南通、泰州、扬州苏中三市2014届高三5月第二次调研数学试题 word版 含答案
- 格式:doc
- 大小:340.50 KB
- 文档页数:8
2014届江苏省扬州中学高三 数学冲刺训练(5.17)一、填空题:1.设全集{1,3,5,7,9}I =,集合A ={1,3,9},则I C A =___________ 2.计算复数(1-i )2-ii 2124-+=____________3.已知向量=(1-θsin ,1),=(21,1+θsin ),且∥, 则锐角θ等于______4.若三点A (2,2),B (a ,0),C (0,b ),(ab ≠0)共线,则ba 11+的值等于_______. 5.如右图,该程序运行后输出的结果为__________.6.设lg ,0()10,0x x x f x x >⎧=⎨⎩…,则((2))f f -=______.7.已知集合A ={x |x 2-3x +2<0},B ={x |x <a },若A ⊆B ,则实数a 的取值范围是____________.8.已知圆C :x 2+y 2=12,直线l :4x +3y =25,圆C 上任意一点A 到直线l 的距离小于2的概率为________. 9.若等边△ABC 的边长为32,平面内一点M 满足CA CB CM 3261+=,则=⋅______.10.在正三棱锥P -ABC 中,M ,N 分别是PB ,PC 的中点,若截面AMN ⊥平面PBC ,则此棱锥中侧面积与底面积的比为___________。
11.已知函数a x e x f x +-=2)(有零点,则a 的取值范围是 12.设点P (00,y x )是函数x y tan =与0=+y x (x ∈(2π,π)图象的交点,则(120+x )()12cos 0+x 的值是__________________13.如图,已知椭圆C 1的中点在原点O ,长轴左、右端点M ,N 在x 轴上,椭圆C 2的短轴为MN ,且C 1,C 2的离心率都为e ,直线l ⊥MN ,l 与C 1交于两点,与C 2交于两点,这四点按纵坐标从大到小依次为A ,B ,C ,D .,若存在直线l ,使得BO ∥AN ,求椭圆离心率的取值范围_____________.14.以()m ,0间的整数()N m m ∈>,1为分子,以m 为分母组成分数集合1A ,其所有元素和为1a ;以()2,0m 间的整数()N m m ∈>,1为分子,以2m 为分母组成不属于集合1A 的分数集合2A ,其所有元素和为2a ;……,依次类推以()n m ,0间的整数()N m m ∈>,1为分子,以n m 为分母组成不属于121,,,n A A A -⋅⋅⋅的分数集合n A ,其所有元素和为n a ;则12n a a a ⋅⋅⋅+++=________.三、解答题15.已知△ABC 的三个顶点的直角坐标分别为A (3,4)、B (0,0)、C (c ,0).(1)若0=⋅,求c 的值;(2)若c =5,求sin ∠A 的值.16.如图,在斜三棱柱ABC-A1B1C1中,侧面A1ABB1是菱形,且垂直于底面ABC,∠A1AB=60°,E,F分别是AB1,BC的中点.高考资源网(1)求证:直线EF∥平面A1ACC1;(2)在线段AB上确定一点G,使平面EFG⊥平面ABC,并给出证明.17.某单位设计的两种密封玻璃窗如图所示:图1是单层玻璃,厚度为8 mm ;图2是双层中空玻璃,厚度均为4 mm ,中间留有厚度为x 的空气隔层.根据热传导知识,对于厚度为d 的均匀介质,两侧的温度差为T ∆,单位时间内,在单位面积上通过的热量T Q k d∆=⋅,其中k 为热传导系数. 假定单位时间内,在单位面积上通过每一层玻璃及空气隔层的热量相等.(注:玻璃的热传导系数为3410 J mm/C-⨯⋅,空气的热传导系数为42.510 J mm/C -⨯⋅.)(1)设室内,室外温度均分别为1T ,2T ,内层玻璃外侧温度为1T ',外层玻璃内侧温度为2T ',且1122T T T T ''>>>.试分别求出单层玻璃和双层中空玻璃单位时间内,在单位面积上通过的热量(结果用1T ,2T 及x 表示);(2)为使双层中空玻璃单位时间内,在单位面积上通过的热量只有单层玻璃的4%,应如何设计x 的大小?18.如图,在平面直角坐标系xOy 中,A 、B分别是椭圆:2214x y +=的左、右顶点, P(2,t )(t ∈R,且t ≠0)为直线x =2上一动点,过点P任意引一直线l 与椭圆交于C 、D ,连结PO ,直线PO分别和AC 、AD 连线交于E 、F 。
哈41中学“有效教学”改革 八年级化学学案主备教师:授课时间:授课教师:学 习 目 标1.了解世界和我国的水资源状况,学习用辩证的方法看待水资源的丰富和有限。
2.了解水污染、水枯竭等水危机问题,及水污染的防治、节水方法等应对水危机的措施。
重 点水资源概况、水污染的防治难 点水污染的防治学习过程2005年11月13日,吉林某化工厂爆炸导致的松花江特大水污染,导致哈尔滨近400万市民断水4天。
如此严重的水危机,在世界城市发展史上也十分罕见。
造成水污染的原因有哪些?水污染对生活、生产有哪些影响?如何防治水污染? 【自主学习】 一、人类拥有的水资源 地球上海洋水、湖泊水、河流水、地下水、大气水和生物水等各种形态的水总储水量约为1.39×1018m3,地球表面约为_____被水覆盖着。
海洋是地球上_______的储水库,其储水量约占全球总储水量的______。
浩瀚的海洋不仅繁衍着无数水生生物,还蕴藏着丰富的化学资源,按目前测定,海水中含有的化学元素有____多种。
地球上的总储水量虽然_______,但淡水_______,只约占全球水储量的_________,其中大部分还分布在两极和高山的冰雪及永久冻土层中,难以利用;可利用的只约占其中的________,即_________。
随着社会的发展,一方面人类________________________不断增加;另一方面________________________________任意排放及___________不合理使用等造成的水体污染,加剧了可利用水的减少,使原本已紧张的水资源更显短缺。
生物体内都含有水,体内水的质量与生物体总质量的比(质量分数)一般都在________以上。
我国渤海、黄海、东海、南海海水所含主要化学元素前五位分别是:_____、_____,______,______,_______。
二、爱护水资源 水是一切生命体生存所必需的物质,为了人类和社会经济的可持续发展,我们必须爱护水资源,一方面_________________,另一方面______________。
2014年苏、锡、常、镇四市高三教学情况调查(一)文科数学一、填空题:1.已知集合{}1,2,3,4A =,{},4,7B m =,若{}1,4AB =,则AB = ▲ .2.若复数z =13i1i+-(i 为虚数单位),则 | z | = ▲ .【解析】 试题分析:因为13i 1i +-,21242i i+-=+-=所以.5||=z 也可利用复数模的性质求解,即.5210|1||31|||==-+=i i z考点:复数的模3.已知双曲线2218x y m -=m 的值为 ▲ .4.一个容量为20的样本数据分组后,分组与频数分别如下:(]10,20,2;(]20,30,3;(]30,40,4;(]40,50,5;(]50,60,4;(]60,70,2.则样本在(]10,50上的频率是 ▲ . 【答案】710【解析】试题分析:因为样本在(]10,50上的频数共有 145432=+++,所以样本在(]10,50上的频率是1072014=.也可从反面求解,即样本不在(]10,50上的频数共有 624=+,所以样本在(]10,50上的频率是107206-1=. 考点:样本频率5.执行如图所示的算法流程图,则最后输出的y 等于 ▲ .6.设函数2()sin f x a x x =+,若(1)0f =,则(1)f -的值为 ▲ . 【答案】2 【解析】试题分析:因为(1)0f =,所以1sin 1-=a .因此(1)f -.211sin =+-=a 本题也可应用函数性质求解,因为2)()(=-+x f x f ,所以,2)1()1(=-+f f .2)1(=-f 考点:函数性质7.四棱锥P - ABCD 的底面ABCD 是边长为2的正方形,PA ⊥底面ABCD 且PA = 4,则PC 与底面ABCD 所成角的正切值为 ▲ .8.从甲,乙,丙,丁4个人中随机选取两人,则甲乙两人中有且只有一个被选取的概率为 ▲ .9.已知2tan()5a b +=,1tan 3b =,则tan +4p a ⎛⎫ ⎪⎝⎭的值为 ▲ .【答案】98【解析】试题分析:因为171315213152tan )tan(1tan )tan()tan(tan =⋅+-=++-+=-+=bb a b b a b b a a ,所以8917111711tan 1tan 1)4tan(=-+=-+=+a a a π. 考点:两角和与差正切10.设等差数列{}n a 的前n 项和为n S ,若13a =-,132k a +=,12k S =-,则正整数k = ▲ .11.已知正数,x y满足22x y+=,则8x yxy+的最小值为▲.12.如图,在△ABC中,BO为边AC上的中线,2BG GO=,设CD∥AG,若15AD AB AC=+λ()∈Rλ,则λ的值为▲.【答案】6 513.已知函数22(2)e ,0,()43,0,x x x x f x x x x ⎧-=⎨-++>⎩≤()()2g x f x k =+,若函数()g x 恰有两个不同的零点,则实数k 的取值范围为 ▲ .考点:利用导数研究函数图像14.在平面直角坐标系xOy 中,已知点(3,0)P 在圆222:24280C x y mx y m +--+-=内,动直线AB 过点P 且交圆C 于,A B 两点,若△ABC 的面积的最大值为16,则实数m 的取值范围为 ▲ .二、解答题15.(本小题满分14分)设函数2()6cos cos f x x x x =-. (1)求()f x 的最小正周期和值域;(2)在锐角△ABC 中,角,,A B C 的对边分别为,,a b c ,若()0f B =且2b =,4cos 5A =,求a 和sin C .16.(本小题满分14分)如图,在三棱柱111ABC A B C -中,侧面11AA B B 为菱形, 且160A AB ∠=︒,AC BC =,D 是AB 的中点. (1)求证:平面1A DC ⊥平面ABC ; (2)求证:1BC ∥平面1A DC .【答案】(1)详见解析,(2)详见解析. 【解析】试题分析:(1)证明面面垂直,关键找出线面垂直.因为侧面11AA B B 为菱形, 且160A AB ∠=︒,所以△17.(本小题满分14分)一个圆柱形圆木的底面半径为1m,长为10m,将此圆木沿轴所在的平面剖成两个部分.现要把其中一个部分加工成直四棱柱木梁,长度保持不变,底面为等腰梯形ABCD(如图所示,其中O为圆心,,C D在半圆上),设BOC q∠=,木梁的体积为V(单位:m3),表面积为S(单位:m2).(1)求V关于θ的函数表达式;(2)求q的值,使体积V最大;(3)问当木梁的体积V最大时,其表面积S是否也最大?请说明理由.【答案】(1)()10(sin cos sin ),(0,)2V p q q q q q =+∈,(2)3pq =,(3)当木梁的体积V 最大时,其表面积S也最大.18.(本小题满分16分)如图,在平面直角坐标系xOy 中,已知A ,B ,C 是椭圆22221(0)x y a b a b+=>>上不同的三点,A ,(3,3)B --,C 在第三象限,线段BC 的中点在直线OA 上.(1)求椭圆的标准方程; (2)求点C 的坐标;(3)设动点P 在椭圆上(异于点A ,B ,C )且直线PB ,PC 分别交直线OA 于M ,N 两点,证明OM ON ⋅为定值并求出该定值.【答案】(1)求椭圆方程一般用待定系数法.本题已知椭圆过两点,列两个方程222291821,991,a b ab ⎧⎪+=⎪⎨⎪+=⎪⎩,解出b a ,的值,(2)求点(,)C m n 的坐标,需列出两个方程.一是点C 在椭圆上,即22227m n +=,二是BC 的中点在直线OA 上,即23m n =-.注意到C 在第三象限,舍去正值.(3)题意明确,思路简洁,就是求出点N M ,的坐标,算出ON OM ⋅为定值.难点是如何消去参数.因为点N M ,在直线OA : 20x y -=上,所以可设11(2,)M y y ,22(2,)N y y .