意得△=(-3)2-4k>0,解得k<.故答案为:k<.根据判别式的意义得到△=(-3)2-4k>0,然后解不等式即可.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.12.【答案】100【解析】解:在Rt△ABC中,∵tan A=,∴=,∴AC=50,∴由勾股定理可知:AB=100,故答案为:100根据锐角三角函数的定义即可求出答案.本题考查锐角三角函数,解题的关键是熟练运用锐角三角函数的定义,本题属于基础题型.13.【答案】(1,-1)【解析】解:∵点B(0,2)是抛物线与y轴的交点,直线BC平行于x轴,交抛物线于点C,∴B、C关于对称轴对称,∵S△BCD=BC•OB=2,B(2,0),∴BC=2,∴C(2,2),∴对称轴为直线x==1,∵S△ABC=BC(2-y A)=3,∴y=-1,∴A(1,-1),故答案为(1,-1).根据△BCD的面积求得BC,即可求得对称轴,根据△ABC的面积即可求得A的纵坐标,从而求得A的坐标.14.【答案】4【解析】解:如图,连接AC,∵四边形ABCD是菱形∴AB=BC=CD=AD=5,BD⊥AC,DO=BO=BD=3,AO=CO,AC平分∠DAB∴AO==4,∴AC=2AO=8∵点A′到∠DAB的两边的距离相等∴点A'在∠DAB的平分线上,即点A'在线段AC上,∵将△AEF沿EF所在的直线翻折得到△A′EF∴AH=A'H,EF⊥AC∴EF∥DB∴∴AO=2AH∴AH=2∴A'C=AC-AA'=8-4=4故答案为:4由菱形的性质可得AB=BC=CD=AD=5,BD⊥AC,DO=BO=BD=3,AO=CO,AC平分∠DAB,由勾股定理可求AO,AC的长,由角平分线的性质可得点A'在线段AC上,由平行线分线段成比例可求AH的长,即可求A'C的长.本题考查翻折变换,菱形的性质,角平分线的性质,确定点A'的位置是本题的关键.15.【答案】解:(2a-3)(2a+3)-(a+1)(4a-2)=4a2-9-4a2-2a+2=-2a-7,当a=时,原式=-2×-7=-7-7=-14.【解析】根据平方差公式和多项式乘多项式可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.本题考查整式的混合运算-化简求值,解答本题的关键是明确整式化简求值的计算方法.16.【答案】解:设书包每个x元,词典每本y元,根据题意得:,解得:,∴4x+6y=4×28+6×20=112+120=232.答:3班共花费了232元.【解析】设书包每个x元,词典每本y元,根据1班、2班购买情况统计表中数据,即可得出关于x、y的二元一次方程组,解之即可得出x、y的值,将其代入4x+6y中即可求出3班共花费的钱数.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.17.【答案】【解析】解:(1)从中随机抽出一张牌,牌面数字是偶数的概率是;故答案为:;(2)画树状图如图:共有16个等可能的结果,组成的两位数恰好是8的整数倍的结果有4个,∴组成的两位数恰好是8的整数倍的概率为=.(1)根据概率的意义直接计算即可解答.(2)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率即可.本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.18.【答案】证明:∵AE∥BD,DE∥AB∴四边形ABDE是平行四边形∴AB=DE,AE=BD∵AB=AC∴DE=AC∵点D是BC的中点∴BD=CD AD⊥BC所以AE=DC,AE∥DC∴四边形ADCE是平行四边形∵∠ADC=90°∴平行四边形ADCE是矩形【解析】首先证明四边形ABDE是平行四边形,再证明四边形ADCE是平行四边形,由∠ADC=90°,即可推出四边形ADCE是矩形.本题考查等腰三角形的性质、平行四边形的判定和性质、矩形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.19.【答案】(1)50 ,30% ;(2)绘画的人数50×20%=10(人),书法的人数50×10%=5(人),如图所示:(3)估计该校选修乐器课程的人数为2000×30%=600人.【解析】解:(1)本次调查的学生共有20÷40%=50(人),m=15÷50=30%;故答案为:50;30%;(2)见答案(3)见答案.【分析】(1)由舞蹈的人数除以占的百分比求出调查学生总数,确定出扇形统计图中m的值;(2)求出绘画与书法的学生数,补全条形统计图即可;(3)总人数乘以样本中选修乐器课程人数所占百分比可得.本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.20.【答案】(1)证明:连结OD.如图,∵CD与⊙O相切于点D,∴OD⊥CD,∴∠2+∠BDC=90°,∵AB是⊙O的直径,∴∠ADB=90°,即∠1+∠2=90°,∴∠1=∠BDC,∵OA=OD,∴∠1=∠A,∴∠BDC=∠A;(2)∵∠C=45°,∴∠DOC=∠C=45°,过D作DH⊥OB于H,∴DH=OH=,∴图中阴影部分的面积=S扇形BOD-S△BOD=-1=-.【解析】(1)连结OD.如图,利用切线的性质得∠2+∠BDC=90°,利用圆周角定理得到∠1+∠2=90°,则∠1=∠BDC,加上∠1=∠A,所以∠BDC=∠A;(2)过D作DH⊥OB于H,得到DH=OH=,于是得到结论.本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理,扇形面积的计算.21.【答案】105 60【解析】解:(1)由图可得,甲车的速度为:(210×2)÷4=420÷4=105千米/时,乙车的速度为:60千米/时,故答案为:105,60;(2)由图可知,点M的坐标为(2,210),当0≤x≤2时,设y=k1x,∵M(2,210)在该函数图象上,2k1=210,解得,k1=105,∴y=105x(0≤x≤2);当2<x≤4时,设y=k2x+b,∵M(2,210)和点N(4,0)在该函数图象上,∴,得,∴y=-105x+420(2<x≤4),综上所述:甲车距它出发地的路程y与它出发的时间x的函数关系式为:y=;(3)设甲车出发a小时时两车相距90千米,当甲从A地到C地时,105a+60(a+1)+90=420,解得,a=,当甲从C地返回A地时,(210-60×3)+(105-60)×(a-2)=90,解得,a=,当甲到达A地后,420-60(a+1)=90,解得,a=,答:甲车出发时,时或时,两车相距90千米.(1)根据题意和函数图象中的数据可以得到甲乙两车的速度;(2)根据题意和函数图象中的数据可以求得甲车距它出发地的路程y(千米)与它行驶所用的时间x(小时)之间的函数关系式;(3)根据题意可知甲乙两车相距90千米分两种情况,从而可以解答本题.本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.22.【答案】【解析】解:探究:设:正方形的边长为a,则EC=a-2,CF=a-3,则EF=BE+DF=5,则EF2=EC2+CF2,即:25=(a-2)2+(a-3)2,解得:a=6或-1(舍去-1),故AB=6;拓展:由题意得:AB=CD=4,连接AC,∵AB=CD,AC=AC,∴△ABC≌△ADC,∴BC=CD,∠BAC=∠DAC,∵点E、F分别在四边形BACD的边BC、CD上,故:∠BAE+∠DAF=∠EAF=30°,则∠BAD=60°,∴∠BAC=∠DAC=(∠BAD)=30°,CD=BC=AB tan∠BAC=4×=,△ECF的周长=EF+EC+FC=AE+FD+EC+FC=AC+CD=2CD=,故答案为:.探究:设:正方形的边长为a,则EC=a-2,CF=a-3,则由勾股定理得:EF2=EC2+CF2,即可求解;拓展:证明△ABC≌△ADC,∠BAE+∠DAF=∠EAF=30°,则∠BAD=60°,∠BAC=∠DAC=(∠BAD)=30°,CD=BC=AB tan∠BAC,即可求解.本题考查的是翻折变换(折叠问题),涉及到正方形的性质、三角形全等等,其中(2)证明△ABC≌△ADC,是本题解题的关键.23.【答案】解:(1)如图1中,在Rt△ACB中,AC===5,∴t=6时,点Q在AD时,AQ=3(t-5)=3×(6-5)=3.(2)如图2中,QM⊥AB于M,QN⊥BC于N.则四边形MBNQ是矩形,∴QM=BN,QN∥AB,∴==,∴==,∴QN=t,CN=t,∴QM=BM=4-t.∴点Q到AB的距离:.点Q到BC的距离:.(3)①如图3中,当0<t≤3时,S=•AP•QM=•t•(4-t)=-t2+2t.②如图4中,当3<t≤5时,S=S△ABC-S△ABP-S△QPC=×3×4-×(7-t)•t-•(t-3)×3=t2-t+.③如图5中,当5<t≤时,.(4)如图6中,当PQ∥BC时,∵AP:AB=AQ:AC,∴t:3=(5-t):5,解得t=.如图7中,当PQ∥AB时,CP:CB=CQ:CA,∴(7-t):4=t:5,解得t=,如图8中,当AQ=BP时,3(t-5)=t-3,解得t=6,∴当0<t<或<t<5或5<t<6时,△APQ与△CPQ同时为钝角三角形.【解析】(1)如图1中,画出图形求出AQ即可;(2)如图2中,QM⊥AB于M,QN⊥BC于N.则四边形MBNQ是矩形,可得QM=BN,QN∥AB,推出==,可得==,由此即可解决问题;(3)分三种情形求解①如图3中,当0<t≤3时,②如图4中,当3<t≤5时,③如图5中,当5<t≤时;(4)求出三个特殊位置的t的值即可解决问题;本题考查四边形综合题、矩形的性质、三角形的面积、平行线分线段成比例定理等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考压轴题.24.【答案】解:(1)y=-x+2(答案不唯一);(2)y=-x+4,令x=4,则y=4,令y=0,则x=4,则点(4,0)、(0,4)是抛物线上的点,将这两个点的坐标代入抛物线表达式得:,解得:,故抛物线的表达式为:y=-x2+3x+4;(3)设点P(m,-m2+3m+4),则点E(m2-3m,-m2+3m+4),①当点P在点C之上时,即-m2+3m+4≥4(即:0≤m≤3),d=DE=-(m2-3m)=-m2+3m;②当点P在点C之下,同理d=DE=m2-3m,此时,m>3或m<0;综上,d=|m2-3m|;(4)由(2)知:①当点P在点C之上时,四边形ODEF的周长=2OD+2CE=2(-m2+3m-m2+3m+4)=-4m2+12m+16,不是常数;②当点P在点C之下时,四边形ODEF的周长=2OD+2CE=2(m2-3m-m2+3m+4)=8,是常数;即m>3或m<0,四边形ODEF的周长不变.【解析】(1)按照条件,写出表达式即可,答案不唯一;(2)点(4,0)、(0,4)是抛物线上的点,将这两个点的坐标代入抛物线表达式,即可求解;(3)设点P(m,-m2+3m+4),则点E(m2-3m,-m2+3m+4),d=DE=m2-3m,即可求解;(4)四边形ODEF的周长=2OD+2CE=2(m2-3m-m2+3m+4)=8,d=DE=m2-3m>0,即可求解.本题考查的是二次函数综合运用,涉及到一次函数、等腰三角形性质、二次函数等知识,此类新概念性题目,通常按照题设顺序逐次求解.。
2020年西安某铁一中滨河中学入学数学模拟卷(四)一、填空题(每题3分,共36分)1.一个数由10个亿、9个千万、2个万和8个千组成,这个数写成用万作单位的数是__________.【答案】109002.8万【点拨】1090028000100001009002.8÷=万.2.小明和计算有余数的除法时.把被除数472错看成427,结果商比原来小5,但余数恰巧相同,则 该题的余数是__________.【答案】4【点拨】由商比原来小5可知,除数9=,则4729524÷=L ,4279474÷=L .商52475-=,满足题意.所以该题的余数是4.3.小红在计算4(9)9⨯-□时,错看成499⨯-□,她得到的结果比正确结果少__________. 【答案】5 【点拨】44(9)499⨯-=⨯-□□,而499⨯-□,945-=,比正确结果少5.4.甲乙两数之差是792.,甲数的小数点向左移动两位后,正好和乙数相等,甲数是___________.【答案】80【点拨】79.2100-=⎧⎨=⎩甲乙甲乙, ∴乙79.2(1001)0.8=÷-=,∴甲0.810080=⨯=.5.甲乙两种物品原价相同,因促销,甲乙两种物品分别按五折和六折销售,小王用132元购得这两种物品各一件,两种物品的原价是___________元.【答案】120【点拨】已知:原价50%60%132=⎧⎨=⎩甲乙甲乙+. ∴甲132(0.50.6)120=÷=+(元).6.圆柱和圆锥的底面半径之比是2:3,高之比为4:3,圆锥和圆柱的体积之比为____________.【答案】9:16 【点拨】221π3393==π2416V V ⋅⋅⋅⋅圆锥圆柱.7.一个长方体水箱,高40厘米,底面是边长为12厘米的正方形(厚度不计),水箱内有25厘米深的水,现将一根长50厘米的钢柱垂直插入水箱中,使钢柱的底面与水箱的底面重合,已知长方体钢柱横截面是边长为4厘米的正方形,则水面会上升__________厘米.【答案】138【点拨】设这时水深x 厘米.121225(121244)x ⨯⨯=⨯-⨯1288x =. 水面会上升:1128 2.5388-=(厘米).8.如图所示,四个同样大小的长方形拼成一个大正方形和一个小正方形,大正方形面积100平方米,小正方形面积36平方米.求长方形的周长为___________米.【答案】20【点拨】由题意知106=⎧⎨-=⎩长宽长宽+, ∴长(106)28=÷=+,宽2=.∴周长(82)220=⨯=+(米).9.完成一项工程,原来计划要10天,实际每天的工作效率提高25%.实际__________天完成这项工程.【答案】8 【点拨】11(125%)810⎡⎤÷⨯=⎢⎥⎣⎦+天.10.刘伯伯家菜地里的黄瓜获得了丰收,收下全部的49时,装满了5筐还多48千克,收完其余的部分时,又刚好装满10筐,求刘伯伯共收获黄瓜___________千克. 【答案】288【点拨】设共收获x 千克,每框装y 千克,则4548955105918x y x y y x ⎧=⎪⎪⎨⎪=⇒=⎪⎩+.4548288918x ⎛⎫=÷-= ⎪⎝⎭,即共收获黄瓜288千克.11.客车和货车的速度比是4:3,客车和货车分别从甲、乙两地同时出发,相向而行,经过12小时相 遇.客车从甲地到达乙地一共要用___________小时.【答案】21 【点拨】客车从甲到乙共用时间31212214⨯=+(小时).12.将自然数1100-排列如图: 在这个表里用长方形框出了两行六个数(图中长方形仅为示意).如果框起来的六个数的和为423,问这六个数中最小的数是___________.【答案】66【点拨】设框出的上行中间数为x ,则框出的六个数的和为:11(17)7(17)423x x x x x x --=++++++++++67x =.六个数中最小的数为67166-=.二、选择题(每题3分,共12分)13.下表是小明的田径考试成绩,他跳高的成绩是( )分.A .79B ..94【答案】D【点拨】跳高成绩833(7085)94⨯-=+.14.如图,阴影部分面积相等答案完全正确的是( ). A .①②B .①②④C .①②③D .①②③④ 【答案】D【点拨】图中两条虚线平行,前三个图的阴影面积都等于平行四边形面积的一半,所以前三图面积相等,第4图梯形面积(13)h 2S =+和前三图面积一样. 99...282726252423222110011121314151617181920123456789104cm 4cm3cm 4cm15.以下说法正确的有( ).①一项工程,计划5小时完成,实际4小时就完成了任务,工作效率提高了14; ②一个等腰三角形的两边分别为2厘米和3.5厘米,这个三角形的周长是7.5;③两个整数的最小公倍数与最大公约数之积等于这两个数之积;④真分数除以假分数的商一定比1小.A .1个B .2个C .3个D .4个【答案】C 【点拨】①是正确的.工作效率提高了11114554⎛⎫-÷= ⎪⎝⎭. ②是错误的.这个三角形的周长是22 3.57.5=++(厘米)或3.5 3.529++=(厘米).③是正确的.④是正确的.16.甲容器中有5%的盐水120克,乙容器中有某种浓度的盐水若干.从乙中取出480克盐水,放入甲中混合成浓度为13%的盐水,则乙容器中的盐水浓度是( ).A .8%B .12%C .15%D .10%【答案】C【点拨】乙容器中的盐水浓度是:[(120480)13%1205%]48015%⨯-⨯÷=+.三、计算题(每题5分,共10分)17.4155.3256138.755⎛⎫⎛⎫⨯-⨯ ⎪ ⎪⎝⎭⎝⎭+++ 【答案】 【解析】原式11(55.35638.7)5=⨯++ 61505=⨯ 180=.18.252648244827990.7322321001 1.441353⨯-⨯--⨯⨯+ 【答案】 【解析】原式2548262499(0.73 2.27)21(1.4 4.6)3⎛⎫⨯- ⎪⎝⎭=-⨯++ 15481039=⨯÷- 180310=⨯- 5=.