选择00(,)P x y 作为参数,即用00(,)P x y 表示点N M ,的坐标.由,,P B M 三点共线,解得001003()23y x y x y -=--,同理解得00200523y x y x y -=-+.从而有22200000001222200000003(56)3(3627)393449241822x y x y y x y y y x y x y y x y +--+===⨯=+---+,这里主要用到2200227x y +=代入化简.本题也可利用椭圆参数方程或三角表示揭示21y y 为定值.∵,,P C N 三点共线,∴022011255y y y x ++=++,整理,得00200523y x y x y -=-+.…………………10分∵点C 在椭圆上,∴2200227x y +=,2200272x y =-.从而22200000001222200000003(56)3(3627)393449241822x y x y y x y y y x y x y y x y +--+===⨯=+---+. …………………14分 所以124552OM ON y y ⋅==. …………………15分 ∴OM ON ⋅为定值,定值为452. …………………16分考点:椭圆标准方程,直线与椭圆位置关系19.(本小题满分16分)设各项均为正数的数列{}n a 的前n 项和为S n ,已知11a =,且11()(1)n n n n S a S a λ+++=+对一切*n ∈N 都成立. (1)若λ = 1,求数列{}n a 的通项公式; (2)求λ的值,使数列{}n a 是等差数列.∴当2n ≥时,12n n S a +=.② ② - ①,得12n n a a +=, ∴12n na a +=(2n ≥). ………………… 6分 ∵当n = 1时, 22a =,∴n = 1时上式也成立,∴数列{an}是首项为1,公比为2的等比数列, an = 2n -1(*n ∈N ). …………………8分20.(本小题满分16分)已知函数e ()ln ,()e xxf x mx a x mg x =--=,其中m ,a 均为实数. (1)求()g x 的极值;(2)设1,0m a =<,若对任意的12,[3,4]x x ∈12()x x ≠,212111()()()()f x f xg x g x -<-恒成立,求a 的最小值;(3)设2a =,若对任意给定的0(0,e]x ∈,在区间(0,e]上总存在1212,()t t t t ≠,使得120()()()f t f t g x == 成立,求m 的取值范围.【答案】(1)极大值为1,无极小值.(2)3 -22e 3.(3)3[,)e 1+∞-. 【解析】试题解析:(1)e(1)()e xx g x -'=,令()0g x '=,得x = 1. ………………… 1分 列表如下:∵g(1) = 1,∴y =()g x 的极大值为1,无极小值. …………………3分 (2)当1,0m a =<时,()ln 1f x x a x =--,(0,)x ∈+∞.∵()0x af x x -'=>在[3,4]恒成立,∴()f x 在[3,4]上为增函数. …………………4分 设1e ()()e x h x g x x ==,∵12e (1)()x x h x x --'=> 0在[3,4]恒成立, ∴()h x 在[3,4]上为增函数. …………………5分 设21x x >,则212111()()()()f x f xg x g x -<-等价于2121()()()()f x f x h x h x -<-, 即2211()()()()f x h x f x h x -<-.设1e ()()()ln 1e xu x f x h x x a x x=-=---⋅,则u(x)在[3,4]为减函数.∴21e (1)()10e x a x u x x x -'=--⋅≤在(3,4)上恒成立. …………………6分 ∴11e ex x a x x---+≥恒成立. 设11e ()e x x v x x x --=-+,∵112e (1)()1e x x x v x x ---'=-+=121131e [()]24x x ---+,x ∈[3,4], ∴1221133e [()]e 1244x x --+>>,∴()v x '< 0,()v x 为减函数.∴()v x 在 [3,4]上的最大值为v(3) = 3 -22e 3. ………………… 8分∴a ≥3 -22e 3,∴a 的最小值为3 -22e 3. …………………9分∵e e 3()1e 1m mf m m m --+=>>-≥,∴3e 1m -≥时,命题成立. 综上所述,m 的取值范围为3[,)e 1+∞-. …………………16分 考点:函数极值,不等式恒成立。
2014届江苏省高三年级百校联合调研考试数学卷(二)本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分.选修测试历史的而考生仅需做第I 卷,共160分,考试用时120分钟.选修测物理的考生需做第I 卷和第II 卷,共200分考试用时150分钟.第I 卷(必做题 共160分)一、填空题:本大题共14小题,每小题5分,共70分.把答案填在题中横线上。
1.设集合{1,0,1}A =-,2{|0}B x x x =+≤,则A B ⋂=________. 2.已知i 是虚数单位,则31ii-+的虚部为________. 3.执行右面的框图,若输出结果为21,则输入的实数x 的值是____. 4.直线:tan105l x y π++=的倾斜角α=_______________.5.甲、乙两名运动员在某项测试中的6次成绩如茎叶图所示, 若教 练员选派两人之一参加比赛,则 的可能性较大。
6. 已知)0,2(πα-∈,4cos 5α=,则=+)4tan(πα . 7. 将一颗骰子投掷两次分别得到点数,a b ,则直线0ax by -=与圆()2222x y -+=相交的概率为 .8.设向量1e u r 、2e u u r 满足12||||1e e ==u r u u r,非零向量12,0,0a xe ye x y =+>>r u r u u r ,若2||x a =r,则1e u r 、2e u u r 的夹角θ的最小值为________.9.在等比数列{}n a 中,1234,n a a a +=·164,n a -=且前n 项和62n S =,则项数=n 10.在ABC ∆中,7AC =,60B =︒,BC 边上的高33h =,则BC =______. 11.双曲线228xy -=的左右焦点分别是12F F ,,点n P ()()123n n x y n =L ,,,在其右支上, 且满足2121F F F P ⊥,121F P F P n n =+,则2014x 的值是12.如图所示,互不相同的点),3,2,1(,,n i C B A i i i Λ=分别在以O 为顶点的三棱锥的三条棱上,所有平面),3,2,1(n i C B A i i i Λ=相互平行,且所有三棱台111+++-i i i i i i C B A C B A 的体积均相等,设n n a OA =,若312=a ,22=a,则=86a13.已知函数⎪⎩⎪⎨⎧≥-<≤+=)1(,212)10(,1)(x x x x f x ,设0≥>b a 时,有)()(b f a f =,则)(a f b ⋅的取值范围是14.若函数32()f x x ax bx c =+++的三个零点可分别作为一个椭圆、一双曲线、一抛物线的离心率,则ba的取值范围是 . 二、解答题:本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤. 15. (本小题满分14分) 已知O 为坐标原点,对于函数()sin cos f x a x b x =+,称向量(,)OM a b =u u u u r为函数()f x 的伴随向量,同时称函数()f x 为向量OM u u u u r 的伴随函数. (Ⅰ)设函数()sin()2cos 22g x x x ππ⎛⎫=++ ⎪⎝⎭-,试求()g x 的伴随向量OM u u u u r 的模;(Ⅱ)记(1,3)ON =u u u r 的伴随函数为()h x ,求使得关于x 的方程()0h x t -=在[0,]2π内恒有两个不相等实数解的实数的取值范围.16. (本小题满分14分)如图,菱形ABCD 的边长为4,60BAD ∠=o,AC BD O =I .将菱形ABCD 沿对角线AC 折起,得到三棱锥B ACD -,点M 是棱BC 的中点,22DM =.(1)求证://OM 平面ABD ; (2)求证:平面DOM ⊥平面ABC ;17. (本小题满分14分)已知某公司生产品牌服装的年固定成本为10万元,每生产1千件,须另投入2.7万元,设该公司年内共生产品牌服装x 千件并全部销售完,每1千件的销售收入为()x R 万元,且()22110.8,010301081000,103x x R x x xx ⎧-<≤⎪⎪=⎨⎪->⎪⎩.(1)写出年利润W (万元)关于年产量x (千件)的函数解析式;(2)当年产量为多少千件时,该公司在这一品牌服装的生产中所获年利润最大?18. (本小题满分16分)如图,已知椭圆)0(1:2222>>=+b a b y a x C 的离心率为21,且经过点)23,1(,F 为椭圆的右焦点,1A 、2A 为椭圆的左、右顶点,B 为上顶点.P 为椭圆上异于1A 、2A 的任一点,点Q 满足0=⋅. (Ⅰ)求椭圆C 的方程;(Ⅱ)若=,求F PA 1∆的面积;(Ⅲ)若P 为直线PQ 与椭圆唯一的公共点,求证:Q 点恒在一条定直线上.19. (本小题满分16分)设各项均为正实数的数列}{n a 的前n 项和为n S ,且满足2)1(4+=n n a S (*N n ∈).(Ⅰ)求数列}{n a 的通项公式; (Ⅱ)设数列}{n b 的通项公式为ta ab n nn +=,是否存在正整数t ,使1b ,2b ,mb (N m m ∈≥,3)成等差数列?若存在,求出t 和m 的值;若不存在,请说明理由; (Ⅲ)证明:存在无穷多个三边成等比数列且互不相似的三角形,其三边长为数列}{n a 中的三项1n a ,2n a ,3n a .A CE BD OF 20. (本小题满分16分)已知函数()ln f x x =,21()22g x x x =-. (Ⅰ)设)()1()(x g x f x h '-+=(其中)(x g '是()g x 的导函数),求()h x 的最大值; (Ⅱ)求证: 当0b a <<时,有()(2)2b af a b f a a-+-<; (Ⅲ)设k Z ∈,当1x >时,不等式4)(3)()1(+'+<-x g x xf x k 恒成立,求k 的最大值.第Ⅱ卷(附加题 共40分)21.【选做题】在A ,B ,C ,D 四小题中只能选做2题,每小题10分,共计20分。