四、解方程(每题5分,共10分)19.431516542x x x -=++ 【答案】 【解析】431165542x ⎛⎫-=+ ⎪⎝⎭+ 212120x = 20x =.20. 2.10.40.96x ÷=÷【答案】【解析】0.40.96 2.1x =÷⨯5 2.112x =⨯ 78x =.五、解答题(每题8分,共32分) 21.紫荆花茶叶店运到一级茶和二级茶一批,其中二级茶的数量是一级茶的数量的12,一级茶的买 进价每千克24.8;二级茶的买进价是每千克16元,现在照买进价加价12.5%出售,当二级茶全部售完,一级茶剩下13时,共盈利160元,那么运到的一级茶有多步千克? 【答案】【解析】设一级茶x 千克,则二级茶12x 千克. 1124.812.5%11612.5%16032x x ⎛⎫⨯⨯-⨯⨯= ⎪⎝⎭+,∴120023x =, 即运到的一级茶有120023.22.如图(1),一个长方形纸条从正方形的左边开始以每秒2厘米的速度沿水平方向向右行驶,如图(2)是运动过程中长方形纸条和正与形重叠部分的面积与运动时间的关系图.(1)运动4秒后,重叠部分的面积是多少平方厘米?(2)正方形的边长是多少厘米?(3)在图(2)的__________内填入正确的时间.【答案】【解析】(1)重叠部分面积224216(cm )⨯⨯=.(2)当运到到6秒后重叠部分面积不变了,说明长方形纸条的头部到达了正方形的右端,从0秒到6 秒纸条的运动距离即为正方形的边长.从图2可得到2612(cm)⨯=.(3)图2中第一个括号表示,纸条的尾部离开正方形的左端,重叠部分面积开始变小,20210÷=(秒);图2中第二个括号表示,纸条尾部离开正方形的右端,重叠部分面积为0了,则1226÷=(秒), 61016+=(秒),填16.23.某校和某武警部队之间有一条公路,该校下午2点钟派车去接部队抗震救灾劳模来校作报告,往返需用1小时,这位劳模在下午1点钟便离开部队步行向学校走来,途中遇到接他的汽车,便立即上车驶往学校,在下午2点40分到达.汽车的速度是劳模步行速度的多少倍?【答案】【解析】汽车2点出发,往返需1小时,即汽车从学校到部队只需要30分钟.实际汽车2点出发,途中接到劳模,2点40分回到学校,即汽车走了20分钟,在2点20分碰到劳模;劳模下午1点步行出发,在2点20分碰到接他的汽车,已走了:2点20分-1点80=分钟的路,而走的这80分钟的路汽车行的话只需要10分钟,即有:1080v v ⨯=⨯汽车劳模,∴:80:108:1v v ==汽车劳模.即汽车速度是劳模步行速度的8倍.24.(1)以出17A A :,七个点中的任意两个点为端点共可组成多少条线段?图1()2厘米20厘米图2()面积(平方厘米)下午1点出发下午2学校A 2A 3A 4A 5A 1A 7A 6(2)如图所示的图中小于180︒的角各有多少?(3)如图所示的图中各有多少个长方形?(4)如图所示的图形中有多少个三角形?(5)如图所示的图中分别有多少个正方形?【答案】【解析】(1)65432121+++++=(条)线段.(2)432110+++=(个)角和4321414++++=(个)角.(3)5432115++++=(个)长方形和(54321)(21)45++++⨯=+(个)长方形. (4)(54321)460++++⨯=(个)三角形.(5)4433221130⨯⨯⨯⨯=+++(个)正方形和6453423150⨯⨯⨯⨯=+++(个)正方形.。
中考数学模拟试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2.00分)下列几何体中,是圆柱的为()A.B. C.D.2.(2.00分)实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.|a|>4 B.c﹣b>0 C.ac>0 D.a+c>03.(2.00分)方程组的解为()A.B.C.D.4.(2.00分)被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为7140m2,则FAST的反射面总面积约为()A.7.14×103m2 B.7.14×104m2 C.2.5×105m2D.2.5×106m25.(2.00分)若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720° D.900°6.(2.00分)如果a﹣b=2,那么代数式(﹣b)•的值为()A.B.2 C.3 D.47.(2.00分)跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某运动员起跳后的x与y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为()A.10m B.15m C.20m D.22.5m8.(2.00分)如图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣11,﹣5)时,表示左安门的点的坐标为(11,﹣11);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5).上述结论中,所有正确结论的序号是()A.①②③B.②③④C.①④D.①②③④二、填空题(本题共16分,每小题2分)9.(2.00分)如图所示的网格是正方形网格,∠BAC∠DAE.(填“>”,“=”或“<”)10.(2.00分)若在实数范围内有意义,则实数x的取值范围是.11.(2.00分)用一组a,b,c的值说明命题“若a<b,则ac<bc”是错误的,这组值可以是a=,b=,c=.12.(2.00分)如图,点A,B,C,D在⊙O上,=,∠CAD=30°,∠ACD=50°,则∠ADB=.13.(2.00分)如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC 于点F,若AB=4,AD=3,则CF的长为.14.(2.00分)从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:公交车用时公交车用时的频数30≤t≤3535<t≤4040<t≤4545<t≤50合计线路A59151166124500 B5050122278500 C4526516723500早高峰期间,乘坐(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.15.(2.00分)某公园划船项目收费标准如下:船型两人船(限乘两人)四人船(限乘四人)六人船(限乘六人)八人船(限乘八人)每船租金(元/小时)90100130150某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为元.16.(2.00分)2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.(5.00分)下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线l及直线l外一点P.求作:直线PQ,使得PQ∥l.作法:如图,①在直线l上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线l上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=,CB=,∴PQ∥l()(填推理的依据).18.(5.00分)计算4sin45°+(π﹣2)0﹣+|﹣1|19.(5.00分)解不等式组:20.(5.00分)关于x的一元二次方程ax2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.21.(5.00分)如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=,BD=2,求OE的长.22.(5.00分)如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.23.(6.00分)在平面直角坐标系xOy中,函数y=(x>0)的图象G经过点A (4,1),直线l:y=+b与图象G交于点B,与y轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为w.①当b=﹣1时,直接写出区域W内的整点个数;②若区域W内恰有4个整点,结合函数图象,求b的取值范围.24.(6.00分)如图,Q是与弦AB所围成的图形的内部的一定点,P是弦AB 上一动点,连接PQ并延长交于点C,连接AC.已知AB=6cm,设A,P两点间的距离为xcm,P,C两点间的距离为y1cm,A,C两点间的距离为y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值;x/cm0123456y1/cm 5.62 4.67 3.76 2.65 3.18 4.37y2/cm 5.62 5.59 5.53 5.42 5.19 4.73 4.11(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当△APC为等腰三角形时,AP的长度约为cm.25.(6.00分)某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.A课程成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):b.A课程成绩在70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5c.A,B两门课程成绩的平均数、中位数、众数如下:课程平均数中位数众数A75.8m84.5B72.27083根据以上信息,回答下列问题:(1)写出表中m的值;(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是(填“A“或“B“),理由是,(3)假设该年级学生都参加此次测试,估计A课程成绩跑过75.8分的人数.26.(6.00分)在平面直角坐标系xOy中,直线y=4x+4与x轴,y轴分别交于点A,B,抛物线y=ax2+bx﹣3a经过点A,将点B向右平移5个单位长度,得到点C.(1)求点C的坐标;(2)求抛物线的对称轴;(3)若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.27.(7.00分)如图,在正方形ABCD中,E是边AB上的一动点(不与点A、B 重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH.(1)求证:GF=GC;(2)用等式表示线段BH与AE的数量关系,并证明.28.(7.00分)对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离“,记作d(M,N).已知点A(﹣2,6),B(﹣2,﹣2),C(6,﹣2).(1)求d(点O,△ABC);(2)记函数y=kx(﹣1≤x≤1,k≠0)的图象为图形G.若d(G,△ABC)=1,直接写出k的取值范围;(3)⊙T的圆心为T(t,0),半径为1.若d(⊙T,△ABC)=1,直接写出t的取值范围.中考数学试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2.00分)下列几何体中,是圆柱的为()A.B. C.D.【分析】根据立体图形的定义及其命名规则逐一判断即可.【解答】解:A、此几何体是圆柱体;B、此几何体是圆锥体;C、此几何体是正方体;D、此几何体是四棱锥;故选:A.【点评】本题主要考查立体图形,解题的关键是认识常见的立体图形,如:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等.能区分立体图形与平面图形,立体图形占有一定空间,各部分不都在同一平面内.2.(2.00分)实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.|a|>4 B.c﹣b>0 C.ac>0 D.a+c>0【分析】本题由图可知,a、b、c绝对值之间的大小关系,从而判断四个选项的对错.【解答】解:∵﹣4<a<﹣3∴|a|<4∴A不正确;又∵a<0 c>0∴ac<0∴C不正确;又∵a<﹣3 c<3∴a+c<0∴D不正确;又∵c>0 b<0∴c﹣b>0∴B正确;故选:B.【点评】本题主要考查了实数的绝对值及加减计算之间的关系,关键是判断正负.3.(2.00分)方程组的解为()A.B.C.D.【分析】方程组利用加减消元法求出解即可;【解答】解:,①×3﹣②得:5y=﹣5,即y=﹣1,将y=﹣1代入①得:x=2,则方程组的解为;故选:D.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.4.(2.00分)被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为7140m2,则FAST的反射面总面积约为()A.7.14×103m2 B.7.14×104m2 C.2.5×105m2D.2.5×106m2【分析】先计算FAST的反射面总面积,再根据科学记数法表示出来,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数.确定n的值是易错点,由于249900≈250000有6位,所以可以确定n=6﹣1=5.【解答】解:根据题意得:7140×35=249900≈2.5×105(m2)故选:C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.5.(2.00分)若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720° D.900°【分析】根据多边形的边数与多边形的外角的个数相等,可求出该正多边形的边数,再由多边形的内角和公式求出其内角和.【解答】解:该正多边形的边数为:360°÷60°=6,该正多边形的内角和为:(6﹣2)×180°=720°.故选:C.【点评】本题考查了多边形的内角与外角,熟练掌握多边形的外角和与内角和公式是解答本题的关键.6.(2.00分)如果a﹣b=2,那么代数式(﹣b)•的值为()A.B.2 C.3 D.4【分析】先将括号内通分,再计算括号内的减法、同时将分子因式分解,最后计算乘法,继而代入计算可得.【解答】解:原式=(﹣)•=•=,当a﹣b=2时,原式==,故选:A.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.7.(2.00分)跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某运动员起跳后的x与y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为()A.10m B.15m C.20m D.22.5m【分析】将点(0,54.0)、(40,46.2)、(20,57.9)分半代入函数解析式,求得系数的值;然后由抛物线的对称轴公式可以得到答案.【解答】解:根据题意知,抛物线y=ax2+bx+c(a≠0)经过点(0,54.0)、(40,46.2)、(20,57.9),则解得,所以x=﹣==15(m).故选:B.【点评】考查了二次函数的应用,此题也可以将所求得的抛物线解析式利用配方法求得顶点式方程,然后直接得到抛物线顶点坐标,由顶点坐标推知该运动员起跳后飞行到最高点时,水平距离.8.(2.00分)如图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣11,﹣5)时,表示左安门的点的坐标为(11,﹣11);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5).上述结论中,所有正确结论的序号是()A.①②③B.②③④C.①④D.①②③④【分析】由天安门和广安门的坐标确定出每格表示的长度,再进一步得出左安门的坐标即可判断.【解答】解:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6),此结论正确;②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12),此结论正确;③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣5,﹣2)时,表示左安门的点的坐标为(11,﹣11),此结论正确;④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5),此结论正确.故选:C.【点评】本题主要考查坐标确定位置,解题的关键是确定原点位置及各点的横纵坐标.二、填空题(本题共16分,每小题2分)9.(2.00分)如图所示的网格是正方形网格,∠BAC>∠DAE.(填“>”,“=”或“<”)【分析】作辅助线,构建三角形及高线NP,先利用面积法求高线PN=,再分别求∠BAC、∠DAE的正弦,根据正弦值随着角度的增大而增大,作判断.【解答】解:连接NH,BC,过N作NP⊥AD于P,S△ANH=2×2﹣﹣×1×1=AH•NP,=PN,PN=,Rt△ANP中,sin∠NAP====0.6,Rt△ABC中,sin∠BAC===>0.6,∵正弦值随着角度的增大而增大,∴∠BAC>∠DAE,故答案为:>.【点评】本题考查了锐角三角函数的增减性,构建直角三角形求角的三角函数值进行判断,熟练掌握锐角三角函数的增减性是关键.10.(2.00分)若在实数范围内有意义,则实数x的取值范围是x≥0.【分析】根据二次根式有意义的条件可求出x的取值范围.【解答】解:由题意可知:x≥0.故答案为:x≥0.【点评】本题考查二次根式有意义,解题的关键正确理解二次根式有意义的条件,本题属于基础题型.11.(2.00分)用一组a,b,c的值说明命题“若a<b,则ac<bc”是错误的,这组值可以是a=1,b=2,c=﹣1.【分析】根据题意选择a、b、c的值即可.【解答】解:当a=1,b=2,c=﹣2时,1<2,而1×(﹣1)>2×(﹣1),∴命题“若a<b,则ac<bc”是错误的,故答案为:1;2;﹣1.【点评】本题考查了命题与定理,要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.12.(2.00分)如图,点A,B,C,D在⊙O上,=,∠CAD=30°,∠ACD=50°,则∠ADB=70°.【分析】直接利用圆周角定理以及结合三角形内角和定理得出∠ACB=∠ADB=180°﹣∠CAB﹣∠ABC,进而得出答案.【解答】解:∵=,∠CAD=30°,∴∠CAD=∠CAB=30°,∴∠DBC=∠DAC=30°,∵∠ACD=50°,∴∠ABD=50°,∴∠ACB=∠ADB=180°﹣∠CAB﹣∠ABC=180°﹣50°﹣30°﹣30°=70°.故答案为:70°.【点评】此题主要考查了圆周角定理以及三角形内角和定理,正确得出∠ABD度数是解题关键.13.(2.00分)如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC 于点F,若AB=4,AD=3,则CF的长为.【分析】根据矩形的性质可得出AB∥CD,进而可得出∠FAE=∠FCD,结合∠AFE=∠CFD(对顶角相等)可得出△AFE∽△CFD,利用相似三角形的性质可得出==2,利用勾股定理可求出AC的长度,再结合CF=•AC,即可求出CF的长.【解答】解:∵四边形ABCD为矩形,∴AB=CD,AD=BC,AB∥CD,∴∠FAE=∠FCD,又∵∠AFE=∠CFD,∴△AFE∽△CFD,∴==2.∵AC==5,∴CF=•AC=×5=.故答案为:.【点评】本题考查了相似三角形的判定与性质、矩形的性质以及勾股定理,利用相似三角形的性质找出CF=2AF是解题的关键.14.(2.00分)从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:公交车用时公交车用时的频数线路30≤t≤3535<t≤4040<t≤4545<t≤50合计A59151166124500B5050122278500C4526516723500早高峰期间,乘坐C(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.【分析】分别计算出用时不超过45分钟的可能性大小即可得.【解答】解:∵A线路公交车用时不超过45分钟的可能性为=0.752,B线路公交车用时不超过45分钟的可能性为=0.444,C线路公交车用时不超过45分钟的可能性为=0.954,∴C线路上公交车用时不超过45分钟的可能性最大,故答案为:C.【点评】本题主要考查可能性的大小,解题的关键是掌握频数估计概率思想的运用.15.(2.00分)某公园划船项目收费标准如下:船型两人船(限乘两人)四人船(限乘四人)六人船(限乘六人)八人船(限乘八人)每船租金(元/小时)90100130150某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为380元.【分析】分四类情况,分别计算即可得出结论.【解答】解:∵共有18人,当租两人船时,∴18÷2=9(艘),∵每小时90元,∴租船费用为90×9=810元,当租四人船时,∵18÷4=4余2人,∴要租4艘四人船和1艘两人船,∵四人船每小时100元,∴租船费用为100×4+90=490元,当租六人船时,∵18÷6=3(艘),∵每小时130元,∴租船费用为130×3=390元,当租八人船时,∵18÷8=2余2人,∴要租2艘八人船和1艘两人船,∵8人船每小时150元,当租1艘四人船,1艘6人船,1一艘8人船,100+130+150=380元∴租船费用为150×2+90=390元,而810>490>390>380,∴租3艘六人船或2艘八人船1艘两人船费用最低是380元,故答案为:380.【点评】此题主要考查了有理数的运算,用分类讨论的思想解决问题是解本题的关键.16.(2.00分)2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第3.【分析】两个排名表相互结合即可得到答案.【解答】解:根据中国创新综合排名全球第22,在坐标系中找到对应的中国创新产出排名为第11,再根据中国创新产出排名为第11在另一排名中找到创新效率排名为第3故答案为:3【点评】本题考查平面直角坐标系中点的坐标确定问题,解答时注意根据具体题意确定点的位置和坐标.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.(5.00分)下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线l及直线l外一点P.求作:直线PQ,使得PQ∥l.作法:如图,①在直线l上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线l上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=AP,CB=CQ,∴PQ∥l(三角形中位线定理)(填推理的依据).【分析】(1)根据题目要求作出图形即可;(2)利用三角形中位线定理证明即可;【解答】(1)解:直线PQ如图所示;(2)证明:∵AB=AP,CB=CQ,∴PQ∥l(三角形中位线定理).故答案为:AP,CQ,三角形中位线定理;【点评】本题考查作图﹣复杂作图,平行线的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18.(5.00分)计算4sin45°+(π﹣2)0﹣+|﹣1|【分析】直接利用特殊角的三角函数值以及零指数幂的性质和二次根式的性质分别化简得出答案.【解答】解:原式=4×+1﹣3+1=﹣+2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.19.(5.00分)解不等式组:【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x>﹣2,解不等式②得:x<3,∴不等式组的解集为﹣2<x<3.【点评】本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.20.(5.00分)关于x的一元二次方程ax2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.【分析】(1)计算判别式的值得到△=a2+4,则可判断△>0,然后根据判别式的意义判断方程根的情况;(2)利用方程有两个相等的实数根得到△=b2﹣4a=0,设b=2,a=1,方程变形为x2+2x+1=0,然后解方程即可.【解答】解:(1)a≠0,△=b2﹣4a=(a+2)2﹣4a=a2+4a+4﹣4a=a2+4,∵a2>0,∴△>0,∴方程有两个不相等的实数根;(2)∵方程有两个相等的实数根,∴△=b2﹣4a=0,若b=2,a=1,则方程变形为x2+2x+1=0,解得x1=x2=﹣1.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.21.(5.00分)如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=,BD=2,求OE的长.【分析】(1)先判断出∠OAB=∠DCA,进而判断出∠DAC=∠DAC,得出CD=AD=AB,即可得出结论;(2)先判断出OE=OA=OC,再求出OB=1,利用勾股定理求出OA,即可得出结论.【解答】解:(1)∵AB∥CD,∴∠OAB=∠DCA,∵AC为∠DAB的平分线,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD=AB,∵AB∥CD,∴四边形ABCD是平行四边形,∵AD=AB,∴▱ABCD是菱形;(2)∵四边形ABCD是菱形,∴OA=OC,BD⊥AC,∵CE⊥AB,∴OE=OA=OC,∵BD=2,∴OB=BD=1,在Rt△AOB中,AB=,OB=1,∴OA==2,∴OE=OA=2.【点评】此题主要考查了菱形的判定和性质,平行四边形的判定和性质,角平分线的定义,勾股定理,判断出CD=AD=AB是解本题的关键.22.(5.00分)如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.【分析】(1)先判断出Rt△ODP≌Rt△OCP,得出∠DOP=∠COP,即可得出结论;(2)先求出∠COD=60°,得出△OCD是等边三角形,最后用锐角三角函数即可得出结论.【解答】解:(1)连接OC,OD,∴OC=OD,∵PD,PC是⊙O的切线,∵∠ODP=∠OCP=90°,在Rt△ODP和Rt△OCP中,,∴Rt△ODP≌Rt△OCP,∴∠DOP=∠COP,∵OD=OC,∴OP⊥CD;(2)如图,连接OD,OC,∴OA=OD=OC=OB=2,∴∠ADO=∠DAO=50°,∠BCO=∠CBO=70°,∴∠AOD=80°,∠BOC=40°,∴∠COD=60°,∵OD=OC,∴△COD是等边三角形,由(1)知,∠DOP=∠COP=30°,在Rt△ODP中,OP==.【点评】此题主要考查了等腰三角形的性质,切线的性质,全等三角形的判定和性质,锐角三角函数,正确作出辅助线是解本题的关键.23.(6.00分)在平面直角坐标系xOy中,函数y=(x>0)的图象G经过点A (4,1),直线l:y=+b与图象G交于点B,与y轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为w.①当b=﹣1时,直接写出区域W内的整点个数;②若区域W内恰有4个整点,结合函数图象,求b的取值范围.【分析】(1)把A(4,1)代入y=中可得k的值;(2)直线OA的解析式为:y=x,可知直线l与OA平行,①将b=﹣1时代入可得:直线解析式为y=x﹣1,画图可得整点的个数;②分两种情况:直线l在OA的下方和上方,画图计算边界时点b的值,可得b的取值.【解答】解:(1)把A(4,1)代入y=得k=4×1=4;(2)①当b=﹣1时,直线解析式为y=x﹣1,解方程=x﹣1得x1=2﹣2(舍去),x2=2+2,则B(2+2,),而C(0,﹣1),如图1所示,区域W内的整点有(1,0),(2,0),(3,0),有3个;②如图2,直线l在OA的下方时,当直线l:y=+b过(1,﹣1)时,b=﹣,且经过(5,0),∴区域W内恰有4个整点,b的取值范围是﹣≤b<﹣1.如图3,直线l在OA的上方时,∵点(2,2)在函数y=(x>0)的图象G,当直线l:y=+b过(1,2)时,b=,当直线l:y=+b过(1,3)时,b=,∴区域W内恰有4个整点,b的取值范围是<b≤.综上所述,区域W内恰有4个整点,b的取值范围是﹣≤b<﹣1或<b≤.【点评】本题考查了新定义和反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,本题理解整点的定义是关键,并利用数形结合的思想.24.(6.00分)如图,Q是与弦AB所围成的图形的内部的一定点,P是弦AB上一动点,连接PQ并延长交于点C,连接AC.已知AB=6cm,设A,P两点间的距离为xcm,P,C两点间的距离为y1cm,A,C两点间的距离为y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x 的几组对应值;x/cm0123456y1/cm 5.62 4.67 3.763 2.65 3.18 4.37y2/cm 5.62 5.59 5.53 5.42 5.19 4.73 4.11(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当△APC为等腰三角形时,AP的长度约为3或4.91或5.77cm.【分析】(1)利用圆的半径相等即可解决问题;(2)利用描点法画出图象即可.(3)图中寻找直线y=x与两个函数的交点的横坐标以及y1与y2的交点的横坐标即可;【解答】解:(1)当x=3时,PA=PB=PC=3,∴y1=3,故答案为3.(2)函数图象如图所示:(3)观察图象可知:当x=y,即当PA=PC或PA=AC时,x=3或4.91,当y1=y2时,即PC=AC时,x=5.77,综上所述,满足条件的x的值为3或4.91或5.77.故答案为3或4.91或5.77.【点评】本题考查动点问题函数图象、圆的有关知识,解题的关键是学会利用图象法解决问题,属于中考常考题型.25.(6.00分)某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.A课程成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):b.A课程成绩在70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5c.A,B两门课程成绩的平均数、中位数、众数如下:课程平均数中位数众数A75.8m84.5B72.27083根据以上信息,回答下列问题:(1)写出表中m的值;(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是B(填“A“或“B“),理由是该学生的成绩小于A课程的中位数,而大于B课程的中位数,(3)假设该年级学生都参加此次测试,估计A课程成绩跑过75.8分的人数.【分析】(1)先确定A课程的中位数落在第4小组,再由此分组具体数据得出第30、31个数据的平均数即可;(2)根据两个课程的中位数定义解答可得;(3)用总人数乘以样本中超过75.8分的人数所占比例可得.【解答】解:(1)∵A课程总人数为2+6+12+14+18+8=60,∴中位数为第30、31个数据的平均数,而第30、31个数据均在70≤x<80这一组,∴中位数在70≤x<80这一组,∵70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5,∴A课程的中位数为=78.75,即m=78.75;(2)∵该学生的成绩小于A课程的中位数,而大于B课程的中位数,∴这名学生成绩排名更靠前的课程是B,故答案为:B、该学生的成绩小于A课程的中位数,而大于B课程的中位数.。