一、单选题1. 在锐角中,角A ,B ,C 的对边分别为a ,b ,c,的面积为S ,若,则的取值范围为( )A.B.C.D.2. 设数列的前项和为,若,且,则( )A .2019B.C .2020D.3. 设集合,,则( )A.B .,C .,D .,4.函数的大致图象为( )A.B.C.D.5. 黄瓜是日常生活中非常受欢迎的一种蔬菜.某地引进结果多且市场销售快的甲、乙两种黄瓜品种,为了进一步了解两个品种,农业科技人员各随机选择5棵,将其结果数进行统计,如图.由图可知,以下结论正确的是()A .甲品种的平均结果数高于乙品种的平均结果数B .甲品种结果数的中位数大于乙品种结果数的中位数C .甲品种结果数的方差小于乙品种结果数的方差D .甲品种结果数不少于30的概率是0.4,乙品种结果数不少于30的概率是0.66. 如图,“蒸茶器”外形为圆台状,上、下底面直径(内部)分别为,高为(内部),上口内置一个直径为,高为的圆柱形空心金属器皿(厚度不计,用来放置茶叶).根据经验,一般水面至茶叶(圆柱下底面)下方的距离大于等于时茶叶不会外溢.用此“蒸茶器”蒸茶时为防止茶叶外溢,水的最大容积为()A.B.C.D.7. 设为实数,命题甲:,命题乙:,则甲是乙的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件8. 要得到函数的图象,只需把函数的图象( )江苏省八市(南通、泰州、扬州、徐州、淮安、连云港、宿迁、盐城)2023届高三二模数学试题二、多选题A .向左平移个单位B .向右平移个单位C .向左平移个单位D .向右平移个单位9. 已知椭圆的短轴长为,焦距为.过椭圆的上端点作圆的两条切线,与椭圆分别交于另外两点,.则的面积为( )A.B.C.D.10.中,“为锐角”是“”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件11. 已知,则“”是“”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件12. 已知函数,其中是自然对数的底数.则关于的不等式的解集为A.B.C.D.13. 已知平面向量满足:与的夹角为,若,则( )A .0B .1C.D.14. 曲线在处的切线与两坐标轴成的三角形的面积为4,则a 的值为A.B .2C .4D .815. 在正方体中,分别为,的中点,则下列结论正确的个数为( )①平面;②;③直线与所成角的余弦值为④过三点的平面截正方体所得的截面为梯形A .1B .2C .3D .416. 算盘起源于中国,迄今已有2600多年的历史,是中国古代的一项伟大的发明.在阿拉伯数字出现前,算盘是世界广为使用的计算工具.下图一展示的是一把算盘的初始状态,自右向左分别表示个位、十位、百位、千位,上面的一粒珠子(简称上珠)代表5,下面的一粒珠子(简称下珠)代表1,五粒下珠的大小等同于一粒上珠的大小.例如,如图二,个位上拨动一粒上珠、两粒下珠,十位上拨动一粒下珠至梁上,代表数字17.现将算盘的个位、十位、百位、千位、万位分别随机拨动一粒珠子至梁上,则表示的五位数至多含3个5的情况有()A .10种B .25种C .26种D .27种17. 若曲线C 上存在点M ,使M 到平面内两点,距离之差的绝对值为8,则称曲线C 为“好曲线”.以下曲线是“好曲线”的有( )A.B.C.D.18. 已知椭圆:的左、右焦点分别为,右顶点为A,点M为椭圆上一点,点I是的内心,延长MI交线段于N,抛物线(其中c为椭圆下的半焦距)与椭圆交于B,C两点,若四边形是菱形,则下列结论正确的是()A.B.椭圆的离心率是C.的最小值为D.的值为19. 已知等差数列的前项和为,若,则下列结论正确的是()A.是递增数列B.C.D.20. 已知,函数,下列选项正确的有()A .若的最小正周期,则;B .当时,函数的图象向右平移后得到的图象;C.若在区间上单调递增,则的取值范围是;D .若在区间上有两个零点,则的取值范围是;21. 在四个正方体中,,,均为所在棱的中点,过点,,作正方体的截面,则在各个正方体中,直线与平面垂直的是()A.B.C.D.22. 如图,点是正四面体底面的中心,过点的直线交,于点,,是棱上的点,平面与棱的延长线相交于点,与棱的延长线相交于点,则()A.若平面,则B.存在点S与直线MN,使平面C.存在点与直线,使D.是常数23. 已知,,若直线与、图象交点的纵坐标分别为,,且,则()A.B.C.D.三、填空题四、解答题24. 将甲、乙、丙、丁4名医生随机派往①,②,③三个村庄进行义诊活动,每个村庄至少派1名医生,A 表示事件“医生甲派往①村庄”,B表示事件“医生乙派往①村庄”,C 表示事件“医生乙派往②村庄”,则( )A .事件A 与B 相互独立B.C .事件A 与C 相互独立D.25.二项式的展开式中常数项为______.26.展开式中,含项的系数为______.27.设,,,若,则______.28.如图,在正方体中,点F 是棱上的一个动点,平面交棱于点E ,则下列正确说法的序号是___________.①存在点F使得平面;②存在点F使得平面;③对于任意的点F,都有;④对于任意的点F 三棱锥的体积均不变.29.已知为数列的前项和,,平面内三个不共线的向量,,,满足,,,若,,在同一直线上,则___________.30.已知等差数列的前项和为,若,且,则______.31. 函数的值域为______.32. 已知集合,若,则的最小值为__________.33. 在长方体中,,.(1)在边上是否存在点,使得,为什么?(2)当存在点,使时,求的最小值,并求出此时二面角的正弦值.34.已知(1)化简;(2)若,求的值;(3)若,求的值.35.已知数列的前顶和为.且.(1)求数列的通项公式;五、解答题(2)在数列中,,求数列的前项和.36. 已知函数.(1)当时,讨论函数的单调性;(2)若不等式在上恒成立,求实数的取值范围.37.在数列中,,且.(1)求的通项公式;(2)若,数列的前项和为,求38. 计算求值:(1);(2)已知,均为锐角,,,求的值.39. 某校为了深入学习宣传贯彻党的二十大精神,引导广大师生深入学习党的二十大报告,认真领悟党的二十大提出的新思想、新论断,作出的新部署、新要求,把思想统一到党的二十大精神上来,把力量凝聚到落实党的二十大作出的各项重大部署上来.经研究,学校决定组织开展“学习二十大奋进新征程”的二十大知识竞答活动.本次党的二十大知识竞答活动,组织方设计了两套活动方案:方案一:参赛选手先选择一道多选题作答,之后都选择单选题作答;方案二:参赛选手全部选择单选题作答.其中每道单选题答对得2分,答错不得分;多选题全部选对得3分,选对但不全得1分,有错误选项不得分.为了提高广大师生的参与度,受时间和场地的限制,组织方要求参与竞答的师生最多答3道题.在答题过程中如果参赛选手得到4分或4分以上则立即停止答题,举办方给该参赛选手发放奖品.据统计参与竞答活动的师生有500人,统计如表所示:男生女生总计选择方案一10080选择方案二200120总计(1)完善上面列联表,据此资料判断,是否有90%的把握认为方案的选择与性别有关?(2)某同学回答单选题的正确率为0.8,各题答对与否相互独立,多选题完全选对的概率为0.3,选对且不全的概率为0.3;如果你是这位同学,为了获取更好的得分你会选择哪个方案?请通过计算说明理由.附:,.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82840. 图1所示的椭圆规是画椭圆的一种工具,在十字形滑槽上各有一个活动滑标M ,N,有一根旋杆将两个滑标连成一体,,D 为旋杆上的一点且在M ,N 两点之间,且.当滑标M 在滑槽EF 内做往复运动,滑标N 在滑槽GH 内随之运动时,将笔尖放置于D 处可画出椭圆,记该椭圆为.如图2所示,设EF 与GH 交于点O ,以EF 所在的直线为x 轴,以GH 所在的直线为y 轴,建立平面直角坐标系.(1)求椭圆的方程;(2)以椭圆的短轴为直径作圆,已知直线l与圆相切,且与椭圆交于A,B两点,记△OAB的面积为S,若,求直线l的斜率.41. 设函数f(x)=且f(-2)=3,f(-1)=f(1).(1)求函数f(x)的解析式;(2)在如图所示的直角坐标系中画出f(x)的图象.42. 某城市在进行创建文明城市的活动中,为了解居民对“创文”的满意程度,组织居民给活动打分(分数为整数.满分为100分).从中随机抽取一个容量为120的样本.发现所有数据均在内.现将这些分数分成以下6组并画出了样本的频率分布直方图,但不小心污损了部分图形,如图所示.观察图形,回答下列问题:(1)算出第三组的频数.并补全频率分布直方图;(2)请根据频率分布直方图,估计样本的众数、中位数和平均数.(每组数据以区间的中点值为代表)43. 已知正方体的棱长为2,分别为的中点.(1)画出平面截正方体各个面所得的多边形,并说明多边形的形状和作图依据;(2)求二面角的余弦值.六、解答题44. 我国核电建设占全球在建核电机组的40%以上,是全球核电在建规模最大的国家.核电抗飞防爆结构是保障核电工程安全的重要基础设施,为此国家制定了一系列核电钢筋混凝土施工强制规范,连接技术全面采用HRB500高强钢筋替代HRB400及以下钢筋.某项目课题组针对HRB500高强钢筋的现场加工难题,对螺纹滚道几何成形机理进行了深入研究,研究中发现某S 型螺纹丝杠旋铣的滚道径向残留高度y (单位:mm )关于滚道径向方位角x (单位:rad )的函数近似地满足,其图象的一部分如图所示.(1)求函数的解析式;(2)为制造一批特殊钢筋混凝土,现需一批滚道径向残留高度不低于0.015mm 且不高于0.02mm 的钢筋,若这批钢筋由题中这种S 型螺纹丝杠旋铣制作,求这种S 型螺纹丝杠旋铣能制作出符合要求的钢筋的比例.45.如图,在三棱台中,平面,为中点.,N 为AB的中点,(1)求证://平面;(2)求平面与平面所成夹角的余弦值;(3)求点到平面的距离.46.如图,正方形所在平面外一点满足,其中分别是与的中点.(1)求证:;(2)若,且二面角的平面角的余弦值为,求与平面所成角的正弦值.47. 在平面直角坐标系中,动点与定点的距离和到定直线的距离的比是常数,设动点的轨迹为曲线.(1)求曲线的方程;(2)设,垂直于轴的直线与曲线相交于两点,直线和曲线交于另一点,求证:直线过定点.48.已知数列满足,.(1)求证:数列是等比数列;(2)求数列的前n 项和.七、解答题49.已知数列满足,.(1)求数列的通项公式;(2)若,,求证:对任意的,.50.已知数列的前项和为,,.(1)求;(2)求证:.51. 某地的水果店老板记录了过去50天某类水果的日需求量(单位:箱),整理得到数据如下表所示.其中每箱某类水果的进货价为50元,售价为100元,如果当天卖不完,剩下的水果第二天将在售价的基础上打五折进行特价销售,但特价销售需要运营成本每箱30元,根据以往的经验第二天特价水果都能售罄,并且不影响正价水果的销售,以这50天记录的日需求量的频率作为口需求量发生的概率.2223242526频数10101596(1)如果每天的进货量为24箱,用表示该水果店卖完某类水果所获得的利润,求的平均值;(2)如果店老板计划每天购进24箱或25箱的某类水果,请以利润的平均值作为决策依据,判断应当购进24箱还是25箱.52. 某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮训练,每人投10次,投中的次数统计如下表:学生1号2号3号4号5号甲班65798乙班48977(1)从统计数据看,甲乙两个班哪个班成绩更稳定(用数据说明)?(2)若把上表数据作为学生投篮命中率,规定两个班级的1号和2号两名同学分别代表自己的班级参加比赛,每人投篮一次,将甲、乙两个班两名同学投中的次数之和分别记作和,试求和的分布列和数学期望.53.甲乙两人进行一场比赛,在每一局比赛中,都不会出现平局,甲获胜的概率为().(1)若比赛采用五局三胜制,则求甲在第一局失利的情况下,反败为胜的概率;(2)若比赛采用三局两胜制,且,则比赛结束时,求甲获胜局数的期望;(3)结合(1)(2),比较甲在两种赛制中获胜的概率,谈谈赛制对甲获得比赛胜利的影响.54. 2018年非洲猪瘟在东北三省出现,为了进行防控,某地生物医药公司派出技术人员对当地甲乙两个养殖场提供技术服务,方案和收费标准如下:方案一,公司每天收取养殖场技术服务费40元,对于需要用药的每头猪收取药费2元,不需要用药的不收费;方案二,公司每天收取养殖场技术服务费120元,若需要用药的猪不超过45头,不另外收费,若需要用药的猪超过45头,超过部分每天收取药费8元.(1)设日收费为(单位:元),每天需要用药的猪的数量为,试写出两种方案中与 的函数关系式.(2)若该医药公司从10月1日起对甲养殖场提供技术服务,10月31日该养殖场对其中一个猪舍9月份和10月份猪的发病数量进行了统计,得到如下列联表.9月份10月份合计未发病4085125发病652085合计105105210根据以上列联表,判断是否有的把握认为猪未发病与医药公司提供技术服务有关.附:0.0500.0100.00 13.841 6.63510.8 28(3)当地的丙养殖场对过去100天猪的发病情况进行了统计,得到如上图所示的条形统计图.依据该统计数据,从节约养殖成本的角度去考虑,若丙养殖场计划结合以往经验从两个方案中选择一个,那么选择哪个方案更合适,并说明理由.55. “黄梅时节家家雨”“梅雨如烟暝村树”“梅雨暂收斜照明”江南梅雨的点点滴滴都流润着浓洌的诗情每年六、七月份,我国长江中下游地区进入持续25天左右的梅雨季节,如图是江南Q镇年梅雨季节的降雨量单位:的频率分布直方图,试用样本频率估计总体概率,解答下列问题:Ⅰ“梅实初黄暮雨深”假设每年的梅雨天气相互独立,求Q镇未来三年里至少有两年梅雨季节的降雨量超过350mm的概率;Ⅱ“江南梅雨无限愁”在Q镇承包了20亩土地种植杨梅的老李也在犯愁,他过去种植的甲品种杨梅,平均每年的总利润为28万元而乙品种杨梅的亩产量亩与降雨量之间的关系如下面统计表所示,又知乙品种杨梅的单位利润为元,请你帮助老李排解忧愁,他来年应该种植哪个品种的杨梅可以使总利润万元的期望更大?需说明理由降雨量亩产量50070060040056. 学校组织学生参加某项比赛,参赛选手必须有很好的语言表达能力和文字组织能力.