2019-2020年中考数学模拟试卷(四)(I)一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母在答题卡中相应的方框内涂黑.注意可以用多种不同的方法来选取正确答案.1.下列图形中,既是轴对称图形又是中心对称图形的是()A.正五边形B.正方形C.平行四边形D.正三角形2.下列各式中,计算结果为a6的是()A.a3+a3B.a7﹣a C.a2•a3 D.a12÷a63.用配方法解方程:x2﹣4x+1=0,下列配方正确的是()A.(x﹣2)2=3 B.(x+2)2﹣3=0 C.(x﹣2)2=0 D.x(x﹣4)=﹣14.已知一组数据x1,x2,x3的平均数和方差分别为5和2,则数据x1+1,x2+1,x3+1的平均数和方差分别是()A.5和2 B.6和2 C.5和3 D.6和35.若二次函数y=ax2﹣2x+a2﹣4(a为常数)的图象经过原点,则该图象的对称轴是直线()A.x=1或x=﹣1 B.x=1 C.x=或x=﹣D.x=6.如图,从位于六和塔的观测点C测得两建筑物底部A,B的俯角分别为45°和60°.若此观测点离地面的高度CD为30米,A,B两点在CD的两侧,且点A,D,B在同一水平直线上,则A,B之间的距离为()米.A.30+10 B.40 C.45 D.30+157.如图,在梯形ABCD中,已知AD∥BC,梯形各边长为:AB=6,BC=9,CD=4,DA=3,分别以AB、CD为直径作圆,则这两圆的位置关系是()A.内切 B.相交 C.外离 D.外切8.把5个大小、质地相同的球,分别标号为1,1,2,3,4,放入袋中,随机取出一个小球后不放回,再随机地取出一个小球,则第二次取出小球标号大于第一次取出小球标号的概率是()A. B. C. D.9.如图,正方形ABCD中,点O是对角线AC的中点,点P是线段AO上的动点(不与点A、O重合),连结PB,作PE⊥PB交CD于点E.以下结论:①△PBC≌△PDC;②∠PDE=∠PED;③PC﹣PA=CE.其中正确的有()个.A.0 B.1 C.2 D.310.将直线l1:y=x和直线l2:y=2x+1及x轴围成的三角形面积记为S1,直线l2:y=2x+1和直线l3:y=3x+2及x轴围成的三角形面积记为S2,…,以此类推,直线l n:y=nx+n﹣1和直线l n+1:y=(n+1)x+n及x轴围成的三角形面积记为S n,记W=S1+S2+…+S n,当n越来越大时,你猜想W最接近的常数是()A. B. C. D.二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.计算×+=.12.已知一个圆柱的侧面展开图是如图所示的矩形,长为6π,宽为4π,那么这个圆柱底面圆的半径为.13.不等式组的整数解是.14.如图,在边长为4的正三角形ABC中,BD=1,∠BAD=∠CDE,则AE的长为.15.已知一个直角三角形的一边长等于另一边长的2倍,那么这个直角三角形中较小锐角的正切值为.16.如图,点P是反比例函数y=(x>0)的图象上任意一点,PA⊥x轴于A,PD⊥y轴于点D,分别交反比例函数y=(x>0,0<k<6)的图象于点B,C.下列结论:①当k=3时,BC是△PAD的中位线;②0<k<6中的任何一个k值,都使得△PDA∽△PCB;③当四边形ABCD的面积等于2时,k<3;④当点P的坐标为(3,2)时,存在这样的k,使得将△PCB沿CB对折后,P点恰好落在OA上.其中正确结论的编号是.三.全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(1)求多项式ax2﹣a与多项式x2﹣2x+1的公因式;(2)已知关于x的分式方程=3的解是正数,求m的取值范围.18.xx年5月某日,浙江省11个城市的空气质量指数(AQI)如图所示:(1)这11个城市当天的空气质量指数的众数是;中位数是;(2)当0≤AQI≤50时,空气质量为优.若在这11个城市中随机抽取一个,求抽到的城市这一天空气质量为优的概率;(3)求杭州、宁波、嘉兴、温州、湖州五个城市当天的空气质量指数的平均数.19.如图,已知圆上两点A、B.(1)用直尺和圆规作以AB为底边的圆内接等腰三角形(不写画法,保留痕迹);(2)若已知圆的半径R=5,AB=8,求所作等腰三角形底边上的高.20.如图,在△ABC中,D是BC边上的一点,过A点作BC的平行线,截取AE=BD,连结EB,连结EC交AD于点F.(1)证明:当点F是AD的中点时,点D是BC的中点;(2)证明:当点D是AB的中垂线与BC的交点时,四边形AEBD是菱形.21.如图,已知Rt△ABC的两条直角边,AC=6,BC=8,点D是BC边上的点,过D作DE⊥AB 于E,点F是AC边上的动点,连结DF,EF,以DF、EF为邻边构造▱DFEG:(1)证明:△DBE∽△ABC;(2)设CD长为a(0<a<8),用含a的代数式表示DE;(3)若CD=4时,□DFEG的顶点G恰好落在BC所在直线上,求出此时AF的长.22.(1)已知二次函数y=x2﹣2bx+c的图象与x轴只有一个交点:①b、c的关系式为;②设直线y=9与该抛物线的交点为A、B,则|AB|=;③若该抛物线上有两个点C(m,n)、D(m+4,n),求|CD|及n的值.(2)若二次函数y=x2﹣2bx+c的图象与x轴有两个交点E(5,0)、F(k,0),且线段EF(含端点)上有若干个横坐标为整数的点,这些整数之和为18:①b、c的关系式为;②k的取值范围是;当k为整数时,b=.23.如图,在平面直角坐标系中,Rt△ABO的斜边OA在x轴上,点B在第一象限内,AO=4,∠BOA=30°.点C(t,0)是x轴正半轴上一动点(t>0且t≠4):(1)点B的坐标为;过点O、B、A的抛物线解析式为;(2)作△OBC的外接圆⊙P,当圆心P在(1)中抛物线上时,求点C和圆心P的坐标;(3)设△OBC的外接圆⊙P与y轴的另一交点为D,请将OD用含t的代数式表示出来,并求CD的最小值.xx年浙江省杭州市桐庐县三校共同体中考数学模拟试卷(四)参考答案与试题解析一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母在答题卡中相应的方框内涂黑.注意可以用多种不同的方法来选取正确答案.1.下列图形中,既是轴对称图形又是中心对称图形的是()A.正五边形B.正方形C.平行四边形D.正三角形【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,也是中心对称图形.故正确;C、不是轴对称图形,是中心对称图形.故错误;D、是轴对称图形,不是中心对称图形.故错误.故选B.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.下列各式中,计算结果为a6的是()A.a3+a3B.a7﹣a C.a2•a3 D.a12÷a6【考点】同底数幂的除法;合并同类项;同底数幂的乘法.【专题】计算题.【分析】A、原式合并得到结果,即可做出判断;B、原式不能合并,错误;C、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;D、原式利用同底数幂的除法法则计算得到结果,即可做出判断.【解答】解:A、原式=2a3,错误;B、原式不能合并,错误;C、原式=a5,错误;D、原式=a6,正确.故选D.【点评】此题考查了同底数幂的乘除法,以及合并同类项,熟练掌握运算法则是解本题的关键.3.用配方法解方程:x2﹣4x+1=0,下列配方正确的是()A.(x﹣2)2=3 B.(x+2)2﹣3=0 C.(x﹣2)2=0 D.x(x﹣4)=﹣1【考点】解一元二次方程-配方法.【分析】把常数项1移项后,应该在左右两边同时加上一次项系数﹣4的一半的平方.【解答】解:x2﹣4x+1=0,移项,得x2﹣4x=﹣1,配方,得x2﹣4x+4=﹣1+4,(x﹣2)2=3.故选:A.【点评】本题考查了用配方法解一元二次方程的应用,解此题的关键是能正确配方,即方程两边都加上一次项系数一半的平方(当二次项系数为1时).4.已知一组数据x1,x2,x3的平均数和方差分别为5和2,则数据x1+1,x2+1,x3+1的平均数和方差分别是()A.5和2 B.6和2 C.5和3 D.6和3【考点】方差;算术平均数.【专题】计算题.【分析】由于数据x1+1,x2+1,x3+1的每个数比原数据大1,则新数据的平均数比原数据的平均数大1;由于新数据的波动性没有变,所以新数据的方差与原数据的方差相同.【解答】解:∵数据x1,x2,x3的平均数为5,∴数据x1+1,x2+1,x3+1的平均数为6,∵数据x1,x2,x3的方差为2,∴数据x1+1,x2+1,x3+1的方差为2.故选B.【点评】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了算术平均数.5.若二次函数y=ax2﹣2x+a2﹣4(a为常数)的图象经过原点,则该图象的对称轴是直线()A.x=1或x=﹣1 B.x=1 C.x=或x=﹣D.x=【考点】二次函数的性质.【分析】根据图象可以知道图象经过点(0,0),因而把这个点代入记得到一个关于a的方程,就可以求出a的值,从而根据对称轴方程求得对称轴即可.【解答】解:把原点(0,0)代入抛物线解析式,得a2﹣4=0,解得a=±2,∴二次函数y=2x2﹣2x或二次函数y=﹣2x2﹣2x,∴对称轴为:x=﹣=±,故选C.【点评】本题考查了二次函数图象上的点的坐标,根据对于函数图象的描述能够理解函数的解析式的特点,是解决本题的关键.6.如图,从位于六和塔的观测点C测得两建筑物底部A,B的俯角分别为45°和60°.若此观测点离地面的高度CD为30米,A,B两点在CD的两侧,且点A,D,B在同一水平直线上,则A,B之间的距离为()米.A.30+10 B.40 C.45 D.30+15【考点】解直角三角形的应用-仰角俯角问题.【分析】在Rt△ACD和Rt△CDB中分别求出AD,BD的长度,然后根据AB=AD+BD即可求出AB的值.【解答】解:由题意得,∠ECA=45°,∠FCB=60°,∵EF∥AB,∴∠CAD=∠ECA=45°,∠CBD=∠FCB=60°,∵∠ACD=∠CAD=45°,在Rt△CDB中,tan∠CBD=,∴BD==10米,∵AD=CD=30米,∴AB=AD+BD=30+10米,故选A.【点评】本题考查了解直角三角形的应用,解答本题的关键是根据俯角构造直角三角形,并利用解直角三角形的知识解直角的三角形.7.如图,在梯形ABCD中,已知AD∥BC,梯形各边长为:AB=6,BC=9,CD=4,DA=3,分别以AB、CD为直径作圆,则这两圆的位置关系是()A.内切 B.相交 C.外离 D.外切【考点】圆与圆的位置关系.【分析】求得梯形的中位线为两圆的圆心距,AB和CD的一半为两圆的半径,利用半径之和和两圆的圆心距的大小关系求解.【解答】解:∵AD=3,BC=9,∴两圆的圆心距为=6,∵AB=6,CD=4,∴两圆的半径分别为3和2,∵2+3<6,∴两圆外离,故选C.【点评】本题考查了圆与圆的位置关系,解题的关键是分别求得两圆的圆心距和两圆的半径,难度不大.8.把5个大小、质地相同的球,分别标号为1,1,2,3,4,放入袋中,随机取出一个小球后不放回,再随机地取出一个小球,则第二次取出小球标号大于第一次取出小球标号的概率是()A. B. C. D.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与第二次取出小球标号大于第一次取出小球标号的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有20种等可能的结果,第二次取出小球标号大于第一次取出小球标号的有9种情况,∴第二次取出小球标号大于第一次取出小球标号的概率为:.故选D.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验;注意概率=所求情况数与总情况数之比.9.如图,正方形ABCD中,点O是对角线AC的中点,点P是线段AO上的动点(不与点A、O重合),连结PB,作PE⊥PB交CD于点E.以下结论:①△PBC≌△PDC;②∠PDE=∠PED;③PC﹣PA=CE.其中正确的有()个.A.0 B.1 C.2 D.3【考点】全等三角形的判定与性质;正方形的性质.【分析】由正方形的性质得出BC=DC,∠BCP=∠DCP,由SAS即可证明△PBC≌△PDC,得出①正确;由三角形全等得出∠PBC=∠PDE,PB=PD,再证出∠PBC=∠PED,得出∠PDE=∠PED,②正确;证出PD=PE,得出DF=EF,作PH⊥AD于H,PF⊥CD于F,由等腰直角三角形得出PA=EF,PC=CF,即可得出③正确.【解答】解:∵四边形ABCD是正方形,∴BC=DC,∠BCP=∠DCP,在△PBC和△PDC中,,∴△PBC≌△PDC(SAS)∴①正确;∴∠PBC=∠PDE,PB=PD,∵PB⊥PE,∠BCD=90°,∴∠PBC+∠PEC=360°﹣∠BPE﹣∠BCE=180°∵∠PEC+∠PED=180°,∴∠PBC=∠PED,∴∠PDE=∠PED,∴②正确;∴PD=PE,∵PF⊥CD,∴DF=EF;作PH⊥AD于点H,PF⊥CD于F,如图所示:则PA=PH=DF=EF,PC=CF,∴PC﹣PA=(CF﹣EF),即PC﹣PA=CE,∴③正确;正确的个数有3个;故选:D.【点评】本题考查了正方形的性质、全等三角形的判定与性质、等腰三角形的判定与性质、三角函数;本题有一定难度,特别是③中,需要作辅助线运用三角函数才能得出结果.10.将直线l1:y=x和直线l2:y=2x+1及x轴围成的三角形面积记为S1,直线l2:y=2x+1和直线l3:y=3x+2及x轴围成的三角形面积记为S2,…,以此类推,直线l n:y=nx+n﹣1和直线l n+1:y=(n+1)x+n及x轴围成的三角形面积记为S n,记W=S1+S2+…+S n,当n越来越大时,你猜想W最接近的常数是()A. B. C. D.【考点】两条直线相交或平行问题.【专题】规律型.【分析】根据题意列出方程组,解出x,y的值,可知无论k取何值,直线l1与l2的交点均为定点,再求出y=nx+n﹣1与x轴的交点和y=(n+1)x+n与x轴的交点坐标,再根据三角形面积公式求出S n,根据公式可求出S1、s2、s3、…,然后可求得w的表达式,从而可猜想出W最接近的常数的值.【解答】解:将y=nx+n﹣1和y=(n+1)x+n联立得:解得:∴无论k取何值,直线l n和直线l n+1均交于定点(﹣1,﹣1)k≠1时l1与l2的图象的示意图,png_iVBORw0KGgoAAAANSUhEUgAAAIgAAACOCAYAAADq40BPAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv 8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABBCSURBVHhe7Z1PiFxFHsdnBOPFfxglZhEF9SB6UONhsxAVREIw6 Rkjih5EPIiKMf7Zne54cGMWxU1Q0IPrdGcOccGDYMCLYDLtwYOHkLB4UbKZGSGsB0UvBg8KyUxtfavq169edf1ev+7M 9NSrVx9s0+91T09Pv0//6le/qldvQkTEysqKubd2qN8h/2tOTYiJiWmxKJbNIxl4F2v/TsZDXILgttqSLPe/Hn7HytJxMTHVHIuU 60lEgvR/k7OvsX5sNQWaPzwjmp3jvd8RqyZRCOI/OB5hVoVlJRmamPklsyv3u9bq964P9clBCh46evSo+PLLL81WMXiZFZl5 7ELzondZZHIU/LpKEZUgPPpbn8Ns/vHHH+Kqq64S1113nbhw4YLe6bBjxw7x8ccfmy0hFudnxXSzY7bipvKC2Ad+ZSU7wK 0GehkTOk+Q4Fs/JbezZkFz8OBBcdttt4mbbrpJtNttszfjt9/Oicsuu0z8+uuvZo8Qs62GmJ1fMFs2cTUvIJ4I4onpx2QiOdXKvulILC EISfXTTz+Ja6+9Vuzdu1c8++yz4vrrr8+JAD755BPx4IMPmi0t2s7JXaZ7q4VYFgtietIRsqi5qxDRNjE4PmgKJqb2mR1CdDqz+r 7hySefFK+99pp444031O25554Te/bsMY9q8Jz33nvPbOnXhHTdjpYNdDttcQbNGBOlbAaJE5pYcSWp5t8e38+rWgVA3aLdXd T35UE4eeo/MmL8STYhv/UE+eWXX1REOX36tHoecpKrr75anD37P7UNEIXsSJH9Up3ntPdNsYLg9csSiibRCNL7QM0d/KO KWRMN1Rw0m1oU4s9/2Srm5ubUfRIEvPPOOyopBV999ZW444471H0O+0AigjSb+ShFQLZbb71VfPPNN2aPQyhGOETbx CgWtSDtzr7ctxoHfsuWLWYrLwgOJJJWHMhXX31VvP7662p/Bp+IoqlZsBJlm48++kjcf//9ZstGyqvK9lrk0Ki+IJ5vXtaOL6ico NccWKB7S+zfv78nCKDH8I0/ceKEuq/JH0D7V1NlFVGk3Z43ezV4PSTA9mvZuQaV7ftZf2GiFITAwZrvWt1R5rmuIODbb79 VB7UM6PYiL6Fbu3vGPKJ5//33xcMPP2y2NLYg84f/JloeiUOg8oKs9H3LdJVTJagUtgskAnYTQ6A+8vzzz6v79OO9lxnwegrz HHSbN27cqITj2Jcr2xvK/I4xEFEOokXRian8JntDNpGXyifI1q1bxeeff262ymEfU4oQeN2nn35a3feBKKeE1huS9W9WbOJOUk viCoIC2uWXX57LU0aBCnFLS3xh5L/zH+aKeaGRBJG4OQi6v9PT02ZrdF555RXVEyoC+QvVZ0IkCSJxI8iuXbtUt/RiOHv2r BoERBSxsZPTC7J5afTK9prWdFhd3iSIxBYElVXfgR0W5B22dD5oVJjGiIhmo8HWU8ZNEkRiC/LZZ5+Je++9V923v+3DgB4 Lcg/0YIqSTrtsb/8mCJIiSEDYgjzzzDOqi3sxoOaB2gdHTzzGv5mpJEhQkCAos6M4RoN1o3Dy5EmxadOmEXtAWopmY0oJM moEW02SIBLqxaAUjnGYUcEBxXgLDQL64A66vbc1pQUJgSSIBHIcOHBAzQ2ZmZkxe4cHg4AYv1leHv3g9sr2hYW+8ZEE kVATg+jx9ddfm73Dc+edd6oZaDGRBJFAjpdeekn1PLiJy4NA7+euu+4yW/GQBJFAkO3bt/fGTNg8wdlP2zQZ6NixY2qb+/ki1 M8M/2NrThJEAkEwq/3TTz81e4aDnwxUAiWFzFkcOUJxJQkiwXTEDRs2qCrqINzogO7sDTfccFG5S8gkQSSPPPKIaiJGAQ Wx3bt3m634SIJIbr/9drFz506zpfHlEe4+lNJRWGMnIkdA7QVBgonmxa5/lE0ykbsUTQaKgdoKQhKg57F582Z1sIehzGSgGKh9 BMHZdA888MDQgmAy0Msvv1w62lSV2guCHggkGUaQH374gZ0MFJswtRbk1KlTqv4BOYYRBHlH/wlVcVILQbhvNaTAy doYqOMEcX8WOUc2GSh+ahNBfJJg7AQrC0EODPmXAZOBDh06ZLbip7ZNDPIInNqAbm7ZJgb1DtQ9fv/9d7MnfmoryAcff CAef/xxdb+sIBhv6XTqsfQUUVtBsMQD5m6g6SkjCCYD3XLLLSrixNZTKaJ2guDgYlDOXndskCD4mXvuuSe3kF1dqGUEcd cdgxxFSao7GShFkMjBumP2aQlFEQRNClYZgiR1pHaC4ICjCopTI4kiQS5qMlAERC8ImgO7SUDdw507ygmCyUCYJ4IE1Uc dmpraRRAMsrllck4QNEONRsNs1ZPaCYKxF4zB2PgEQU8n9slAZaiVINy6Yz5BsI1ktu7USpA333xTDe27QAa7m4v6CBb3j3 0yUBlqJQjWHaNzV2zcCIJVgXwi1ZHaCILJPdy6Y7YgeN5qLCATC7URBJf6ePTRR81WHlsQrA9yMSdwx0ZtBClad4wEcScD+eoc9r5UB4kEdFmvuOIK8fPPP5s9eUgQRJi33nrL7PVDUtRBDlALQTCOsm3bNrPVD+RAUlq3yUBlqIUgmGT87rvvmq1+ 0MVFSb1oXbG6Ep0gbug/f/68igxF645BoGuuuUYN5CXyRCWILy/AWfeD1h278cYb+67GkNBE38Rg3THcOJCfIMKUndVe N6IXpGjdMTQpGPrH5GUkqol+ohYEeQeiA7fq4JEjR9SqytTNTfQTrSDIR9Bz4ZZnQPSgyUC2IHWpb5Ql6giC2gc3lxRdWrq 6ZYogPNEKgmvUYnDOXXcMEQIDdmh6aDJQEoSncoKgAaBGoKgxwLgLxl98TQbK6fbAXRKEp8IRpHi5awiAEVyXc+fO 9U0GSoLwVC+ClMgh0YSgefHN6cBQPob0bZIgPJUQRF2ZelJfk5ZuRdd5w6wxzB5z4SYDJUF4whfERIyZ6UyKxe6/lCTd79 VmHxiZ9Q3bYz9Oe3BJgvAELwiSTFxb1r7438piVwnSdzFiA3oo7oWMi1YGSoLwBCHIoLQCF/9T15Y1T0STw11rltYdc8Ep DJwESZA86ktpkr11F2RZHXX9f45uR1/8j25c5AA4a85uRvCHot6BtVC5tdiTIDzBRhB7HyIGSUFXiuQkoXXHbFAPKZoMlA ThCT4HubB4TExMt8wWxFkU01IQXErUrYXQxYztiT90mTDf6Q5EXQRxi4buto8ABclfOwURo3n4C7MlH1o6riKIr5trrztGY OkGms3OfSApgvCEJ4hzDO3mBdFjSuUh/uvKYtUgWncMYKAOi7/4phLastRJkDJRwyYYQdy3jZ4LIsWkEoJul7BXg6R1x+ xEFPlImZWB6hxBcJ3fIoLPQQZB3wh33TEsOLdlyxazVUxdBHGjB2pCiLD43L777juzV0PPrbwgxBNPPKFyEGBPBgL+oGq KbvLGCdL3c/4XWlfoLfkLBf3NMKCDTz+BHh6S+xdeeEFNk7CJQhAIYa87BlHsaOIn+/BGiSDDtuXjI5/k2xS9Y4iBdevxOdI XDUzQh1Pl21NPPdW7KBAKZRjJxbiL+zzuhp7Offfd531s/4Hs3wP79RW63ees/+3vnn16zRO6r967vOG5B8zzfX8LosjNN9+s pkSgnhSFIBi5pQOMyIGZ7Pbj+oP6h7mvPxT6cPAvBMGNnk83kqNKNy2BuS//Nnt7v/kMim62IN1uN44mhtYdQ9KFAbnFR X4qgK9poA8ng/ITPlyHhO8tDnzbzhPsJsauOldeEHvdMTQvo1xkMC+IP7Ej3AQvBEZ+L+YHIcSVV16pBIkuScW8D+QbmA SEPxKX+RiW/giSsXD8w1wdBqPIweanQ2J3c93pEUTlBcEi+5hB9uKLL3onA4Glbjs/uGcdYNwlQXBfNSuG2VZDSpFVbVfE GVXJtacehEL+7Sz3BjX1mJUespicnOwb5HSXBHWptCCIGuixLCwsqNyDwqP6sMwnRuV5bvQXz/NFECVHY8b65LUkusLr L/WHAtVEVpa+UJVnNZ5lRAG9P6kElRPETjIxa/2xxx5TeQd6Kr1H1B19ANutphruX+o96h7Y5T5BqMzvSoVXyAQZ7oNeL zCW9ddO/8qOZal0BMGZcW+//bZKUtGeuuCb054/LnZN7JSNg0smiitI0Yw1HboblnDrTMHbWJaPzXdauegxLJUVBINyaF4e emiHdzIQpgVgmoCaHiDDLFf5RDimGgmgJombNW/LE2QEoTcl/8Xf0mw0WNnLUBlB3AN89OhRcffdd6sLI/smAzWbetQX ggz6gOwIsmzmm/hyFq7pCZV2a59URAp/ic6ZUPjqAYFKdMcqG0GQd+Aackf+3b+0JWXwdOvvdeTzEEQQVB11PPFHkBX xfdaDwXYgfV3fu6C/n/6G1rSeNjGK2JUUBINzqHnQRQZ74FuBpsVqc1HHoO3eh+l8qm4Oonow1rwTmsUWdNOi5O5H7buI N1xJQbBiECYHuZOBKN+w6c41RcuTpOnPTEcSVxCAXENNUJJi4HY8d5IWDobbG4qTSgqCbisGk2x0UUsfVAql+iBbzQy DT5CEpnKCYDmpSy+9VMzOzpo9NuW/1XbUTYLwVE4QjL1s2LDBOxF51LY2CcJTKUFoWYfdu3ebPdKJEr0J9xnYThGk HJUSBIvSYUVkOznNBCloXgY4lAThqYwgKKVDDkQQ7zm2tgQDhFDgOeZ5SRCeygiCA4hVC9GD8YFjTQUidS4NyusoN Tc7ji/9kSYJwlMJQWhloO3bt4u5uTmzNwP1D0iBriw1OVTc6hXJCnKVJAhPJQTBRKC9e/eq5gWy2AebSuO+OgdqI9ygm61 LEoQneEGwMtDGjRvVmXK+dcdo+P2MOG/2ZKCKWmb8IQnCE4wgXBOAQTkcPMw7PfTPg2avBtFjejJrRhTyZdQr+V/O SxKEJ+gIgom0mEqItU19645RnoFmpLQPnicmQXiCFgQX+cFkoBMnTqhzbV0yQfR8MffYD5aGH6xLaIIVBFIgaqB62lt3zDn ilKD6ptRBHm+CmiLIUAQriL0yEM7doDP1XXSSeklOBjXzCzPSS5IE4QlSEJw0jCYFA3K07hh3USBAUwH1DSc3HZZ7+5 +fDx7ZBJskCE9QglBPBisDYc4pQA6CNU7XkiQIT3ARBE0JBCFwWiBWD7IpqoqOQhKEJ8gmhs6QwwCdu+6YzWqJkgTh CUIQ7kAjctBlw1Y7atgkQXiCjCAE1jy1l0NaK5IgPMEKgh4MBudGWc5hWJIgPMEKgq6unazapCR1fAQliH3gsdrNuA5aEoRn3QWxpbDv07pj4yAJwhNkE4Pru+Ck7HGRBOEJJoLgX7pP646NiyQIT5ARhNYdGxdJEJ7gBPnxxx9V99Z75twakQThCUIQ OznFumP2ZdPHQRKEJ8gmZtwkQXiSIJIkCE8SRJIE4UmCSJIgPEkQSRKEJwkiSYLwJEEkSRCeJIgkCcKTBJEkQXiSIJIkCE 8SRJIE4UmCSDhB7DGiupIEkUAOvZh/wiUJIklNDE8SRJIE4UmCSJIgHEL8H6zbXb40OWClAAAAAElFTkSuQmCC6I+B5 LyY572R∴S n=S△ABC===,当n=1时,结论同样成立.∴w=s1+s2+s3+…+s n=+…+)=(1﹣+﹣+…+)=(1﹣)=当n越来越大时,越来越接近与1.∴越来越接近于∴w越来越接近于.【点评】此题考查了一次函数的综合题;解题的关键是一次函数的图象与两坐标轴的交点坐标特点,与x轴的交点的纵坐标为0,与y轴的交点的横坐标为0.二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.计算×+=4.【考点】实数的运算.【分析】利用二次根式的性质以及三次根式的性质化简求出即可.【解答】解:×+=﹣2=6﹣2=4.故答案为:4.【点评】此题主要考查了二次根式的性质和三次根式的性质等知识,正确化简各数是解题关键.12.已知一个圆柱的侧面展开图是如图所示的矩形,长为6π,宽为4π,那么这个圆柱底面圆的半径为2或3.【考点】几何体的展开图.【分析】分底面周长为4π和6π两种情况讨论,求得底面半径.【解答】解:①底面周长为4π时,圆柱底面圆的半径为4π÷π÷2=2;②底面周长为6π时,圆柱底面圆的半径为6π÷π÷2=1.故答案为:2或3.【点评】考查了圆柱的侧面展开图,注意分长为底面周长和宽为底面周长两种情况讨论求解.13.不等式组的整数解是﹣1、0、1.【考点】一元一次不等式组的整数解.【分析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其整数解即可.【解答】解:,解①得:x>﹣,解②得:x<.则不等式组的解集是:﹣,则不等式组的整数解是:﹣1、0、1.故答案是:﹣1、0、1.【点评】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.14.如图,在边长为4的正三角形ABC中,BD=1,∠BAD=∠CDE,则AE的长为.【考点】相似三角形的判定与性质;等边三角形的性质.【专题】计算题.【分析】先根据等边三角形的性质得∠B=∠C=60°,AB=BC=AC=4,则CD=BC﹣BD=3,再根据有两组角对应相等的两三角形相似可判断△ABD∽△DCE,利用相似比计算出CE=,然后利用AE=AC﹣CE进行计算即可.【解答】解:∵△ABC为边长为4的等边三角形,∴∠B=∠C=60°,AB=BC=AC=4,∴CD=BC﹣BD=4﹣1=3,∵∠BAD=∠CDE,∠B=∠C,∴△ABD∽△DCE,∴=,即=,∴CE=,∴AE=AC﹣CE=4﹣=.故答案为.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;在利用三角形相似的性质时,通过相似比计算相应边的长.15.已知一个直角三角形的一边长等于另一边长的2倍,那么这个直角三角形中较小锐角的正切值为.【考点】锐角三角函数的定义;勾股定理.【专题】分类讨论.【分析】根据题意,分两种情况:(1)当直角三角形的斜边等于一条直角边的长度的2倍时;(2)当直角三角形的一条直角边的长度等于另一条直角边的长度的2倍时;然后根据一个角的正切值的求法,求出这个直角三角形中较小锐角的正切值为多少即可.【解答】解:(1)当直角三角形的斜边等于一条直角边的长度的2倍时,设直角三角形的斜边等于2,则一条直角边的长度等于1,∴另一条直角边的长度是:,∴这个直角三角形中较小锐角的正切值为:1÷.(2)当直角三角形的一条直角边的长度等于另一条直角边的长度的2倍时,设一条直角边的长度等于1,则一条直角边的长度等于2,∴这个直角三角形中较小锐角的正切值为:1÷2=.故答案为:.【点评】(1)此题主要考查了锐角三角函数的定义,要熟练掌握,解答此题的关键是要明确:锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.(2)此题还考查了勾股定理的应用,以及分类讨论思想的应用,要熟练掌握.16.如图,点P是反比例函数y=(x>0)的图象上任意一点,PA⊥x轴于A,PD⊥y轴于点D,分别交反比例函数y=(x>0,0<k<6)的图象于点B,C.下列结论:①当k=3时,BC是△PAD的中位线;②0<k<6中的任何一个k值,都使得△PDA∽△PCB;③当四边形ABCD的面积等于2时,k<3;④当点P的坐标为(3,2)时,存在这样的k,使得将△PCB沿CB对折后,P点恰好落在OA上.其中正确结论的编号是①②③④.【考点】反比例函数综合题.【分析】①设点P的坐标为(m,),然后再求得点C和点B的坐标,从而得出DC=CP,PB=BA;②按照①的方法先求得点C和点B的坐标,从而得出;③先求得△PDA的面积,然后再求得△PCB的面积,根据相似三角形的面积等于相似比的平方,求得△PDA与△PCB的相似比,从而可求得k值;④先求得AD的解析式,然后可求得EP的解析式,从而可求得点E的坐标,然后再求得AB、BE的长度,最后在直角三角形ABE中由勾股定理可求得k的值.【解答】解:①设点p的坐标为(m,),则PD=m,PA=,将x=m代入y=得:y=,∴AB=PA,将y=代入y=得:x=,∴DC=PD,∴当k=3时,BC是△PAD的中位线,故①正确;②设点p的坐标为(m,),PD=m,PA=,将x=m代入y=得:y=,∴PB=﹣=,将y=代入y=得:x=,∴PC=m﹣=,∴=,=,∴,∴△PDA∽△PCB,故②正确;③∵点P的坐标为(3,2),∴△PDA的面积=3,∵四边形ABCD的面积等于2,∴△PBC的面积=1,∴S△PBC:S△PDA=1:3,∴△PBC与△PDA的相似比为:3,∴,解得:k=6﹣2,∵6﹣3<3,∴k<3,故③正确;④如下图所示:∵点P的坐标为(3,2),∴D(0,2)、A(3,0),∴直线AD的解析式为y=+2,∵直线PE⊥AD,∴设直线PE的解析式为y=x+b,将P(3,2)代入得:b=﹣,∴直线PE的解析式为y=x﹣,令y=0得:x=,∴AE=.将x=3代入y=得:y=,∴AB=,PB=2﹣,由轴对称的性质可知:BE=PB=2﹣,在直角△ABE中,由勾股定理得:AE2+AB2=BE2即:,解得:k=,故④正确.故答案为:①②③④.【点评】本题主要考查的是反比例函数,一次函数、勾股定理以及轴对称图形的性质的综合应用,难度较大,熟练掌握相关知识是解题的关键.三.全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(1)求多项式ax2﹣a与多项式x2﹣2x+1的公因式;(2)已知关于x的分式方程=3的解是正数,求m的取值范围.【考点】分式方程的解;公因式.【专题】计算题.【分析】(1)两多项式分解因式后,找出公因式即可;(2)分式方程去分母转化为整式方程,求出整式方程的解表示出解,根据解为正数求出m 的范围即可.【解答】解:(1)先分解因式:ax2﹣a=a(x+1)(x﹣1),x2﹣2x+1=(x﹣1)2,∴公因式是x﹣1;(2)去分母得:2x+m=3x﹣3,解得:x=m+3,根据题意得:m+3>0,∴m>﹣3,∵x=m+3=1是增根,∴m=﹣2时无解,∴m>﹣3且m≠﹣2.【点评】此题考查了分式方程的解,以及公因式,需注意在任何时候都要考虑分母不为0.18.xx年5月某日,浙江省11个城市的空气质量指数(AQI)如图所示:(1)这11个城市当天的空气质量指数的众数是60;中位数是55;(2)当0≤AQI≤50时,空气质量为优.若在这11个城市中随机抽取一个,求抽到的城市这一天空气质量为优的概率;(3)求杭州、宁波、嘉兴、温州、湖州五个城市当天的空气质量指数的平均数.