学校对10位已入围的学生进行语言表达能力和文字组织能力的测试,测试成绩分为三个等级,其统计结果如下表:语言表达能力文字组织能力2201101八、解答题由于部分数据丢失,只知道从这10位参加测试的学生中随机抽取一位,抽到语言表达能力或文字组织能力为的学生的概率为.(1)求,的值;(2)从测试成绩均为或的学生中任意抽取2位,求其中至少有一位语言表达能力或文字组织能力为的学生的概率.57. 已知数.(1)求函数的最小正周期,并写出函数的(2)在中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足,求的取值范围单调递增区间58. 如图,某地要在矩形区域内建造三角形池塘,、分别在、边上.米,米,,设,.(1)试用解析式将表示成的函数;(2)求三角形池塘面积的最小值及此时的值.59.已知椭圆的左、右焦点分别为,,离心率,为椭圆上一动点,面积的最大值为.(1)求椭圆的标准方程;(2)设点为椭圆与轴负半轴的交点,不过点且不垂直于坐标轴的直线交椭圆于S ,两点,直线NS ,NT 分别与轴交于C ,D 两点,若C ,D 的横坐标之积是2.问:直线是否过定点?如果是,求出定点坐标,如果不是,请说明理由.60. 动圆P 过定点,且在y 轴上截得的弦GH 的长为4.(1)若动圆圆心P 的轨迹为曲线C ,求曲线C 的方程;(2)在曲线C 的对称轴上是否存在点Q ,使过点Q 的直线与曲线C 的交点S ,T 满足为定值?若存在,求出点Q 的坐标及定值;若不存在,请说明理由.61. 已知集合,,若,求实数,的值.62. 据统计,某校高三打印室月份购买的打印纸的箱数如表:月份代号t1234打印纸的数量y (箱)60657085(1)求相关系数r ,并从r 的角度分析能否用线性回归模型拟合y 与t的关系(若,则线性相关程度很强,可用线性回归模型拟合);(2)建立y 关于t 的回归方程,并用其预测5月份该校高三打印室需购买的打印纸约为多少箱.参考公式:对于一组具有线性相关关系的数据,其回归直线的斜率和截距的最小二乘估计分别为,相关系数参考数据:。
南通市2014届高三第二次调研测试 数学学科参考答案及评分建议一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位......置上... 1. 已知集合{}{}31A x x x x =<-≥,则A =R ð ▲ .【答案】{}13x x -<≤.2. 某学校有8个社团,甲、乙两位同学各自参加其中一个社团,且他俩参加各个社团的可能性相同,则这两位同学参加同一个社团的概率为 ▲ . 【答案】18.3. 复数i 1iz =-(其中i 为虚数单位)的模为▲ . .4.从编号为0,1,2,…,79的80件产品中,采用系统抽样的 方法抽取容量是5的样本,若编号为28的产品在样本中,则 该样本中产品的最大编号为 ▲ . 【答案】76.5. 根据如图所示的伪代码,最后输出的a 的值为 ▲ .【答案】48.6. 若12log 11a a <-,则a 的取值范围是 ▲ .【答案】()4+∞,.7. 若函数32()fx x ax bx =++为奇函数,其图象的一条切线方程为3y x =-,则b 的值为 ▲ . 【答案】3-.8. 设l ,m 表示直线,m 是平面α内的任意一条直线.则“l m ⊥”是“l α⊥”成立的▲条件.(在“充分不必要”、“必要不充分”、“充要”、“既不充分又不必要”中选填一个)(第5题)【答案】充要.9. 在平面直角坐标系xOy 中,设A 是半圆O :222x y +=(0x ≥)上一点,直线OA 的倾斜角为45°,过点A 作x 轴的垂线,垂足为H ,过H 作OA 的平行线交半圆于点B ,则直线AB 的方程是 ▲ .10y +--=.10.在△ABC 中,D 是BC 的中点,AD =8,BC =20,则AB AC ⋅的值为 ▲ . 【答案】-36.11.设x ,y ,z 是实数,9x ,12y ,15z 成等比数列,且1x ,1y ,1z成等差数列,则x z z x +的值是 ▲ . 【答案】3415.12.设π6是函数()()sin 2f x x ϕ=+的一个零点,则函数()f x 在区间()02π,内所有极值点之和为▲ . 【答案】14π313. 若不等式(mx -1)[3m 2-( x + 1)m -1]≥0对任意(0)m ∈+∞,恒成立,则实数x 的值为 ▲ . 【答案】114.设实数a ,b ,c 满足a 2+b 2 ≤c ≤1,则a +b +c 的最小值为 ▲ . 【答案】12-.二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答. 解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在△ABC 中,已知916AB AC AB BC ⋅=⋅=-,.求: (1)AB 的值; (2)sin()sin A B C-的值.PABCDE (第16题)【解】(1)(方法1)因为916AB AC AB BC ⋅=⋅=-,, …………………………… 4分所以91625AB AC AB BC ⋅-⋅=+=,即()25AB AC CB +=, 亦即225AB =,故5AB =. …………………………… 7分(方法2)设A ,B ,C 的对边依次为a ,b ,c , 则由条件得cos 9cos 16bc A ac B ==,. …………………………… 3分两式相加得(cos cos )91625c b A a B +=+=,即225c =,故5AB c ==. ……………… 7分(方法3)设A ,B ,C 的对边依次为a ,b ,c , 则由条件得cos 9cos 16bc A ac B ==,. …………………………… 3分由余弦定理得()()2222221191622b c a c a b +-=+-=,,两式相加得225c =,故5AB c ==. …………………………… 7分(2)sin()sin cos cos sin sin sin A B A B A BC C--=………………………… 10分 由正弦定理得s i n ()c o sc o s s i n A B a B bA C c --=22cos cos 169725ac B bc A c c --===. ………… 14分16.(本小题满分14分)在四棱锥P -ABCD 中,AB ∥DC ,AB ⊥平面P AD , PD =AD ,AB =2DC ,E 是PB 的中点.求证:(1)CE ∥平面P AD ;(2)平面PBC ⊥平面P AB .【证】(1)(方法1)取P A 的中点F ,连EF ,DF .…… 2分 因为E 是PB 的中点,所以EF // AB ,且12EF AB =.PABCDE(第16题)FM 因为AB ∥CD ,AB =2DC ,所以EF ∥CD ,……………… 4分 EF CD =,于是四边形DCEF 是平行四边形,从而CE ∥DF ,而CE ⊄平面P AD ,DF ⊂平面P AD , 故CE ∥平面P AD . …………………… 7分 (方法2)取AB 的中点M ,连EM ,CM . ……………… 2分 因为E 是PB 的中点,所以EM // P A .因为AB ∥CD ,AB =2DC ,所以CM // AD .……………… 4分 因为EM ⊄平面P AD ,PA ⊂平面P AD , 所以EM ∥平面P AD .同理,CM ∥平面P AD . 因为EMCM M =,EM CM ⊂,平面CEM ,所以平面CEM ∥平面P AD .而CE ⊂平面P AD ,故CE ∥平面P AD .……………………… 7分(2)(接(1)中方法1)因为PD =AD ,且F 是P A 的中点,所以DF PA ⊥. 因为AB ⊥平面P AD ,DF ⊂平面P AD ,所以DF AB ⊥. ……………………… 10分因为CE ∥DF ,所以CE PA ⊥,CE AB ⊥. 因为PA AB ⊂,平面P AB ,PAAB A =,所以CE ⊥平面P AB .因为CE ⊂平面PBC ,所以平面PBC ⊥平面P AB . ………………………… 14分17.(本小题满分14分)为了净化空气,某科研单位根据实验得出,在一定范围内,每喷洒1个单位的净化剂,空气中释放的浓度y (单位:毫克/立方米)随着时间x (单位:天)变化的函数关系式近似为161048154102x xy x x ⎧-⎪-=⎨⎪-<⎩,≤≤,,≤. 若多次喷洒,则某一时刻空气中的净化剂浓度为每次投放的净化剂在相应时刻所释放的浓度之和.由实验知,当空气中净化剂的浓度不低于4(毫克/立方米)时,它才能起到净化空气的作用.(1)若一次喷洒4个单位的净化剂,则净化时间可达几天?(2)若第一次喷洒2个单位的净化剂,6天后再喷洒a (14a ≤≤)个单位的药剂,要使接下来的4天中能够持续有效净化,试求a 的最小值(精确到0.1,参考数据:取1.4). 【解】(1)因为一次喷洒4个单位的净化剂, 所以浓度644048()4202410x x f x y x x ⎧-⎪-==⎨⎪-<⎩,≤≤,,≤.则当04x ≤≤时,由64448x--≥,解得0x ≥,所以此时04x ≤≤.…………………… 3分当410x <≤时,由2024x -≥解得8x ≤,所以此时48x <≤.综合得08x ≤≤,若一次投放4个单位的制剂,则有效净化时间可达8天. …………… 7分(2)设从第一次喷洒起,经x (610x ≤≤)天, 浓度()1161616()25110(14)428(6)1414a a g x x a x a x a x x x ⎡⎤=-+-=-+-=-+--⎢⎥----⎣⎦.…… 10分 因为14[48]x -∈,,而14a ≤≤,所以[48],,故当且仅当14x -=时,y有最小值为4a --.令44a --≥,解得244a -≤,所以a的最小值为24 1.6-≈.……… 14分18.(本小题满分16分)在平面直角坐标系xOy 中,设曲线C 1:1(0)x y a b ab+=>>所围成的封闭图形的面积为C 1上的点到原点O.以曲线C 1与坐标轴的交点为顶点的椭圆记为C 2.(1)求椭圆C 2的标准方程;(2)设AB 是过椭圆C 2中心O 的任意弦,l 是线段AB 的垂直平分线.M 是l 上的点(与O 不重合).①若MO =2OA ,当点A 在椭圆C 2上运动时,求点M 的轨迹方程; ②若M 是l 与椭圆C 2的交点,求△AMB 的面积的最小值.【解】(1)由题意得2ab ⎧=⎪= 又0a b >>,解得28a =,21b =.因此所求椭圆的标准方程为2218x y +=. ………………………… 4分 (2)①设()M x y ,,()A m n ,,则由题设知:2OM OA =,0OA OM ⋅=.即22224()0x y m n mx ny ⎧+=+⎨+=⎩,,解得22221414m y n x ⎧=⎪⎨⎪=⎩,. ………………………8分 因为点()A m n ,在椭圆C 2上,所以2218m n +=, 即()()222182y x +=,亦即221432x y +=.所以点M 的轨迹方程为221432x y +=. ………………………10分 ②(方法1)设()M x y ,,则()(0)A y x λλλλ-∈≠R ,,, 因为点A 在椭圆C 2上,所以222(8)8y x λ+=,即22288y x λ+= (i )又2288x y += (ii )(i )+(ii )得()2228119x y λ+=+, ………………………13分所以()228116||()||99AMB S OM OA x y λλλ∆=⋅=+=+≥.当且仅当1λ=±(即1AB k =±)时,()min 169AMB S ∆=. ………………………16分(方法2)假设AB 所在的直线斜率存在且不为零,设AB 所在直线方程为y =kx (k ≠0).解方程组2218x y y kx ⎧+=⎪⎨⎪=⎩,,得22818A x k =+,222818A k y k =+, 所以22222222888(1)181818A Ak k OA x y k k k +=+=+=+++,222232(1)418k AB OA k +==+. 又22181x y y x k ⎧+=⎪⎪⎨⎪=-⎪⎩,,解得2228+8M k x k =,228+8M y k =,所以2228(1)+8k OM k +=.…………… 12分(解法1)由于22214AMBS AB OM =⋅△2222132(1)8(1)418+8k k k k ++=⨯⨯+222264(1)(18)(+8)k k k +=+ ()2222264(1)18+82k k k +++≥222264(1)2568181(1)4k k +==+, 当且仅当22188k k +=+时等号成立,即k =±1时等号成立,此时△AMB 面积的最小值是S △AMB =169. ……………15分当k =0,S △AMB 116129=⨯=>;当k 不存在时,S △AMB 116229=⨯=>.综上所述,△AMB 面积的最小值为169. ……………16分(解法2)因为22222211118(1)8(1)18+8k k OA OM k k +=++++22218+898(1)8k k k ++==+, 又22112OA OM OA OM +⋅≥,于是169OA OM ⋅≥, 当且仅当22188k k +=+时等号成立,即k =±1时等号成立.(后同方法1)19.(本小题满分16分)设数列{a n }的首项不为零,前n 项和为S n ,且对任意的r ,t ∈N *,都有()2r t SrS t=.(1)求数列{a n }的通项公式(用a 1表示);(2)设a 1=1,b 1=3,()1*2n n b b S n n -=∈N ≥,,求证:数列{}3log n b 为等比数列; (3)在(2)的条件下,求121nk n k k b T b -==-∑. 【解】(1)因为110a S =≠,令1t =,r n =,则()2r t SrS t=,得21nS n S =,即21n S a n =.… 2分当2n ≥时,11(21)n n n a S S a n -=-=-,且当1n =时,此式也成立. 故数列{a n }的通项公式为1(21)n a a n =-. …………… 5分(2)当11a =时,由(1)知1(21)21n a a n n =-=-,S n =n 2.依题意,2n ≥时,121n n b n b S b --==, ……… 7分于是233131log log 2log (2)n n n b b b n n --==∈N ≥,,且31log 1b =,故数列{}3log n b 是首项为1,公比为2的等比数列. …………… 10分(3)由(2)得113log 122n n n b --=⨯=,所以12*3()n n b n -=∈N . ……… 12分于是()()()22121222212222231131113131313+131k k k k k k k k k b b --------+-===------. ……… 15分所以()211122222111112313131k k n nnk n k k k b T b ----====-=-----∑∑. ……… 16分20.(本小题满分16分)设函数()e ()x f x ax a a =-+∈R ,其图象与x 轴交于1(0)A x ,,2(0)B x ,两点,且x 1<x 2.(1)求a 的取值范围; (2)证明:0f '<(()f x '为函数()f x 的导函数); (3)设点C 在函数()y f x =的图象上,且△ABCt =,求(1)(1)a t --的值.【解】(1)()e x f x a '=-.若0a ≤,则()0f x '>,则函数()f x 是单调增函数,这与题设矛盾.……………………… 2分所以0a >,令()0f x '=,则ln x a =.当ln x a <时,()0f x '<,()f x 是单调减函数;ln x a >时,()0f x '>,()f x 是单调增函数;于是当ln x a=时,()f x 取得极小值. ……………………… 4分因为函数()e ()x f x ax a a =-+∈R 的图象与x 轴交于两点1(0)A x ,,2(0)B x ,(x 1<x 2), 所以(ln )(2ln )0f a a a =-<,即2e a >.. 此时,存在1ln (1)e 0a f <=>,;存在33ln ln (3ln )3ln a a f a a a a a >=-+,3230a a a >-+>,又由()f x 在(ln )a -∞,及(ln )a +∞,上的单调性及曲线在R 上不间断,可知2e a >为所求取值范围. ……………………………… 6分(2)因为1212e 0e 0xx ax a ax a ⎧-+=⎪⎨-+=⎪⎩,, 两式相减得2121e e x x a x x -=-.记21(0)2x x s s -=>,则()121221212221e e e e 2(e e )22x x x x x x s sx x f s x x s ++-+-'⎡⎤=-=--⎣⎦-,…………… 8分设()2(e e )s s g s s -=--,则()2(e e )0s s g s -'=-+<,所以()g s 是单调减函数, 则有()(0)0g s g <=,而122e02x x s+>,所以()1202x x f +'<. 又()e x f x a '=-是单调增函数,且122x x +>所以0f '<. ………………………………………… 11分(3)依题意有e 0i x i ax a -+=,则(1)e 0i x i a x -=>⇒112i x i >=(,).于是122e x x +=,在等腰三角形ABC 中,显然C = 90°,…………………… 13分所以12012()2x x x x x +=∈,,即00()0y f x =<, 由直角三角形斜边的中线性质,可知2102x x y -=-, 所以21002x x y -+=,即1221212e ()022x x x xa x x a +--+++=,所以2112()022x x a x x a --+++=,即2112(1)(1)[(1)(1)]022x x a x x ----+-+=.因为110x -≠,则()2211111110212x x x a x ----++=-,t =,所以221(1)(1)022a at t t -++-=, …………………………………… 15分即211a t =+-,所以(1)(1) 2.a t --= …………………………………… 16分南通市2014届高三第二次调研测试数学Ⅱ(附加题)(第21—A 题)21A .选修4—1:几何证明选讲如图,△ABC 内接于圆O ,D 为弦BC 上一点,过D 作直线DP // AC ,交AB 于点E ,交圆O在A 点处的切线于点P .求证:△P AE ∽△BDE .【证明】因为P A 是圆O 在点A 处的切线,所以∠P AB =∠ACB . 因为PD ∥AC ,所以∠EDB =∠ACB , 所以∠P AE =∠P AB =∠ACB =∠BDE .又∠PEA =∠BED ,故△P AE ∽△BDE .…………………… 10分21B .选修4—2:矩阵与变换已知二阶矩阵M 有特征值1λ=及对应的一个特征向量111⎡⎤=⎢⎥-⎣⎦e ,且M 11⎡⎤⎢⎥⎣⎦=31⎡⎤⎢⎥⎣⎦.求矩阵M .【解】设ab cd ⎡⎤=⎢⎥⎣⎦M ,则由 1 111a b c d ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦,得11a b c d -=⎧⎨-=-⎩,. 再由1311⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ab c d ,得31a b c d +=⎧⎨+=⎩.,联立以上方程组解得a =2,b =1,c =0,d =1,故2101⎡⎤=⎢⎥⎣⎦M .……………………… 10分21C .选修4—4:坐标系与参数方程在平面直角坐标系xOy 中,设动点P ,Q 都在曲线C :12cos 2sin x y θθ=+⎧⎨=⎩,(θ为参数)上,且这两点对应的参数分别为θ=α与θ=2α(0<α<2π),设PQ 的中点M 与定点A (1,0)间的距离为d ,求d 的取值范围.【解】由题设可知P ( 1 + 2cos α,2sin α ),Q ( 1 + 2cos2α,sin2α ),………………………… 2分于是PQ的中点M ()1cos cos 2sin sin 2αααα+++,. ………………………… 4分从而ABCDD 1A 1B 1C 1E(第22题)()()2222cos cos 2sin sin 222cos d MA ααααα==+++=+ ………………………… 6分因为0<α<2π,所以-1≤cos α<1, ………………………… 8分于是0≤d 2<4,故d 的取值范围是[)02,. ………………………… 10分21D .选修4—5:不等式选讲已知:2a x ∈≥,R .求证:|1|||x a x a -++-≥3. 证明:因为|m|+|n|≥|m -n|, 所以|1|||1(x a x a x a x a a -++--+---≥||=|.………………………………………… 8分又a ≥2,故21|a -|≥3. 所以|1||x ax a-++-≥.…………………………………………………………………… 10分【必做题】第22题、第23题,每题10分,共计20分.请在答题..卡指定区域.....内作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)在长方体ABCD —A 1B 1C 1D 1中,112AD AA AB ==,点E 是棱AB 上一点.且AE EB λ=.(1)证明:11D E A D ⊥;(2)若二面角D 1—EC —D 的大小为π4,求λ的值.【证】(1)以D 为原点,DA 为x 轴,DC 为y 轴, DD 1为z 轴建立空间直角坐标系. 不妨设AD =AA 1=1,AB =2,则D (0,0,0),A (1,0,0),B (1,2,0),C (0,2,0),A 1(1,0,1),B 1(1,2,1),C 1(0,2,1),D 1(0,0,1).因为AEEB =λ,所以()2101E λλ+,,,于是()112111D E A D λλ=-=+,,,(-1,0,-1).所以()11211(101)01D E A D λλ⋅=-⋅--=+,,,,.故D 1E ⊥A 1D . ……… 5分(2)因为D 1D ⊥平面ABCD ,所以平面DEC 的法向量为n 1=(0,0,1). 又()21201CE λλ=+,-,,1CD =(0,-2,1).设平面D 1CE 的法向量为n 2=(x ,y ,z ),则n 2·()2201CE x y λλ=+-=+,n 2·120CD y z =-+=,所以向量n 2的一个解为()22121λλ-+,,.因为二面角D 1—EC —D 的大小为π4,则1212|||⋅=n n|n n .解得λ=±233-1.又因E 是棱AB 上的一点,所以λ>0,故所求的λ值为233-1. (10)分23.(本小题满分10分)设数列{a n }共有n (3n n ∈N ≥,)项,且11n a a ==,对每个i (1≤i ≤1n -,i ∈N ),均有{}11122i i a a +∈,,. (1)当3n =时,写出满足条件的所有数列{a n }(不必写出过程); (2)当8n =时,求满足条件的数列{a n }的个数. 【解】(1)当3n =时,131a a ==. 因为{}211122a a ∈,,,{}321122a a ∈,,,即{}21122a ∈,,,{}211122a ∈,,, 所以212a =或21a =或22a =.故此时满足条件的数列{a n }共有3个:1112,,; 1,1,1; 1,2,1. ……… 3分(2)令b i =a i +1a i(1≤i ≤7),则对每个符合条件的数列{a n },满足条件:77181111i i i i i a a b a a +=====∏∏,且b i ∈{}1122,, (1≤i ≤7).反之,由符合上述条件的7项数列{b n }可唯一确定一个符合条件的8项数列{a n }.………7分记符合条件的数列{b n }的个数为N .显然,b i (1≤i ≤7)中有k 个2;从而有k 个12,7-2k 个1.当k 给定时,{b n }的取法有77C C k kk -种,易得k 的可能值只有0,1,2,3,故1122337675741C C C C C C 393N =+++=.因此,符合条件的数列{a n }的个数为393. ……… 10分。