【考点】众数;条形统计图;算术平均数;中位数;概率公式.【分析】(1)根据众数是一组数据中出现次数最多的数据叫做众数;中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数可得答案;(2)从条形统计图中找出这11个城市当天的空气质量为优的城市个数,再除以城市总数即可;(3)根据平均数的计算方法进行计算即可.【解答】解:(1)将11个数据按从小到大的顺序排列为:37,42,43,49,52,55,60,60,63,75,80,60出现了两次,次数最多,所以众数是60,第6个数是55,所以中位数是55.故答案为60,55;(2)∵当0≤AQI≤50时,空气质量为优,由图可知,这11个城市中当天的空气质量为优的有4个,∴若在这11个城市中随机抽取一个,抽到的城市这一天空气质量为优的概率为;(3)杭州、宁波、嘉兴、温州、湖州五个城市当天的空气质量指数的平均数为:(75+63+60+80+52)÷5=66.【点评】此题主要考查了条形统计图,众数、中位数、平均数的定义以及概率公式,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.概率=所求情况数与总情况数之比.19.如图,已知圆上两点A、B.(1)用直尺和圆规作以AB为底边的圆内接等腰三角形(不写画法,保留痕迹);(2)若已知圆的半径R=5,AB=8,求所作等腰三角形底边上的高.【考点】作图—复杂作图;等腰三角形的性质;垂径定理.【分析】(1)作AB的垂直平分线与圆相交于一点,分别与A、B连接即可得到以AB为底边的圆内接等腰三角形;(2)连结OA,先根据垂径定理得到AD的长,再根据勾股定理,以及线段的和差关系即可求解.【解答】解:(1)如图所示:△ABC即为所求.(2)连结OA,∵圆的半径R=5,AB=8,∴OA=OC=5,AD=4,在△AOD中,OD==3,∴CD=OC+OD=5+3=8.故所作等腰三角形底边上的高是8.【点评】本题考查了复杂作图,主要利用了线段垂直平分线的作法,等腰三角形的性质,以及垂径定理.20.如图,在△ABC中,D是BC边上的一点,过A点作BC的平行线,截取AE=BD,连结EB,连结EC交AD于点F.(1)证明:当点F是AD的中点时,点D是BC的中点;(2)证明:当点D是AB的中垂线与BC的交点时,四边形AEBD是菱形.【考点】菱形的判定;全等三角形的判定与性质.【分析】(1)证得△EAF≌△CDF后即可得到DC=AE,然后根据AE=BD得到BD=DC;(2)首先利用一组对边相等且平行的四边形为平行四边形证得平行四边形,然后根据中垂线的性质得到BD=AD,从而利用邻边相等的平行四边形是菱形进行判定即可.【解答】证明:(1)∵AE∥BC,∴∠EAF=∠CDF,又∵F是AD的中点,∴AF=DF,∴∴△EAF≌△CDF,∴DC=AE,∵AE=BD,∴BD=DC;(2)∵AE=BD且AE∥BD,∴四边形AEBD是平行四边形,又∵点D是AB的中垂线与BC的交点,则有BD=AD,∴平行四边形AEBD一组邻边相等,∴四边形AEBD是菱形.【点评】本题考查了菱形的判定及全等三角形的判定与性质,解题的关键是了解菱形的几种判定方法,难度不大.21.如图,已知Rt△ABC的两条直角边,AC=6,BC=8,点D是BC边上的点,过D作DE⊥AB 于E,点F是AC边上的动点,连结DF,EF,以DF、EF为邻边构造▱DFEG:(1)证明:△DBE∽△ABC;(2)设CD长为a(0<a<8),用含a的代数式表示DE;(3)若CD=4时,□DFEG的顶点G恰好落在BC所在直线上,求出此时AF的长.【考点】相似形综合题.【分析】(1)由DE⊥AB,得到∠BED=90°,于是得到∠BED=∠C=90°,由于∠B=∠B,即可证得△DBE∽△ABC;(2)解:在直角三角形ABC中,根据勾股定理求得AB==10,由△DBE∽△ABC,得到,解方程,即可得到结果;(3)如图,顶点G落在BC所在直线上,由四边形DFEG是平行四边形,得到GD∥EF,证得△ABC∽△AFE,得到,代入数值即可得到结果.【解答】(1)证明:∵DE⊥AB,∴∠BED=90°,∴∠BED=∠C=90°,∵∠B=∠B,∴△DBE∽△ABC;(2)解:在直角三角形ABC中,∵AC=6,BC=8,∴AB==10,由(1)知,△DBE∽△ABC,∴,即,∴DE=(3)如图,顶点G落在BC所在直线上,∵四边形DFEG是平行四边形,∴GD∥EF,∴△ABC∽△AFE,∴,∵CD=a=4,∴DE==,∵BC=8,∴BD=4,∴BE==,∴AE=10﹣=,∴AF==.【点评】本题考查了相似三角形的判定和性质,勾股定理,平行四边形的性质,熟练掌握定理是解题的关键.22.(1)已知二次函数y=x2﹣2bx+c的图象与x轴只有一个交点:①b、c的关系式为b2=c;②设直线y=9与该抛物线的交点为A、B,则|AB|=6;③若该抛物线上有两个点C(m,n)、D(m+4,n),求|CD|及n的值.(2)若二次函数y=x2﹣2bx+c的图象与x轴有两个交点E(5,0)、F(k,0),且线段EF(含端点)上有若干个横坐标为整数的点,这些整数之和为18:①b、c的关系式为c=10b﹣25;②k的取值范围是7≤k<8;当k为整数时,b=6.【考点】抛物线与x轴的交点;二次函数图象上点的坐标特征.【分析】(1)①根据二次函数的图象与x轴只有一个交点,则(2b)2﹣4c=0,由此可得到b、c 应满足关系;②把y=9代入y=x2﹣2bx+bc,得到方程x2﹣2bx+bc﹣9=0,根据根与系数的关系和①的结论即可求得;③把A(m,n)、B(m+4,n)分别代入抛物线的解析式,再根据①的结论即可求出n的值;(2)①因为y=x2﹣2bx+c图象与x轴交于E(5,0),即可得到25﹣10b+c=0,所以c=10b ﹣25;②根据①的距离进而得到k=2b﹣5,再根据E、F之间的整数和为18,即可求出k的取值范围和b的值.【解答】解:(1)①∵二次函数y=x2﹣2bx+c的图象与x轴只有一个交点,∴(2b)2﹣4c=0,∴b2=c;故答案为b2=c;②把y=9代入y=x2﹣2bx+c得,9=x2﹣2bx+c,∴x2﹣2bx+c﹣9=0,∵x1+x2=2b,x1x2=c﹣9,。
浙江省2020年小学数学毕业模拟考试模拟卷一、选择题1.根据a b=c d,下面不能组成比例的是( )。
A. a:c和b:dB. d:a和b:cC. b:d和a:cD. a:d和c:b2.如图,下面说法错误的是( )。
A. 阴影部分的面积占整个图形的37.5%B. 阴影部分的面积是空白部分的C. 阴影部分的面积比空白部分小40%D. 空白部分的面积比阴影部分大3.一根钢管,裁去了,还剩下米,截去的和剩下的相比,( )。
A. 截去的长B. 截去的短C. 一样长D. 无法比较4.如果★代表一个相同的非零自然数,那么下列各式中,得数最大的是( )。
A. ★÷(1+ )B. ★ (1+ )C. ★ (1一)D. ★÷(1一)5.钟面上的时刻是1:20,这时分针和时针形成较小的夹角是( )。
A. 锐角B. 直角C. 钝角D. 不能确定6.一根5米长的绳子,小明不折叠连续剪了7次,平均分成若干份,每份绳子长是( )A. 米B. 总绳长的C. 米D.7.把3(x+8)错写成3x+8,结果比原来( )。
A. 多3B. 少3C. 多16D. 少168.下面x和y成正比例关系的是( )。
A. B. 3x=4yC. y=x-3D.9.右图中,阴影部分面积与平行四边形面积的比是( )。
A. 3:5B. 3:10C. 2:10D. 3:710.右面立体图形是由棱长为1厘米的4个小正方体搭拼成的,它的表面积是( )A. 18平方厘米B. 15平方厘米C. 9平方厘米D. 4平方厘米二、填空题11.如果张宏向东走10米记作10米,那么李明走了-15米表示________,张宏和李明相距________米。
12.一个小数的整数部分是两位数,最高位上的数字是10以内最大的质数,小数部分的千分位是5,百分位是最小的奇数,其余各位都是0,这个数写作________。
用四舍五人法省略百分位后面的尾数求近似数约是________。
2020年山西省百校大联考中考数学模拟试卷(四)一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.(3分)计算(﹣1)×(﹣2)的结果是()A.﹣2B.2C.1D.2.(3分)下列计算正确的是()A.(﹣3a3)2=9a9B.(4a4b2﹣6a3b+2ab)÷2ab=2a3b﹣3a2C.(2x3y2)2×(﹣3x)=﹣12x6y4D.(﹣3a3b2)3×(﹣b)=9a9b73.(3分)在《九章算术注》中首创的“割圆术”,利用圆的内接正多边形来确定圆周率,开创了中国数学发展史上圆周率研究的新纪元:首先确定圆内接正多边形的面积小于圆的面积,将正多边形的边数屡次加倍,边数越多则正多边形的面积越接近圆的面积.这位数学家是()A.杨辉B.秦九韶C.刘徽D.祖暅4.(3分)央行3月11日公布的2月金融数据和社融数据显示,当月新增人民币贷款9057亿元,社融增量为8554亿元.把数据9057亿元用科学记数法表示为()A.9.057×1011元B.90.57×1011元C.0.9057×1012元D.9.057×109元5.(3分)若一个多边形的每一个外角都是40°,则这个多边形是()A.七边形B.八边形C.九边形D.十边形6.(3分)下列分式运算正确的是()A.=B.C.D.7.(3分)方程组的解是()A.B.C.D.8.(3分)小明用若干个相同的小正方体搭成的一个几何体的三视图如图所示,由此可知,搭成这个几何体的小正方体最多有()A.13个B.12个C.11个D.10个9.(3分)如图,把一个含45°角的直角三角板OAB的斜边OA放在x轴的正半轴上,点O与坐标原点重合,OA=6,把三角板OAB绕坐标原点O按顺时针方向旋转75°,使点B的对应点B'恰好落在反比例函数y=(k≠0)的图象上,由此可知,k的值为()A.﹣9B.﹣3C.﹣D.﹣10.(3分)如图,扇形OAB的半径为4,折叠扇形OAB使点O落在上的点O'处,展开后延长折痕交OB的延长线于点C,且BC=OB,过点C作扇形OAB的切线,切点为D,连接AO',则图中阴影部分的面积是()A.4B.4﹣πC.π+3D.6﹣π二、填空题(本大题共5个小题,每小题3分,共15分)11.(3分)计算:(2﹣3)(2+3)的结果是.12.(3分)在一个不透明的袋子里装有2个红球、1个白球和1个绿球,这些球除颜色外,其余完全相同,把球摇匀后,从中随机一次摸出两个球,则摸出的两球颜色不同的概率为.13.(3分)如图是两个一次函数y1=mx+n和y2=kx+b在同一平面直角坐标系中的图象,则关于x的不等式kx+b>mx+n的解集是.14.(3分)某眼镜公司积极响应国家号召,在技术顾问和市场监管局的帮助下,开始生产医用护目镜.第一周生产a个,工人在技术员的指导下,技术越来越熟练,第二周比第一周增长10%,第三周比前两周生产的总数少20%.用含a的代数式表示该公司这三周共生产医用护目镜个.15.(3分)如图,在△ABC中,∠BAC=90°,AB=8,AC=15,AD平分∠BAC,交BC 于点D.以点C为圆心,以任意长为半径作弧,分别与边CA和CB相交,然后再分别以这两个交点为圆心,大于交点间距离的一半为半径作弧,两弧交于点F,连接CF并延长交AD于点O,过点O作AC的平行线交BC于点E,则OE的长为.三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(10分)(1)计算:(﹣)﹣2+|3﹣|﹣4cos30°﹣(π﹣3.14)0;(2)解不等式组,并把解集在数轴上表示出来.17.(7分)如图,在线段AD上有两点E,F,且AE=DF,过点E,F分别作AD的垂线BE和CF,连接AB,CD,BF,CE,且AB∥CD.求证:四边形BECF是平行四边形.18.(9分)“同享一片蓝天,共建美好家园”,每年的3月12日是我国的义务植树节,受疫情的影响,今年不能去植树,某校政教处鼓励学生们“网上植树”(活动时间为3月12日~3月15日).学校调查发现,有90%的学生参与了此次活动.从参与活动的学生中随机调查30名,所植的棵数情况如下:(单位:棵)1 12 4 23 2 3 34 3 3 4 3 35 3 4 3 4 4 5 4 5 3 4 3 4 5 6对以上数据进行整理、描述和分析,并绘制出如下条形统计图(不完整).(1)请补全条形统计图;(2)这30名学生网上植树数量的中位数是棵,众数是棵;(3)统计显示,这30名学生中有18名是在3月12日当天参与了“网上植树”,若该校有3000名学生,由此估计该校有多少名学生在3月12日当天参与了“网上植树”?活动期间全校学生“网上植树”共多少棵?19.(7分)请阅读下列材料,并完成相应的任务.小明想在平面直角坐标系中画一个边长为2的正六边形ABCDEF,他采用了如下的操作步骤:①点A与坐标原点重合,点B在x轴的正半轴上且坐标为(2,0);②分别以点A,B为圆心,AB长为半径作弧,两弧交于点M;③以点M为圆心,MA长为半径作圆;④以AB的长为半径,在⊙M上顺次截取====;⑤顺次连接BC,CD,DE,EF,F A,得到正六边形ABCDEF.任务一:(1)请依据上述作法证明六边形ABCDEF是正六边形;任务二:(2)请你把小明作出的正六边形ABCDEF沿x轴的正半轴无滑动地转动,当相邻的顶点落在x轴上时,记为转动1次,直接写出转动10次时,点B所在位置的坐标.20.(7分)迎宾桥是太原市第十座横跨汾河的大桥,这座大桥整体桥型以“龙腾云霄”为设计主题,诠释龙城太原几千年的历史文化,彰显太原近年来经济腾飞的时代特点.某数学兴趣小组的同学利用双休日测量迎宾桥桥塔高出桥面的高度.如图2,在桥面上选取两点A和B,已知点A,B及桥塔CD(垂直于桥面)在同一平面内,且AB=16.98m,在点A和点B处测得桥塔最高点C的仰角分别为45°和50°.根据测量小组提供的数据,求CD的高度.(结果精确到1m,参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.20)21.(10分)今年春节期间,我国人民万众一心,共同抗击疫情.某蔬菜基地要把一定量的蔬菜租车送往疫情严重的某地,这些蔬菜中1.4吨已经打包好,其余需要立即打包.工作人员第1小时打包15吨,技术熟练后平均每小时打包速度的增长率相同,第3小时打包21.6吨,恰好3小时完成打包任务.在运送蔬菜时,有两种车型选择,甲种车可装6吨蔬菜,乙种车可装5吨蔬菜.(1)求工作人员平均每小时打包速度的增长率和共运送的蔬菜是多少吨;(2)该基地所租车辆不超过10辆,则至少需要租甲种车多少辆?22.(13分)综合与探究问题情境在综合与实践课上,老师让同学们利用含30°角的直角三角板和一张正方形纸片进行探究活动.如图1,把正方形ABCD的顶点A放在Rt△EFG斜边EG的中点处,正方形的边AB经过直角顶点F,正方形的边AD与直角边FG交于点Q.探究发现(1)创新小组发现线段EF,GQ及FQ之间的数量关系为EF2+GQ2=FQ2.请加以证明;引申探究(2)如图2,勤奋小组把正方形ABCD绕点A逆时针旋转,边AB与边EF交于点P且不与点E,F重合,把直角三角形的两直角边分成四条线段EP,PF,FQ,GQ,发现这四条线段之间的数量关系是EP2+GQ2=FQ2+FP2,请加以证明;探究拓广(3)奇艺小组的同学受勤奋小组同学的启发继续把正方形ABCD绕着点A逆时针旋转,边BA和DA的延长线与两直角边仍交于点P,Q两点,按题意完善图3,并直接写出EP,PF,FQ,GQ之间的数量关系.23.(12分)综合与实践如图,抛物线y=与x轴交于点A,B(点A在点B的左侧),交y轴于点C.点D从点A出发以每秒1个单位长度的速度向点B运动,点E同时从点B出发以相同的速度向点C运动,设运动的时间为t秒.(1)求点A,B,C的坐标;(2)求t为何值时,△BDE是等腰三角形;(3)在点D和点E的运动过程中,是否存在直线DE将△BOC的面积分成1:4两份,若存在,直接写出t的值;若不存在,请说明理由.2020年山西省百校大联考中考数学模拟试卷(四)参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.(3分)计算(﹣1)×(﹣2)的结果是()A.﹣2B.2C.1D.【分析】根据有理数的乘法法则计算即可.【解答】解:(﹣1)×(﹣2)=1×2=2.故选:B.2.(3分)下列计算正确的是()A.(﹣3a3)2=9a9B.(4a4b2﹣6a3b+2ab)÷2ab=2a3b﹣3a2C.(2x3y2)2×(﹣3x)=﹣12x6y4D.(﹣3a3b2)3×(﹣b)=9a9b7【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=9a6,不符合题意;B、原式=2a3b﹣3a2+1,不符合题意;C、原式=(4x6y4)×(﹣3x)=﹣12x7y4,不符合题意;D、原式=(﹣27a9b6)×(﹣b)=9a9b7,符合题意.故选:D.3.