2014年江苏省泰州、南通、扬州三市高考数学二模试卷学校:___________姓名:___________班级:___________考号:___________一、填空题(本大题共14小题,共70.0分)1.已知集合A={1,-1},B={1,0},那么A∪B= ______ .【答案】{-1,0,1}【解析】解:根据题意,A={1,-1},B={1,0},集合A、B的全部元素为1、2、3、4,则A∪B={-1,0,1}故答案为:{-1,0,1}.根据集合并集的定义,列举出集合A、B的全部元素组成集合,即可得答案.本题考查集合的并集的运算,写出集合的并集时注意集合中元素的互异性.2.已知z=(a-i)(1+i)(a∈R,i为虚数单位),若复数z在复平面内对应的点在实轴上,则a= ______ .【答案】1【解析】解:由题意化简z=a+1+(a-1)i,因为复数z在复平面内对应的点在实轴上,所以复数z为实数,即其虚部a-1=0,解得a=1故答案为:1由题意化简z=a+1+(a-1)i,由题意可得,其虚部(a-1)=0,故可得答案.本题为复数的基本定义的考查,涉及复数的运算和复平面,属基础题.3.若抛物线y2=2px(p>0)上的点A(2,m)到焦点的距离为6,则p= ______ .【答案】8【解析】解:∵抛物线y2=2px(p>0)的准线方程为:x=-,焦点F(,0),又物线y2=2px(p>0)上的点A(2,m)到焦点的距离为6,∴由抛物线的定义得:点A(2,m)到焦点的距离等于它到准线的距离,∴2-(-)=6,∴p=8.故答案为:8.利用抛物线的定义,将点A(2,m)到焦点的距离为6,转化为点A(2,m)到其准线的距离即可.本题考查抛物线的简单性质,着重考查抛物线的定义的应用,突出转化思想的考查,属于基础题.4.已知函数f(x)=log2x.在区间[,2]上随机取一x0,则使得f(x0)≥0的概率为______ .【答案】【解析】解:由题意总的基本涉及为区间的长度2-=,由对数函数的性质解f(x0)≥0可得x0≥1,∴使得f(x0)≥0的区间为[1,2],长度为2-1=1,∴所求概率P==故答案为:由题意可得总的区间长度,解对数不等式可得满足条件的区间长度,由几何概型的概率公式可得.本题考查几何概型,涉及对数不等式的解法,属基础题.5.若直线(a2+2a)x-y+1=0的倾斜角为钝角,则实数a的取值范围是______ .【答案】(-2,0)【解析】解:由题意可得直线的斜率a2+2a<0,即a(a+2)<0,解得:-2<a<0,故实数a的取值范围是(-2,0),故答案为:(-2,0)由题意可得直线的斜率a2+2a<0,解之即可.本题考查直线的倾斜角和斜率,涉及一元二次不等式的解法,属基础题.6.如图是某市教师基本功大赛七位评委为某位选手打出分数的茎叶图,去掉一个最高分和一个最低分后的5个数据的标准差为______ (茎表示十位数字,叶表示个位数字).【答案】【解析】解:由茎叶图知,去掉一个最高分93和一个最低分79后,所剩数据83,84,85,86,87的平均数为=85方差为[(83-85)2+(84-85)2+(85-85)2+(86-85)2+(87-85)2]=2∴标准差为故答案为:.根据所给的茎叶图,看出七个数据,根据分数处理方法,去掉一个最高分93和一个最低分79后,把剩下的五个数字求出平均数和方差,从而求出标准差.茎叶图、平均数和方差,标准差属于统计部分的基础知识,也是高考的新增内容,考生应引起足够的重视,确保稳拿这部分的分数.7.若执行如图所示的程序框图,则输出的a的值为______ .【答案】【解析】解:∵0<3,由判断框可知应执行循环结构:i←0+1,a←;∵1<3,由判断框可知应继续执行循环结构:i←1+1,a←;∵2<3,由判断框可知应继续执行循环结构:i←2+1,a←;∵3=3,由判断框可知应终止循环结构,并输出a←.故答案为.由判断框可知应执行循环结构3次即终止,据此即可求出a的值.理解循环结构的功能和判断框的条件是解决问题的关键.8.已知单位向量,的夹角为120°,那么|2-x|(x∈R)的最小值是______ .【答案】【解析】解:由题意可得|2-x|2==4+x2-4xcos120°=x2+2x+4=(x+1)2+3由二次函数的知识可知当x=-1时,上式取最小值3,故|2-x|(x∈R)的最小值为故答案为:平方化简可得|2-x|2=(x+1)2+3,由二次函数的知识可得最值,开方可得.本题考查平面向量数量积的运算,涉及二次函数的最值,属中档题.9.已知角φ的终边经过点P(1,-2),函数f(x)=sin(ωx+φ)(ω>0)图象的相邻两条对称轴之间的距离等于,则= ______ .-【解析】解:函数f(x)=sin(ωx+φ)图象的相邻两条对称轴之间的距离等于,∴函数f(x)的周期T=,∵ω>0∴ω=3∵角φ的终边经过点P(1,-2),∴sinφ=,cosφ=∴=sin(3•+φ)=sin(+φ)=(sinφ+cosφ)=•()=-故答案为:-由已知中角φ的终边经过点P(1,-2),可求出φ角的正弦值和余弦值,由函数f(x)图象的相邻两条对称轴之间的距离等,可求出函数的周期,进而求出ω,将,代入函数的解析式,利用两角和的正弦公式,展开计算可得答案.本题考查的知识点正弦型函数解析式的求法,函数的值,其中熟练掌握三角函数的定义及正弦型函数的图象和性质是解答的关键.10.各项均为正数的等比数列{a n}满足a1a7=4,a6=8,若函数f(x)=a1x+a2x2+a3x3+…+a10x10的导数为f′(x),则f′()= ______ .【答案】【解析】解:由各项均为正数的等比数列{a n}满足a1a7=4,a6=8,设公比为q>0,于是,解得,∴.∴f′(x)=…+,∵=n×2n-3×21-n=,∴′===.故答案为.利用等比数列和等差数列的通项公式、导数的运算法则即可得出.熟练掌握等比数列和等差数列的通项公式、导数的运算法则是解题的关键.11.若动点P在直线l1:x-y-2=0上,动点Q在直线l2:x-y-6=0上,设线段PQ的中点为M(x1,y1),且(x1-2)2+(y1+2)2≤8,则x12+y12的取值范围是______ .【答案】【解析】解:因为动点P在直线l1:x-y-2=0上,动点Q在直线l2:x-y-6=0上,设线段PQ的中点为M(x1,y1),所以M在直线x-y-4=0,又M满足(x1-2)2+(y1+2)2≤8,所以M的轨迹是直线x-y-4=0与圆及内部的公共部分,M是一条线段,如图:的几何意义是坐标原点到线段x-y-4=0(0≤x≤4)距离的平方,因为圆的图形过原点,所以的最小值为:8,最大值为:16,故的取值范围是[8,16].故答案为:[8,16].由题意求出M所在的直线方程与圆及内部的公共部分,M是一条线段,画出图形,通过的几何意义,求出它的范围即可.本题考查直线与圆的位置关系的综合应用,M表示的直线段以及表达式的几何意义是解题的关键,考查转化思想计算能力.12.已知正方体C1的棱长为18,以C1各个面的中心为顶点的凸多面体为C2,以C2各个面的中心为顶点的凸多面体为C3,以C3各个面的中心为顶点的凸多面体为C4,…,依此类推,记凸多面体C n的棱长为a n,贝a6= ______ .【答案】2【解析】解:分三步求解,如下(1)正方体C1各面中心为顶点的凸多面体C2为正八面体,它的中截面(垂直平分相对顶点连线的界面)是正方形,该正方形对角线长等于正方体的棱长,所以它的棱长.(2)正八面体C2各个面的中心为顶点的凸多面体C3是正方体,正方体C3面对角线长等于C2棱长的(正三角形中心到对边的距离等于高的),因此对角线为12,所以(3)以上方式类推,得,,.故答案为:2.根据条件先求出a1,a2,a3,然后利用归纳推理可以得到a6的值.本题主要考查归纳推理的应用,可以从中找到规律,分奇数项、偶数项讨论,可以求an通项13.若函数f(x)=|2x-1|,则函数g(x)=f[f(x)]+lnx在(0,1)上不同的零点个数为______ .【答案】3解:∵函数f(x)=|2x-1|,所以函数g(x)=<<<,g(x)=0,转化为:x∈(0,),函数y=|4x-1|与y=-lnx;以及x∈(,1),函数y=|4x-3|与y=-lnx交点的个数;函数的图象如图:由图象可知函数的零点为3个.故答案为:3通过x的范围化简函数的表达式,然后转化方程的解为函数的零点,画出函数的图象即可得到函数零点的个数.本题考查函数的零点个数的判断,函数零点定理的应用,数形结合与分类讨论思想的应用.14.已知圆心角为120°的扇形AOB的半径为1,C为弧AB的中点,点D、E分别在半径OA、OB上.若CD2+CE2+DE2=,则OD+OE的最大值是______ .【答案】【解析】解:设OD=a,OE=b,由余弦定理,得CD2=CO2+DO2-2CO•DO cos60°=a2-a+1.同理可得CE2=b2-b+1,DE2=a2+ab+b2从而得到CD2+CE2+DE2=2(a2+b2)-(a+b)+ab+2=∴2(a2+b2)-(a+b)+ab-=0,配方得2(a+b)2-(a+b)-3ab-=0,即3ab=2(a+b)2-(a+b)-…(*)又∵ab≤[(a+b)]2=(a+b)2,∴3ab≤(a+b)2,代入(*)式,得2(a+b)2-(a+b)-≤(a+b)2,设a+b=m,代入上式有2m2-m-≤m2,即m2-m-≤0,得到-≤m≤,∴m最大值为,即OD+OE的最大值是.设OD=a且OE=b,由余弦定理加以计算,可得CD2+CE2+DE2=2(a2+b2)-(a+b)+ab+2=,配方整理得3ab=2(a+b)2-(a+b)-,结合基本不等式建立不等关系,得2(a+b)2-(a+b)-≤(a+b)2,最后以a+b为单位解一元二次不等式,即可得到OD+OE的最大值.本题给出扇形AOB的中心角为120°,弧AB中点为C,半径OA、OB上的点D、E满足CD2+CE2+DE2=时,求OD+OE的最大值.着重考查了余弦定理、用基本不等式求最值和一元二次不等式的解法等知识,属于中档题.二、解答题(本大题共6小题,共90.0分)15.已知函数>的最大值为2.(1)求函数f(x)在[0,π]上的单调递减区间;(2)△ABC中,,角A,B,C所对的边分别是a,b,c,且C=60°,c=3,求△ABC的面积.【答案】解:(1)f(x)=msinx+cosx=sin(x+θ)(其中sinθ=,cosθ=),∴f(x)的最大值为,∴=2,又m>0,∴m=,∴f(x)=2sin(x+),令2kπ+≤x+≤2kπ+(k∈Z),解得:2kπ+≤x≤2kπ+(k∈Z),则f(x)在[0,π]上的单调递减区间为[,π];(2)设△ABC的外接圆半径为R,由题意C=60°,c=3,得====2,化简f(A-)+f(B-)=4sin A sin B,得sin A+sin B=2sin A sin B,由正弦定理得:+=2×,即a+b=ab①,由余弦定理得:a2+b2-ab=9,即(a+b)2-3ab-9=0②,将①式代入②,得2(ab)2-3ab-9=0,解得:ab=3或ab=-(舍去),则S△ABC=absin C=.【解析】(1)将f(x)解析式利用两角和与差的正弦函数公式化为一个角的正弦函数,由正弦函数的值域表示出f(x)的最大值,由已知最大值为2列出关于m的方程,求出方程的解得到m的值,进而确定出f(x)的解析式,由正弦函数的递减区间为[2kπ+,2kπ+](k∈Z),列出关于x的不等式,求出不等式的解集即可得到f(x)在[0,π]上的单调递减区间;(2)由(1)确定的f(x)解析式化简f(A-)+f(B-)=4sin A sin B,再利用正弦定理化简,得出a+b=ab①,利用余弦定理得到(a+b)2-3ab-9=0②,将①代入②求出ab的值,再由sin C的值,利用三角形的面积公式即可求出三角形ABC的面积.此题考查了正弦、余弦定理,三角形的面积公式,两角和与差的正弦函数公式,以及正弦函数的单调性,熟练掌握定理及公式是解本题的关键.16.如图,直三棱柱ABC-A1B1C1中,D、E分别是棱BC、AB的中点,点F在棱CC1上,已知AB=AC,AA1=3,BC=CF=2.(1)求证:C1E∥平面ADF;(2)若点M在棱BB1上,当BM为何值时,平面CAM⊥平面ADF?【答案】解:(1)连接CE交AD于O,连接OF.因为CE,AD为△ABC中线,所以O为△ABC的重心,.从而OF∥C1E.…(3分)OF⊂面ADF,C1E⊄平面ADF,所以C1E∥平面ADF.…(6分)(2)当BM=1时,平面CAM⊥平面ADF.在直三棱柱ABC-A1B1C1中,由于B1B⊥平面ABC,BB1⊂平面B1BCC1,所以平面B1BCC1⊥平面ABC.由于AB=AC,D是BC中点,所以AD⊥BC.又平面B1BCC1∩平面ABC=BC,所以AD⊥平面B1BCC1.而CM⊂平面B1BCC1,于是AD⊥CM.…(9分)因为BM=CD=1,BC=CF=2,所以R t△CBM≌R t△FCD,所以CM⊥DF.