(3分)在《九章算术注》中首创的“割圆术”,利用圆的内接正多边形来确定圆周率,开创了中国数学发展史上圆周率研究的新纪元:首先确定圆内接正多边形的面积小于圆的面积,将正多边形的边数屡次加倍,边数越多则正多边形的面积越接近圆的面积.这位数学家是()A.杨辉B.秦九韶C.刘徽D.祖暅【分析】根据公元263年左右,我国魏晋时期的数学家刘徽首创割圆术,为计算圆周率建立了严密的理论和完善的算法,所谓割圆术,就是不断倍增圆内接正多边形的边数求出圆周率近似值的方法.解答即可.【解答】解:公元263年左右,我国魏晋时期的数学家刘徽首创割圆术,为计算圆周率建立了严密的理论和完善的算法,所谓割圆术,就是不断倍增圆内接正多边形的边数求出圆周率近似值的方法.故选:C.4.(3分)央行3月11日公布的2月金融数据和社融数据显示,当月新增人民币贷款9057亿元,社融增量为8554亿元.把数据9057亿元用科学记数法表示为()A.9.057×1011元B.90.57×1011元C.0.9057×1012元D.9.057×109元【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:9057亿元=905700000000=9.057×1011元,故选:A.5.(3分)若一个多边形的每一个外角都是40°,则这个多边形是()A.七边形B.八边形C.九边形D.十边形【分析】根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【解答】解:360÷40=9,即这个多边形的边数是9,故选:C.6.(3分)下列分式运算正确的是()A.=B.C.D.【分析】利用最简分式的定义对A、D进行判断;利用通分可对B进行判断;利用约分可对C进行判断.【解答】解:A、不能化简,所以A选项错误;B、原式==,所以B选项错误;C、原式==,所以C选项正确;D、不能化简,所以D选项错误.故选:C.7.(3分)方程组的解是()A.B.C.D.【分析】①×3+②×2,消去未知数y,求出未知数x,再把x的值代入①求出y的值即可.【解答】解:,①×3+②×2,得25x=50,解得x=2,把x=2代入①,得6+2y=8,解得y=1,所以方程组的解为.故选:B.8.(3分)小明用若干个相同的小正方体搭成的一个几何体的三视图如图所示,由此可知,搭成这个几何体的小正方体最多有()A.13个B.12个C.11个D.10个【分析】在俯视图对应的位置上,标出该位置上最多可摆放小正方体的个数,进而得出答案.【解答】解:在俯视图上标出的各个位置上最多可摆放的小正方体的个数,如图所示因此最多摆放的小正方体的个数为3+2+3+2+2+1=13个,故选:A.9.(3分)如图,把一个含45°角的直角三角板OAB的斜边OA放在x轴的正半轴上,点O与坐标原点重合,OA=6,把三角板OAB绕坐标原点O按顺时针方向旋转75°,使点B的对应点B'恰好落在反比例函数y=(k≠0)的图象上,由此可知,k的值为()A.﹣9B.﹣3C.﹣D.﹣【分析】在Rt△AOB中,斜边OA=6,可求出直角边OB,由旋转可得OB′的长,由旋转角为75°,可求出∠AOB′=30°,在Rt△B′OC中,通过解直角三角形可求出点B′的坐标,进而得出k的值.【解答】解:过点B′作B′C⊥OA,垂足为C,在Rt△AOB中,OA=6,∴OB=AB=OA=3=OB′,∵∠AOA′=75°,∠A′OB′=45°,∴∠B′OC=75°﹣45°=30°,在Rt△B′OC中,∴B′C=OB′=,OC=OB′=,∴点B′(,﹣),∴k=﹣×=﹣,故选:D.10.(3分)如图,扇形OAB的半径为4,折叠扇形OAB使点O落在上的点O'处,展开后延长折痕交OB的延长线于点C,且BC=OB,过点C作扇形OAB的切线,切点为D,连接AO',则图中阴影部分的面积是()A.4B.4﹣πC.π+3D.6﹣π【分析】连接OO′,OD,根据折叠的性质得到OA=AO,推出△AOO′是等边三角形,得到∠AOO′=60°,根据切线的性质得到∠ODC=90°,求得∠DOB=60°,根据扇形和三角形的面积公式即可得到结论.【解答】解:连接OO′,OD,∵折叠扇形OAB使点O落在上的点O'处,∴OA=AO,∵AO=OO′,∴△AOO′是等边三角形,∴∠AOO′=60°,∵CD是⊙O的切线,∴∠ODC=90°,∵BC=OB=OD,∴OD=OC,∴∠OCD=30°,∴∠DOB=60°,∵OD=OA=4,∴DC=4,∴图中阴影部分的面积=S扇形AOO′﹣S△AOO′+S△OCD﹣S扇形BOD=﹣+﹣=4,故选:A.二、填空题(本大题共5个小题,每小题3分,共15分)11.(3分)计算:(2﹣3)(2+3)的结果是11.【分析】根据二次根式的运算法则即可求出答案.【解答】解:原式=20﹣9=11,故答案为:11.12.(3分)在一个不透明的袋子里装有2个红球、1个白球和1个绿球,这些球除颜色外,其余完全相同,把球摇匀后,从中随机一次摸出两个球,则摸出的两球颜色不同的概率为.【分析】画树状图展示所有12种等可能的结果,找出摸出的两球颜色不同的结果数,然后根据概率公式计算.【解答】解:画树状图为:共有12种等可能的结果,其中摸出的两球颜色不同的结果数为10,所以摸出的两球颜色不同的概率==.故答案为.13.(3分)如图是两个一次函数y1=mx+n和y2=kx+b在同一平面直角坐标系中的图象,则关于x的不等式kx+b>mx+n的解集是x<1.【分析】直接利用函数图象,结合kx+b≥mx+n,得出x的取值范围.【解答】解:如图所示:不等式kx+b>mx+n的解集为:x<1.故答案为:x<1.14.(3分)某眼镜公司积极响应国家号召,在技术顾问和市场监管局的帮助下,开始生产医用护目镜.第一周生产a个,工人在技术员的指导下,技术越来越熟练,第二周比第一周增长10%,第三周比前两周生产的总数少20%.用含a的代数式表示该公司这三周共生产医用护目镜 3.78a个.【分析】根据题意列代数式,并进行化简即可.【解答】解:根据题意可得列式为:a+(1+10%)a+(1﹣20%)[a+(1+10%)a]=a+1.1a+0.8a+0.8×1.1a=2.9a+0.88a=3.78a.故答案为:3.78a.15.(3分)如图,在△ABC中,∠BAC=90°,AB=8,AC=15,AD平分∠BAC,交BC 于点D.以点C为圆心,以任意长为半径作弧,分别与边CA和CB相交,然后再分别以这两个交点为圆心,大于交点间距离的一半为半径作弧,两弧交于点F,连接CF并延长交AD于点O,过点O作AC的平行线交BC于点E,则OE的长为.【分析】过点D作DJ⊥AB于J,DK⊥AC于K.解直角三角形求出BC,CD,再证明OE=EC,求出EC即可解决问题.【解答】解:过点D作DJ⊥AB于J,DK⊥AC于K.在Rt△ACB中,∵∠BAC=90°,AB=8,AC=15,∴BC===17,∵AD平分∠BAC,DJ⊥AB,DK⊥AC,∴DJ=DK,∴====,∴CD=×17=,∵OC平分∠ACD,∴===,∵OE∥AC,∴∠EOC=∠AOC=∠ECO,∴OE=EC,∵OD:OA=DE:EO=17:23,∴EC=×=.故答案为.三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(10分)(1)计算:(﹣)﹣2+|3﹣|﹣4cos30°﹣(π﹣3.14)0;(2)解不等式组,并把解集在数轴上表示出来.【分析】(1)根据负整数指数幂和零指数幂的规定、绝对值的性质及特殊锐角的三角函数值计算可得;(2)先求出不等式的解集,再求出不等式组的解集,【解答】解:(1)原式=9+(﹣3+2)﹣4×﹣1=9﹣3+2﹣1=5.(2),解不等式①得:x≤4,解不等式②得:x>﹣1,∴不等式组的解集为:﹣1<x≤4.将不等式的解集表示在数轴上如下:17.(7分)如图,在线段AD上有两点E,F,且AE=DF,过点E,F分别作AD的垂线BE和CF,连接AB,CD,BF,CE,且AB∥CD.求证:四边形BECF是平行四边形.【分析】先证明BE∥CF,证明△AEB≌△DFC,可得BE=CF,根据一组对边平行且相等的四边形是平行四边形可得结论.【解答】证明:∵BE⊥AD,CF⊥AD,∴∠AEB=∠BEF=∠CFE=∠CFD=90°,∴BE∥CF,∵AB∥CD,∴∠A=∠D,在△AEB和△DFC中,,∴△AEB≌△DFC(ASA),∴BE=CF,∵BE∥CF,∴四边形BECF是平行四边形.18.(9分)“同享一片蓝天,共建美好家园”,每年的3月12日是我国的义务植树节,受疫情的影响,今年不能去植树,某校政教处鼓励学生们“网上植树”(活动时间为3月12日~3月15日).学校调查发现,有90%的学生参与了此次活动.从参与活动的学生中随机调查30名,所植的棵数情况如下:(单位:棵)1 12 4 23 2 3 34 3 3 4 3 35 3 4 3 4 4 5 4 5 3 4 3 4 5 6对以上数据进行整理、描述和分析,并绘制出如下条形统计图(不完整).(1)请补全条形统计图;(2)这30名学生网上植树数量的中位数是3棵,众数是3棵;(3)统计显示,这30名学生中有18名是在3月12日当天参与了“网上植树”,若该校有3000名学生,由此估计该校有多少名学生在3月12日当天参与了“网上植树”?活动期间全校学生“网上植树”共多少棵?【分析】(1)统计出植树三棵和植树四棵的人数,即可补全条形统计图;(2)根据中位数、众数的意义,即可求出答案;(3)样本估计总体,利用样本中“3月12日当天参与了网上植树”的比例估计总体的比例,通过计算可得出答案.【解答】解:(1)统计得出有11人植树三棵,有9人植树四棵,补全条形统计图如图所示:(2)将这30名学生的植树的棵数从小到大排列后,处在中间位置的两个数都是13棵,因此中位数是13,植树棵数出现次数最多的3棵,共用11人,因此植树的众数是3棵,故答案为诶;3,3;(3)3000×90%×=1620(名),3000×90%×=9270(棵),答:估计该校有1620名学生在3月12日当天参与了“网上植树”,活动期间全校学生“网上植树”共9270棵.19.(7分)请阅读下列材料,并完成相应的任务.小明想在平面直角坐标系中画一个边长为2的正六边形ABCDEF,他采用了如下的操作步骤:①点A与坐标原点重合,点B在x轴的正半轴上且坐标为(2,0);②分别以点A,B为圆心,AB长为半径作弧,两弧交于点M;③以点M为圆心,MA长为半径作圆;④以AB的长为半径,在⊙M上顺次截取====;⑤顺次连接BC,CD,DE,EF,F A,得到正六边形ABCDEF.任务一:(1)请依据上述作法证明六边形ABCDEF是正六边形;任务二:(2)请你把小明作出的正六边形ABCDEF沿x轴的正半轴无滑动地转动,当相邻的顶点落在x轴上时,记为转动1次,直接写出转动10次时,点B所在位置的坐标.【分析】(1)如图,连接AM,BM,CM,DM,EM,FM.证明AB=BC=CD=DEF=OF,∠ABC=∠BCD=∠CDE=∠DEF=∠EFO=∠FOB=120°即可.(2)转动10次时,点F在x轴上,点B在点F的正上方,由此即可解决问题.【解答】(1)证明:如图,连接AM,BM,CM,DM,EM,FM.∵====,∴BC=CD=DE=EF=AB,∵OM=BM=AB,∴△ABM是等边三角形,∴∠AMB=60°,∴∠BMC=∠CMD=∠∠EMF=∠AMB=60°,∴∠AMF=360°﹣5×60°=60°,∴=,∴BC=CD=DE=EF=AF=AB,∴MB=MC=CB,∴△MBC是等边三角形,∴∠ABM=∠MBC=60°,∴∠ABC=120°,同理可证∠BCD=∠CDE=∠DEF=∠EF A=∠F AB=120°,∴六边形ABCDEF是正六边形.(2)解:转动10次时,点F在x轴上,点B在点F的正上方,B(22,2).故答案为(22,2).20.(7分)迎宾桥是太原市第十座横跨汾河的大桥,这座大桥整体桥型以“龙腾云霄”为设计主题,诠释龙城太原几千年的历史文化,彰显太原近年来经济腾飞的时代特点.某数学兴趣小组的同学利用双休日测量迎宾桥桥塔高出桥面的高度.如图2,在桥面上选取两点A和B,已知点A,B及桥塔CD(垂直于桥面)在同一平面内,且AB=16.98m,在点A和点B处测得桥塔最高点C的仰角分别为45°和50°.根据测量小组提供的数据,求CD的高度.(结果精确到1m,参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.20)【分析】设CD=xm,根据等腰直角三角形的性质得到AD=CD=x,根据正切的定义用x表示出BD,根据题意列出方程,解方程得到答案.【解答】解:设CD=xm,在Rt△ADC中,∠CAD=45°,∴AD=CD=x,在Rt△CBD中,tan∠CBD=,∴BD=≈=x,∵AD﹣BD=AB,∴x﹣x=16.98,解得,x=101.88≈102(m),答:CD的高度约为102m.21.(10分)今年春节期间,我国人民万众一心,共同抗击疫情.某蔬菜基地要把一定量的蔬菜租车送往疫情严重的某地,这些蔬菜中1.4吨已经打包好,其余需要立即打包.工作人员第1小时打包15吨,技术熟练后平均每小时打包速度的增长率相同,第3小时打包21.6吨,恰好3小时完成打包任务.在运送蔬菜时,有两种车型选择,甲种车可装6吨蔬菜,乙种车可装5吨蔬菜.(1)求工作人员平均每小时打包速度的增长率和共运送的蔬菜是多少吨;(2)该基地所租车辆不超过10辆,则至少需要租甲种车多少辆?【分析】(1)设工作人员平均每小时打包速度的增长率是x,根据“工作人员第1小时打包15吨,技术熟练后平均每小时打包速度的增长率相同,第3小时打包21.6吨”列出方程并解答;求得第2小时打包18吨,然后求三个小时的总的打包数量;(2)设需要租甲种车y辆,根据“该基地所租车辆不超过10辆”列出不等式并解答.【解答】解:(1)设工作人员平均每小时打包速度的增长率是x,根据题意,得15(1+x)2=21.6.解这个方程,得x1=0.2=20%,x2=﹣2.2(舍去).第2小时打包的数量为:15(1+20)=18(吨).共运送的蔬菜为:1.4+15+18+21.6=56(吨).答:工作人员平均每小时打包速度的增长率是20%,共运送的蔬菜是56吨;(2)设需要租甲种车y辆,依题意得:y+≤10.解得y≥6.所以y的最小值是6.答:至少需要租甲种车6辆.22.(13分)综合与探究问题情境在综合与实践课上,老师让同学们利用含30°角的直角三角板和一张正方形纸片进行探究活动.如图1,把正方形ABCD的顶点A放在Rt△EFG斜边EG的中点处,正方形的边AB经过直角顶点F,正方形的边AD与直角边FG交于点Q.探究发现(1)创新小组发现线段EF,GQ及FQ之间的数量关系为EF2+GQ2=FQ2.请加以证明;引申探究(2)如图2,勤奋小组把正方形ABCD绕点A逆时针旋转,边AB与边EF交于点P且不与点E,F重合,把直角三角形的两直角边分成四条线段EP,PF,FQ,GQ,发现这四条线段之间的数量关系是EP2+GQ2=FQ2+FP2,请加以证明;探究拓广(3)奇艺小组的同学受勤奋小组同学的启发继续把正方形ABCD绕着点A逆时针旋转,边BA和DA的延长线与两直角边仍交于点P,Q两点,按题意完善图3,并直接写出EP,PF,FQ,GQ之间的数量关系.【分析】(1)证明△AFE为等边三角形,故EF=AF,同理可得QA=QG,在Rt△AQF 中,FQ2=AF2+AQ2=EF2+GQ2;(2)证明△GAQ≌△EAH(SAS),可得P A是QH的中垂线,故PH=PQ,进而求解;(3)完善后的图形如图2,同理可得:EP2+GQ2=FQ2+FP2.【解答】(1)如题干图1,∵AF是Rt△GFE的中线,故AF=AE,∵∠E=90°﹣∠G=60°,∴△AFE为等边三角形,故EF=AF,同理可得,△AGF为等腰三角形,故∠QF A=∠G=30°,在Rt△QAF中,∠AQF=90°﹣∠QF A=60°=∠G+∠GAQ,∴QA=QG,在Rt△AQF中,FQ2=AF2+AQ2=EF2+GQ2;(2)如图1,延长QA到H使AH=AQ,连接EH、PQ、PH,∵点A是GE的中点,故AG=AE,而AH=AQ,∠GAQ=∠EAH,∴△GAQ≌△EAH(SAS),∴GQ=HE,∠AEH=∠G,而∠G+∠GEF=90°,∴∠HEP=∠HEA+∠GEP=∠EGF+∠GEF=90°,∵∠DAB=90°,即AP⊥QH,而AQ=AH,∴P A是QH的中垂线,∴PH=PQ,在Rt△PHE中,PH2=PE2+HE2=PE2+GQ2,在Rt△PQF中,PQ2=FQ2+FP2,故PE2+GQ2=FQ2+FP2;(3)完善后的图形如图2,在AD上取点H,使AH=AQ,连接HE、PH、PQ,同理可得,∠HEP=90°,PH=PQ,则PH2=PE2+GQ2,PQ2=FQ2+FP2,故EP2+GQ2=FQ2+FP2.23.(12分)综合与实践如图,抛物线y=与x轴交于点A,B(点A在点B的左侧),交y轴于点C.点D从点A出发以每秒1个单位长度的速度向点B运动,点E同时从点B出发以相同的速度向点C运动,设运动的时间为t秒.(1)求点A,B,C的坐标;(2)求t为何值时,△BDE是等腰三角形;(3)在点D和点E的运动过程中,是否存在直线DE将△BOC的面积分成1:4两份,若存在,直接写出t的值;若不存在,请说明理由.【分析】(1)令x=0和y=0,可得方程,解得可求点A,B,C的坐标;(2)分三种情况讨论,利用等腰三角形的性质和锐角三角函数可求解;(3)分两种情况讨论,利用锐角三角函数和三角形面积公式可求解.【解答】解:(1)令y=0,可得0=x2﹣x﹣3,解得:x1=﹣1,x2=4,∴点A(﹣1,0),点B(4,0),令x=0,可得y=﹣3,∴点C(0,﹣3);(2)∵点A(﹣1,0),点B(4,0),点C(0,﹣3),∴AB=5,OB=4,OC=3,∴BC===5,当BD=BE时,则5﹣t=t,∴t=,当BE=DE时,如图1,过点E作EH⊥BD于H,∴DH=BH=BD=,∵cos∠DBC=,∴,∴t=,当BD=DE时,如图2,过点D作DF⊥BE于F,∴EF=BF=BE=t,∵cos∠DBC=,∴,∴t=,综上所述:t的值为,和;(3)∵S△BOC=BO×CO=6,∴S△BOC=,S△BOC=,如图1,过点E作EH⊥BD于H,∵sin∠DBC=,∴,∴HE=t,当S△BDE=S△BOC=时,则(5﹣t)×t=,∴t1=1,t2=4,当S△BDE=S△BOC=,时,则(5﹣t)×t=,∴t2﹣5t+16=0,∴方程无解,综上所述:t的值为1或4.。
2020年小学六年级下册小升初人教版数学模拟试卷一.填空题(共16小题)1.在图上标一标,按要求填一填.水星至太阳的平均距离是57910000千米,57910000省略千万位后面的尾数约是.2.2米=分米70厘米=分米.3.A=2×3×5×7,B=3×5×5×7,A和B的最大公因数是,最小公倍数是.4.=÷30=2:5=%=(填小数)5.在6:5=1.2中,6是比的,5是比的,1.2是比的.6.20公顷比平方米多;已知甲比乙多,则乙比甲少.7.两个连续偶数的和是10,这两个数的最大公因是数,最小公倍数是.8.如果用a、b分别表示两个乘数,那么乘法交换律可以写成;如果用a、b、c分别表示三个乘数,那么乘法结合律可以写成.9.将9本书放进5个抽屉里,总有一个抽屉里至少放了本书.10.用圆规画一个直径是4cm的圆,圆规两脚间的距离应是cm,面积应是.11.在比例尺是1:5000000的地图上,量得甲、乙两地的距离是12cm,甲、乙两地的实际距离是千米。
12.一个三角形三个内角的度数比是1:4:1.最大的一个角是.按边分,这是一个三角形.13.按规律填数:4、7、11、16、22、、37、.14.小明用1立方厘米的小正方体摆成一个长方体,从正面、左面和上面看到的是如图所示的图形.这个长方体的表面积是15.今年“十一黄金周”期间,某景点的门票从平时的150元降到120元,票价降低了%,“十一黄金周”期间的票价是平时的%.16.中国代表团在亚洲运动会上金牌数已经连续七届高居榜首,下面是中国代表团第7﹣15届亚运会获得金牌情况统计图.①第十五届多哈亚运会中国代表团的金牌数比第十四届增加了15块.把上面的统计图画完整.②届亚运会中国代表团获得的金牌数最多,最少.③金牌数上升最快的是届到届,下降最快的是届到届.④看了这幅统计图,你有什么想法二.选择题(共12小题)17.如果要反映数量的增减变化情况,可以用()统计图表示.A.条形B.折线C.扇形D.以上都可以18.下列关系中,成反比例关系的是()A.三角形的高不变,它的底和面积B.平行四边形的面积一定,它的底和高C.圆的面积一定,它的半径和圆周率D.同学的年龄一定,他们的身高和体重19.甲乙两筐苹果,甲筐重60千克,乙筐重x千克,从甲筐中取出8千克放入乙筐,两筐苹果就一样重.下列方程正确的是()A.60﹣x=8B.x﹣60=8C.x+8=60D.x+8=60﹣820.在比例尺是1:14000000的地图上,量的甲地到乙地的长是5cm,如果改画在比例尺是1:35000000的地图上.甲地到乙地应画()cm.A.4B.12.5C.221.从一张长10米,宽8米的长方形纸上剪一个最大的正方形,剩下图形的面积是()A.80平方米B.64平方米C.16平方米22.六(1)班有44名同学,这个班至少有()名同学是同一个月出生的.A.2B.3C.423.直角三角形有()条高.A.1B.2C.3D.424.下面几杯糖水中,最甜的是()(单位:g)A.B.C.D.25.小明今年a岁,妈妈今年(a+b)岁,10年后,妈妈比小明大()岁.A.10+b B.10C.b D.10+a26.一个圆锥的底面直径为6cm,高是直径的,圆锥的体积为()cm3.A.141.3B.47.1C.31.427.挖一条引水渠,第一天挖了全长的,第二天比第一天少挖20米,还有800米没挖完.这条引水渠一共长()A.1003米B.1030米C.780米D.1300米28.下面这组图形是按照一定规律排列的,照这样的规律,第8个图形有()个黑色小方形A.26B.24C.22D.20三.计算题(共3小题)29.直接写出得数.1.25×4=0.5×0.4= 1.98÷9=0.75+0.25=1÷0.25=8.4÷0.84=1﹣0.65= 2.4×0.5=30.脱式计算.+÷[÷(+)]×10÷[(﹣)×]31.解方程.x﹣7.4=8+x=14x+25x=1562x﹣0.6x=4.2.四.解答题(共2小题)32.在图中标出A(5,8)、B(2,5)、C(5,5)三点的位置,再把三点顺次连接,首尾相连.(1)将图形的每一条边放大到原来的2倍.(2)将上面方格纸中得到的图形绕A点逆时针方向旋转90°.(3)画出放大后图形的对称轴.33.画出下面三角形按2:1的比放大和梯形按1:2的比缩小后的图形.五.解答题(共7小题)34.挖一条水渠,王伯伯每天挖整条水渠的,李叔叔每天挖整条水渠的.两人合作,几天能挖完?35.一辆公共汽车从起点站开始,途中经过9个停靠站,最后到达终点站.下表记录了这辆公共汽车部分载客数量的变化情况.(上车人数记为正数,下车人数记为负数)停靠站起点站1站2站3站……终点站上下车人数/人+21﹣4+3﹣3+3+5……﹣9到达3站后,车上有多少人?36.一种笔记本原每本4.8元,降价后每本4.5元,原来买150本笔记本的钱,现在可以买多少本这种笔记本?37.果园里有梨树120棵,比桃树多,梨树和桃树的棵数是果园树木总数的25%,果园里一共有树木多少棵?38.一个圆柱形容器,底面直径6分米高8分米里面装满了水.现将水全部倒入一个长方体容器中,水占长方体容器的50%.这个长方体容器的容积是多少立方分米?39.运一批货物,运走的与剩下的比为3:7,如果再运走30吨,那么剩下的货物只占原有货物的,这批货物原有多少吨?40.故事书86本,作文辅导书20本,科幻小说38本,其他书64本.(1)把书的本数分别填在统计表里(2)统计表里书最多,最多的与最少的相差本.(3)把这些书平均分给四个班,每班分到本.种类数量(本)故事书作文辅导书科幻小说其他书合计参考答案与试题解析一.填空题(共16小题)1.解:如图所示:故答案为:66千万.2.解:(1)2米=20分米;(2)70厘米=7分米;故答案为:20,7.3.解:因为A=2×3×5×7,B=3×5×5×7,所以A和B的最大公因数是:3×5×7=105,最小公倍数是:2×3×5×5×7=1050;故答案为:105,1050.4.解:=12÷30=2:5=40%=0.4.故答案为:25,12,40,0.4.5.解:在6:5=1.2中,6是比的前项,5是比的后项,1.2是比的比值;故答案为:前项,后项,比值.6.解:(1)20公顷=200000平方米200000÷(1+)=200000÷=160000(平方米)(2)÷(1+)=÷=答:20公顷比160000平方米多;已知甲比乙多,则乙比甲少.故答案为:160000,.7.解:两个连续偶数的和是10,(10﹣2)÷2=4,10﹣4=6这两个数是4和6,4=2×26=2×3它们的最大公因数2,最小公倍数是:2×2×3=12.故答案为:2,12.8.解:乘法交换律:ab=ba乘法结合律可以写成:a×b×c=a×(b×c).故答案为:ab=ba,a×b×c=a×(b×c).9.解:9÷5=1(本)…4(本)1+1=2(本)所以把9本书放进5个抽屉里,总有一个抽屉至少要放2本;故答案为:2.10.解:圆规的两脚间的距离应该是4÷2=2(厘米)面积:3.14×22=12.56(厘米).答:圆规的两脚间的距离应该是2厘米,画出的圆的面积是12.56平方厘米.故答案为:2,12.56cm2.11.解:12÷=60000000(厘米),60000000厘米=600千米;故答案为:600.12.解:180×=180×=120(度)即:最大的一个角是,按照边分是等腰三角形.故答案为:120度,等腰.13.解:22+7=2937+9=46故答案为:29;46.14.解:(4×3+2×3+4×2)×2=(12+6+8)×2=26×2=52(平方厘米)故答案为:52平方厘米.15.解:(150﹣120)÷150=30÷150=20%;1﹣20%=80%答:票价降低了20%,“十一黄金周”期间的票价是平时的80%.故答案为:20,80.16.解:①把统计图补充完整如下图:②第十一届亚运会中国代表团获得的金牌数最多,第七届最少.③金牌数上升最快的是第十届到第十一届,下降最快的是第十一届到第十二届.④看了这幅统计图,我的想法是:加强体育锻炼,增强人民体质.故答案为:②第十一,第七届;③第十、第十一,第十一、第十二;④加强体育锻炼,增强人民体质.二.选择题(共12小题)17.解:根据统计图的特点可知:如果要反映数量的增减变化情况,可以用折线统计图表示;故选:B.18.解:A、三角形高一定,它的面积与底成正比例;B、因为底×高=平行四边形的面积(一定)是对应的乘积一定,符合反比例的意义,所以平行四边形的面积一定,它的底和高成反比例;C、因为圆的面积=πr2,当圆的面积一定时,圆周率也是一个定值,所以圆的面积一定,圆周率和圆的半径不成比例;D、同学的年龄一定,他们的身高和体重不成比例;故选:B.19.解:设乙筐原来有x千克,x+8=60﹣8x=60﹣8﹣8x=44答:乙筐原来有44千克.所以方程为:x+8=60﹣8.故选:D.20.解:5÷×=70000000×=2(cm)答:应画2cm.故选:C.21.解:10×8﹣8×8=80﹣64=16(平方米)答:剩下图形的面积是16平方米.故选:C.22.解:44÷12=3(个)…8(个),3+1=4(个);答:这个班至少有4名同学是同一个月出生的.故选:C.23.解:由分析知:一个直角三角形有3条高;故选:C.24.解:A、×100%=0.2×100%=20%B、×100%≈0.231×100%=23.1%C、×100%≈0.167×100%=16.7%;D、×100%≈0.130×100%=13.0%23.1%>20%>16.7%>13.0%B号杯最甜.故选:B.25.解:a+b﹣a=b(岁)答:10年后,妈妈比小明大b岁.故选:C.26.解:3.14×(6÷2)2×(6×)×=3.14×9×5×=3.14×15=47.1(cm3)答:圆锥的体积为47.1cm3.故选:B.27.解:(800﹣20)÷(1﹣)=780=1300(米)答:这条引水渠一共长1300米.故选:D.28.解:第一个图形中黑色正方形有:8个;第二个图形中黑色正方形有:8+2=10(个);第三个图形中黑色正方形有:8+2+2=12(个);……第n个图形中黑色正方形有:8+(n﹣1)×2=(2n+6)(个).所以,第8个图形中黑色小正方形个数为:2×8+6=16+6=22(个)答:第8个图形有22个黑色小方形.故选:C.三.计算题(共3小题)29.解:1.25×4=50.5×0.4=0.2 1.98÷9=0.220.75+0.25=11÷0.25=48.4÷0.84=101﹣0.65=0.35 2.4×0.5=1.2 30.解:(1)+÷=+=(2)=181×+181×=181×(+)=181×1=181(3)[÷(+)]×=[÷]×=×=(4)10÷[(﹣)×]=10÷[×]=10÷=8031.解:(1)x﹣7.4=8x﹣7.4+7.4=8+7.4x=15.4;(2)+x=+x﹣=x=;(3)14x+25x=15639x=15639x÷39=156÷39x=4;(4)2x﹣0.6x=4.21.4x=4.21.4x÷1.4=4.2÷1.4x=3.四.解答题(共2小题)32.解:根据分析画图如下:33.解:画出下面三角形按2:1的比放大后的图形(图中红色部分)、梯形按1:2的比缩小后的图形(图中绿色部分).五.解答题(共7小题)34.解:1÷(+)=1÷=12(天)答:两人合作,12天能挖完.35.解:21﹣4+3﹣3+3+5=17+3﹣3+3+5=17+3+5=25(人)答:到达3站后,车上有25人.36.解:4.8×150÷4.5=720×4.5=160(本)答:现在可以买160本这种笔记本.37.解:120÷(1+)+120=120+120=120×+120=96+120=216(棵)216÷25%=864(棵)答:果园里一共有树木864棵.38.解:3.14×(6÷2)2×8÷50%=3.14×9×8÷0.5=226.08÷0.5=452.16(立方分米)答:这个长方体容器的容积是452.16立方分米.39.解:30÷(﹣)=30÷=100(吨)答:这批货物原有100吨.40.解:(1)把书的本数分别填在统计表,如图:种类数量(本)故事书86作文辅导书20科幻小说38其他书64合计208(2)86>64>38>20;86﹣20=66(本)答:统计表里故事书最多,最多的与最少的相差66本.(3)208÷4=52(本)答:把这些书平均分给四个班,每班分到52本.故答案为:故事,66,52.。
山东省2020年普通高等院校统一招生模拟考试高三教学质量检测数学试题2020.02本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,将第I 卷选择题的正确答案选项填涂在答题卡相应位置上,考试结束,将答题卡交回.考试时间120分钟,满分150分. 注意事项:1.答卷前,考生务必将姓名、座号、准考证号填写在答题卡规定的位置上. 2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号.答案不能答在试题卷上.3.第Ⅱ卷答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第I 卷(选择题 共60分)一、选择题:(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知复数2,i z z 在复平面内对应的点分别为()()11221,1,0,1z Z Z z =,则 A .1i +B .1i -+C .1i --D .1i -2.设a R ∈,则“sin cos αα=”是“sin 21α=”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件3.向量a b r r ,满足()()1,2a b a b a b ==+⊥-u u r u u r r r r r,则向量a b r r 与的夹角为 A .45oB .60oC .90oD .120o4.已知数列{}n a 中,372,1a a ==.若1n a ⎧⎫⎨⎬⎩⎭为等差数列,则5a = A .23B .32C .43D .345.已知点()2,4M 在抛物线()2:20C y px p =>上,点M 到抛物线C 的焦点的距离是A .4B .3C .2D .16.在ABC ∆中,2,20AB AC AD AE DE EB x AB y AC +=+==+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r,若,则 A .2y x =B .2y x =-C .2x y =D .2x y =-7.已知双曲线()2222:1,0,0x y C a b a b-=>>的左、右焦点分别为12,F F O ,为坐标原点,P是双曲线在第一象限上的点,()21212=2=2,0,PF PF m m PF PF m >⋅=u u u u r u u u u r u u u r u u u u r ,则双曲线C 的渐近线方程为 A .12y x =±B .22y x =±C .y x =±D .2y x =±8.已知奇函数()f x 是R 上增函数,()()g x xf x =则A. 233231log 224g g g --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B .233231log 224g g g --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C. 23323122log 4g g g --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D. 23323122log 4g g g --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭二、多项选择题:本题共4小题,每小题5分,共20分。