…(11分)DF与AD相交,所以CM⊥平面ADF.CM⊂平面CAM,所以平面CAM⊥平面ADF.…(13分)当BM=1时,平面CAM⊥平面ADF.…(14分)【解析】(1)连接CE交AD于O,连接OF.因为CE,AD为△ABC中线,所以O为△ABC的重心,.由此能够证明C1E∥平面ADF.(2)当BM=1时,平面CAM⊥平面ADF.在直三棱柱ABC-A1B1C1中,先证出AD⊥平面B1BCC1.再证明当BM=1时,平面CAM⊥平面ADF.本小题主要考查空间线面关系、几何体的体积等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力.17.已知椭圆(a>b>0)的右焦点为F1(2,0),离心率为e.(1)若e=,求椭圆的方程;(2)设A,B为椭圆上关于原点对称的两点,AF1的中点为M,BF1的中点为N,若原点O在以线段MN为直径的圆上.①证明点A在定圆上;②设直线AB的斜率为k,若k,求e的取值范围.【答案】解:(1)由=,c=2,得a=,b==2.故所求椭圆方程为.(2)设A(x1,y1),则B(-x1,-y1),故,,,.①由题意,得.化简,得,∴点A在以原点为圆心,2为半径的圆上.②设A(x1,y1),则得到.将,,代入上式整理,得k2(2e2-1)=e4-2e2+1;∵e4-2e2+1>0,k2>0,∴2e2-1>0,∴>.∴≥3,化简得>,解之得<,<.故离心率的取值范围是,.【解析】(1)利用离心率的计算公式及b2=a2-c2即可得出椭圆的标准方程;(2)利用①的结论,设出直线AB的方程与椭圆的方程联立即可得出关于a、b与k的关系式,再利用斜率与a、b的关系及其不等式的性质即可得出.熟练掌握椭圆的标准方程及其性质、参数a、b、c的关系、中点坐标公式、直线方程、离心率的计算公式、不等式的基本性质是解题的关键.18.如图,矩形ABCD中,AB=3,AD=2,一质点从AB边上的点P0出发,沿与AB的夹角为θ的方向射到边BC上点P1后,依次反射(入射角与反射角相等)到边CD,DA和AB上的点P2,P3,P4处.(1)若点P4与P0重合,求tanθ的值;(2)设tanθ=t,若P4落在A,P0两点之间,且AP0=2.将五边形P0P1P2P3P4的面积S表示为t的函数,并求S的最大值.【答案】解:(1)设P0B=m(0<m<3),可得P1B=mtanθ,P1C=2-mtanθ,P2C==,P2D=3+m-∴P3D=P2D•tanθ=(3+m)tanθ-2,P3A=4-(3+m)tanθ可得AP4==∵点P4与P0重合,∴AP4+P0B=3,即+m=3,可得,解之得tanθ=;(2)当AP0=2即m=1,由(I)可得AP4=∵P4落在A,P0两点之间,可得0<AP4<2,即tanθ=t∈(,1)∴S=S ABCD----=6-t-(2-t)()-(4-)(4t-2)-(4-4t)()=32-17t-=32-(17t+)≤32-2=32-4由此可得:当且仅当t=时,S的最大值为32-4.【解析】(1)设P0B=m(0<m<3),给出P1B、P1C关于m和tanθ的式子,利用解直角三角形分别算出P2C、P2D、P3D、P3A,从而可得AP4==,根据点P4与P0重合得AP4+P0B=3,化成关于tanθ的式子,可得tanθ的值;(2)当AP0=2即m=1,结合(I)得AP4=.由P4落在A,P0两点之间解得0<AP4<2,从而tanθ=t∈(,1).由五边形面积S=S ABCD----,将S化成关于t的函数S=32-(17t+),再利用基本不等式求最值可得当t=时,S的最大值为32-4.本题给出实际应用问题,求函数五边形面积的最大值.着重考查了解直角三角形、三角形的面积公式和利用基本不等式求函数的最值等知识,属于中档题.19.已知函数f(x)=-x3+x2,g(x)=alnx,a∈R.(1)若对任意x∈[1,e],都有g(x)≥-x2+(a+2)x恒成立,求a的取值范围;(2)设F(x)=,<,,若P是曲线y=F(x)上异于原点O的任意一点,在曲线y=F(x)上总存在另一点Q,使得△POQ中的∠POQ为钝角,且PQ的中点在y轴上,求a的取值范围.【答案】解:(1)由对任意x∈[1,e],都有g(x)≥-x2+(a+2)x恒成立,得(x-lnx)a≤x2-2x,由于x∈[1,e],lnx≤1≤x,且等号不能同时取得,所以lnx<x,x-lnx>0.从而a≤恒成立,a≤()min设t(x)=,x∈[1,e],求导,得t′(x)=x∈[1,e],x-1≥0,lnx≤1,x+2-lnx>0,从而t′(x)≥0,t(x)在[1,e]上为增函数.所以t(x)min=t(1)=-1,所以a≤-1.(2)F(x)=,<,,设P(t,F(t))为曲线y=F(x)上的任意一点,假设曲线y=F(x)上存在一点Q(-t,F(-t)),使∠POQ为钝角,则<,若t≤-1,P(t,-t3+t2),Q(-t,aln(-t)),=-t2+aln(-t)(-t3+t2),由于<恒成立,a(1-t)ln(-t)<1.当t=-1时,a(1-t)ln(-t)<1恒成立.当t<-1时,a<恒成立.由于>,所以a≤0.若-1<t<1,t≠0,P(t,-t3+t2),Q(-t,t3+t2),则=-t2+(-t3+t2)(t3+t2)<0,t4-t2+1>0对-1<t<1,t≠0恒成立③当t≥1时,同①可得a≤0.综上所述,a的取值范围是(-∞,0].【解析】(1)已知对任意x∈[1,e],都有g(x)≥-x2+(a+2)x恒成立,可以转化为(x-lnx)a≤x2-2x,再利用系数分离法进行求解;(2)假设曲线y=F(x)上存在一点Q(-t,F(-t)),使∠POQ为钝角,则<,然后对t 进行讨论:分t<-1,-1<t<1,t>1三种情况,转化为函数的恒成立,利用常数分离法进行求解;解决本题的关键在于“转化”,先将转化为恒成立问题,再将将问题转化为二次函数问题,最终得以解决.很多问题在实施“化难为易”、“化生为熟”中得以解决,但是题中所蕴涵的分类讨论思想却是我们常用的方法.20.已知α,β是方程x2-x-1=0的两个根,且α<β.数列{a n},{b n}满足a1=1,a2=β,a n+2=a n+1+a n,b n=a n+1-αa n(n∈N*).(1)求b2-a2的值;(2)证明:数列{b n}是等比数列;(3)设c1=1,c2=-1,c n+2+c n+1=c n(n∈N*),证明:当n≥3时,a n=(-1)n-1(αc n-2+βc n).【答案】(1)解:∵α,β是方程x2-x-1=0的两个根,∴α+β=1,α•β=-1,β2=β+1.由b2=a3-αa2=a1+a2-αa2=1+a2-αβ=2+a2,得b2-a2=2;(2)证明:∵======β,∴数列{b n}是公比为β的等比数列,又∵b1=a2-αa1=β-α≠0,∴{b n}是首项为β-α,公比为β的等比数列;(3)证明:由(2)可知a n+1-αa n=(β-α)βn-1.①同理,a n+1-βa n=α(a n-βa n-1).又a2-βa1=0,于是a n+1-βa n=0.②由①②,得a n=βn-1.下面我们只要证明:n≥3时,(-1)n-1(αc n-2+βc n)=βn-1.∵=-=-=-=-=-=β,又c1=1,c2=-1,c3=2,∴当n=3时,(-1)2(αc1+βc3)=(α+2β)=1+β=β2,∴{(-1)n-1(αc n-2+βc n)}是以β2为首项,β为公比的等比数列.(-1)n-1(αc n-2+βc n)是它的第n-2项,∴(-1)n-1(αc n-2+βc n)=β2•βn-3=βn-1=a n.【解析】(1)α,β是方程x2-x-1=0的两个根,利用韦达定理与b2=a3-αa2,即可求得b2-a2的值;(2)反复利用a n+2=a n+1+a n,可求得=β(定值),b1=a2-αa1=β-α≠0,从而可证数列{b n}是等比数列;(3)由(2)知a n+1-αa n=(β-α)βn-1,①又a n+1=a n+a n-1,α+β=1,αβ=-1,可求得得a n+1-βa n=0②,从而可得a n=βn-1,最后可证得n≥3时,=β,从而可使结论得证.本题考查数列递推式,突出考查等比关系的确定,考查抽象思维与逻辑推理的能力,考查转化思想、化归思想与综合运算能力,注意解题方法的积累,属于难题.。
2014年江苏省无锡、苏州、常州、镇江四市联考高考数学二模试卷一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1. 函数y =√x −1的定义域为A ,函数y =lg(2−x)的定义域为B ,则A ∩B =________.2. 已知复数z =2−i (i 是虚数单位),则|z|=________.3. 在平面直角坐标系xOy 中,已知双曲线x 29−y 2m =1的一个焦点为(5, 0),则实数m =________.4.样本容量为100的频率分布直方图如图所示,由此估计样本数据落在[6, 10]内的频数为________.5. “φ=π2”是“函数y =sin(x +φ)的图象关于y 轴对称”的________条件.(在“充分必要”、“充分不必要”、“必要不充分”、“既不充分也不必要”中选一个合适的填空) 6. 已知S n 为等差数列{a n }的前n 项和,a 1=−1,S 3=6,则S 6=________. 7. 函数y =1lnx (x ≥e)的值域是________.8. 执行如图的程序图,那么输出n 的值为________.9. 在1,2,3,4四个数中随机地抽取一个数记为a ,再在剩余的三个数中随机地抽取一个数记为b ,则“ab 是整数”的概率为________.10. 已知△ABC 为等腰直角三角形,斜边BC 上的中线AD =2,将△ABC 沿AD 折成60∘的二面角,连结BC ,则三棱锥C −ABD 的体积为________. 11. 直线y =kx 与曲线y =2e x 相切,则实数k =________.12. 已知平面内的四点O ,A ,B ,C 满足OA →⋅BC →=2,OB →⋅CA →=3,则OC →⋅AB →=________. 13. 已知奇函数f(x)是R 上的单调函数,若函数y =f(x 2)+f(k −x)只有一个零点,则实数k 的值是________.14. 已知x ,y ∈R ,满足2≤y ≤4−x ,x ≥1,则x 2+y 2+2x−2y+2xy−x+y−1的最大值为________.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15. 在△ABC 中,设角A ,B ,C 的对边分别为a ,b ,c ,满足A =B +30∘. (1)若c =1,b =sinB ,求B .(2)若a 2+c 2−12ac =b 2,求sinA 的值.16. 如图,正四棱锥P −ABCD 的高为PO ,PO =AB =2.E ,F 分别是棱PB ,CD 的中点,Q 是棱PC 上的点. (1)求证:EF // 平面PAD ; (2)若PC ⊥平面QDB ,求PQ .17. 在平面直角坐标系xOy 中,已知椭圆x 24+y 2=1的左、右焦点分别为F′与F ,圆F :(x −√3)2+y 2=5.(1)设M 为圆F 上一点,满足MF′→⋅MF →=1,求点M 的坐标;(2)若P 为椭圆上任意一点,以P 为圆心,OP 为半径的圆P 与圆F 的公共弦为QT ,证明:点F 到直线QT 的距离FH 为定值.18. 如图,O 为总信号源点,A ,B ,C 是三个居民区,已知A ,B 都在O 的正东方向上,OA =10km ,OB =20km ,C 在O 的北偏西45∘方向上,CO =5√2km .(1)求居民区A 与C 的距离;(2)现要经过点O 铺设一条总光缆直线EF (E 在直线OA 的上方),并从A ,B ,C 分别铺设三条最短分光缆连接到总光缆EF .假设铺设每条分光缆的费用与其长度的平方成正比,比例系数为m (m 为常数).设∠AOE =θ(0≤θ<π),铺设三条分光缆的总费用为w (元). ①求w 关于θ的函数表达式;②求w 的最小值及此时tanθ的值.19. 若存在实数x 0与正数a ,使x 0+a ,x 0−a 均在函数f(x)的定义域内,且f(x 0+a)=f(x 0−a)成立,则称“函数f(x)在x =x 0处存在长度为a 的对称点”.(1)设f(x)=x 3−3x 2+2x −1,问是否存在正数a ,使“函数f(x)在x =1处存在长度为a 的对称点”?试说明理由.(2)设g(x)=x+b(x>0),若对于任意x0∈(3, 4),总存在正数a,使得“函数g(x)在xx=x0处存在长度为a的对称点”,求b的取值范围.20. 已知常数λ≥0,设各项均为正数的数列{a n}的前n项和为S n,满足:a1=1,S n+1=a n+1S n+(λ⋅3n+1)a n+1(n∈N∗).a n(1)若λ=0,求数列{a n}的通项公式;a n对一切n∈N∗恒成立,求实数λ的取值范围.(2)若a n+1<12选做题:在21-24四小题中只能选做两题,每小题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.选修4-1:几何证明选讲21. 如图,△ABC中,∠ACB=90∘,以边AC上的点O为圆心,OA为半径作圆,与边AB,AC分别交于点E,F,EC与⊙O交于点D,连结AD并延长交BC于P,已知AE=EB=4,AD=5,求AP的长.选修4-2:矩阵与变换]对应的变换作用下,得22. 已知点M(3, −1)绕原点按逆时针旋转90∘后,且在矩阵A=[a02b到点N(3, 5),求a,b的值.选修4-4:坐标系与参数方程23. 如图,在极坐标系中,设极径为ρ(ρ>0),极角为θ(0≤θ<2π),⊙A的极坐标方程为ρ=2cosθ,点C在极轴的上方,∠AOC=π.△OPQ是以OQ为斜边的6等腰直角三角形,若C为OP的中点,求点Q的极坐标.选修4-5:不等式选讲24. 已知不等式|a−2|≤x2+2y2+3z2对满足x+y+z=1的一切实数x,y,z都成立,求实数a的取值范围.必做题:第25、26题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.25. 如图,在空间直角坐标系A−xyz中,已知斜四棱柱ABCD−A1B1C1D1的底面是边长为3的正方形,点B,D,B1分别在x,y,z轴上,B1A=3,P是侧棱B1B上的一点,BP=2PB1.(1)写出点C1,P,D1的坐标;(2)设直线C1E⊥平面D1PC,E在平面ABCD内,求点E的坐标.26. 如图,圆周上有n个固定点,分别为A1,A2,…,A n(n∈N∗, n≥2),在每一个点上分别标上1,2,3中的某一个数字,但相邻的两个数字不相同,记所有的标法总数为a n.(1)写出a2,a3,a4的值;(2)写出a n的表达式,并用数学归纳法证明.2014年江苏省无锡、苏州、常州、镇江四市联考高考数学二模试卷答案1. [1, 2)2. √53. 164. 325. 充分不必要6. 397. (0, 1]8. 69. 1310. 2√3311. 2e12. −513. 1414. 10315. 解:(1)∵ csinC =bsinB,∴ sinC=cb⋅sinB=1,∵ 0<C<π,∴ C=π2,则A+B=π2,∵ A=B+30∘,∴ B=π6.(2)∵ a2+c2−12ac=b2,∴ cosB=a2+c2−b22ac =14,∵ 0<B<π,∴ sinB=√1−cos2B=√154,∴ sinA=sin(B+π6)=√32sinB+12cosB=√32×√154+12×14=3√5+18.16. (1)证明:取PA中点M,连结ME,MD,由条件,得ME // AB,DF // AB,∴ ME // DF,且ME=12AB,DF=12AB,∴ ME=DF,∴ 四边形EFDM是平行四边形.则EF // MD,由MD⊂平面PAD,EF不属于面PAD,∴ EF // 平面PAD.(2)连结OQ,∵ PC⊥平面QDB,OQ⊂平面QDB,∴ PC⊥OQ,∵ PO⊥平面ABCD,OC⊂平面ABCD,∴ PO⊥OC,∵ PO=2,∴ PC=√OP2+OC2=√6则PQ=PO⋅cos∠CPO=2√6=2√6317. 解:(1)∵ 椭圆x 24+y 2=1的左、右焦点分别为F′与F ,∴ F ′(−√3,0),F(√3,0),设M(m, n),由MF ′→⋅MF →=1,得(m +√3)(m −√3)+n 2=1, ∴ m 2+n 2=4,① 又(m −√3)2+n 2=5,② 由①,②得m =√33,n =±√333, ∴ M(√33,√333)或(√33,−√333), (2)设P(x 0, y 0),M 圆P 的方程为(x −x 0)2+(y −y 0)2=x 02+y 02, 即x 2+y 2−2x 0x −2y 0y =0,③又圆F 的方程为(x −√3)2+y 2=5,④由③④得直线QT 的方程为(x 0−√3)x +y 0y −1=0, ∴ FH =√3(x 0√3)−1|√(x 0−√3)2+y 0=√3x 0√x 0+y 0−2√3x 0+3,∵ P(x 0, y 0)在椭圆上,∴ x 024+y 02=1,即y 02=1−x 024,∴ FH =√3x 0√34x 0−2√3x 0+4=√3x 0(√32x 0=2.18. 解:(1)以点O 位坐标原点,OA 为x 轴建立直角坐标系,则A(10, 0),B(20, 0),C(−5, 5),∴ AC =√(10+5)2+52=5√10;(2)①当直线l 的斜率存在时,设l:y =kx ,k =tanθ, 则w =m[(10k)2k 2+1+(20k)2k 2+1+(−5k−5)2k 2+1]=m ⋅525k 2+50k+25k 2+1;直线l 的斜率不存在时,w =m(100+400+25)=525m , 综上,w ={m ⋅525tan 2θ+50tanθ+25tan 2θ+1(0≤θ<π,θ≠π2)525m(θ=π2)②直线l 的斜率不存在时,w =m(100+400+25)=525m ;当直线l的斜率存在时,w=m⋅525k 2+50k+25 k2+1令t=k−10,则t=0时,w=525m;t≠0时,w=525m+m⋅50t+101t+20∵ t+101t ≤−2√101,或t+101t≥2√101,∴ w的最小值为525m+m20−2√101=(275−25√101)m,此时,t=−√101,tanθ=k=10−√101.19. 解:(1)∵ f(1+a)=f(1−a),∴ (1+a)3−3(1+a)2+2(1+a)−1=(1−a)3−3(1−a)2+2(1−a)−1,∴ a(a+1)(a−1)=0,∵ a>0,∴ a=1;(2)令g(x)=c,则x+bx=c,即x2−cx+b=0(∗).由题意,方程(∗)必须有两正根,且两根的算术平均数为x0,∴ c>0,b>0,c2−4b>0,c2=x0,∴ 0<b<x02对一切意x0∈(3, 4)均成立,∴ b的取值范围为(0, 9].20. 解:(1)λ=0时,S n+1=a n+1a nS n+a n+1,∴ S n=a n+1a nS n,∵ a n>0,S n>0,∴ a n+1=a n,∵ a1=1,∴ a n=1.(2)∵ S n+1=a n+1a nS n+(λ⋅3n+1)a n+1(n∈N∗).∴ S n+1a n+1−S na n=λ3n+1,则S2a2−S1a1=λ⋅3+1,S3a3−S2a2=λ⋅32+1,∴ S na n −S n−1a n−1=λ3n−1+1.相加得S na n−1=λ(3+32+⋯+3n−1)+n−1,则S n=(λ⋅3n−32+n)⋅a n,(n≥2),上式对n=1也成立,∴ S n=(λ⋅3n−32+n)⋅a n,S n+1=(λ⋅3n+1−32+n +1)⋅a n+1,(n ≥2).相减得a n+1=(λ⋅3n+1−32+n +1)⋅a n+1−(λ⋅3n −32+n)⋅a n ,即(λ⋅3n+1−32+n)⋅a n+1=(λ⋅3n −32+n)⋅a n ,∵ λ≥0, ∴ (λ⋅3n −32+n)>0,λ⋅3n+1−32+n >0.∵ a n+1<12a n 对一切n ∈N ∗恒成立, ∴ (λ⋅3n −32+n)<12(λ⋅3n+1−32+n)对一切n ∈N ∗恒成立,即λ>2n3n +3对一切n ∈N ∗恒成立. 记b n =2n3n +3,则b n −b n+1=2n3n +3−2n+23n+1+3=(4n−2)3n −6(3n +3)(3n+1+3), 当n =1时,b n −b n+1=0, 当n ≥2时,b n −b n+1>0, ∴ 当n =1时,b n =2n 3n +3有最大值13,∴ λ>13.21. 解:连接EF ,则∠AEF =90∘,∵ ∠ACB =90∘,∴ B ,C ,F ,E 四点共圆, ∴ ∠AFE =∠B , ∵ ∠ADE =∠AFE , ∴ ∠ADE =∠B ,∴ B ,P ,D ,E 四点共圆, ∴ AE ⋅AB =AD ⋅AP∵ AE =EB =4,AD =5, ∴ AP =325.22. 解:绕原点按逆时针旋转90∘的变换矩阵为[0−110],所以[a02b ][0−110]=[0−a b −2],由[0−a b −2][3−1]=[35], 所以{a =33b +2=5,所以a =3,b =1. 23. 解:根据题意,得: 点C 的极角为π6,将点C 代入极坐标方程ρ=2cosθ中, 得ρ=2×√32=√3,∴ 点C 的极坐标为(√3, π6); ∴ 点P 的极坐标为(2√3, π6); ∴ 点Q 的极角为π6−π4+2π=23π12,极径为ρ=√2×2√3=2√6; ∴ 点Q 的极坐标为(2√6, 23π12).24. 解:因为已知x ,y ,z 是实数,且x +y +z =1,根据柯西不等式(a 2+b 2+c 2)(x 2+y 2+z 2)≥(ax +by +cz)2 故有(x 2+2y 2+3z 2)(1+12+13)≥(x +y +z)2 故x 2+2y 2+3z 2≥611,当且仅当x =611,y =311,z =211时取等号,∵ 不等式|a −2|≤x 2+2y 2+3z 2对满足x +y +z =1的一切实数x ,y ,z 都成立, ∴ |a −2|≤611, ∴1611≤a ≤2811.25. 解:(1)由题意,点C 1,P ,D 1的坐标分别为(0, 3, 3),(1, 0, 2),(−3, 3, 3); (2)∵ C(3, 3, 0),∴ CP →=(−2, −3, 2),CD 1→=(−6, 0, 3). 设E(m, n, 0),则C 1E →=(m, n −3, −3), ∵ C 1E ⊥平面D 1PC ,∴ {−2m −3(n −3)−6=0−6m −9=0,∴ m =−32,n =2, ∴ E(−32, 2, 0).26. 解:(1)计算得:a 2=6,a 3=6,a 4=18.(2)猜想a n=2n+2(−1)n.证明:①当n=2时,a2=6,猜想成立.②假设当n=k时,猜想成立,即a k=2k+2(−1)k.则当n=k+1时,因为A1有3种标法,A2有2种标法,A3有2种标法,…A k有2种标法,若A k+1仅与A k不同则有2标法一种与A1数不相同,符合要求,有A k+1种;一种与A1数相同,不符合要求,但是相当于k个点的标法总数,有A k种,则有:3×2k=a k+1+a k.∴ a k+1=−a k+3×2k=−2k−2(−1)k+3×2k=2k+1+ 2(−1)k+1.即n=k+1时,猜想也成立.由①②可知,猜想成立.。
江苏省扬州、泰州、淮安、南通、徐州、宿迁、连云港市2025届高三二诊模拟考试数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={x|y=lg (4﹣x 2)},B={y|y=3x ,x >0}时,A∩B=( ) A .{x|x >﹣2} B .{x|1<x <2} C .{x|1≤x≤2} D .∅ 2.已知2π()12cos ()(0)3f x x ωω=-+>.给出下列判断: ①若12()1,()1f x f x ==-,且12minπx x -=,则2ω=;②存在(0,2)ω∈使得()f x 的图象向右平移6π个单位长度后得到的图象关于y 轴对称; ③若()f x 在[]0,2π上恰有7个零点,则ω的取值范围为4147,2424⎡⎫⎪⎢⎭⎣; ④若()f x 在ππ,64⎡⎤-⎢⎥⎣⎦上单调递增,则ω的取值范围为20,3⎛⎤ ⎥⎝⎦.其中,判断正确的个数为( ) A .1B .2C .3D .43.已知全集U =R ,集合{}{}237,7100A x x B x x x =≤<=-+<,则()UA B ⋂=( )A .()(),35,-∞+∞B .(](),35,-∞+∞C .(][),35,-∞+∞ D .()[),35,-∞+∞4.为了研究国民收入在国民之间的分配,避免贫富过分悬殊,美国统计学家劳伦茨提出了著名的劳伦茨曲线,如图所示.劳伦茨曲线为直线OL 时,表示收入完全平等.劳伦茨曲线为折线OKL 时,表示收入完全不平等.记区域A 为不平等区域,a 表示其面积,S 为OKL △的面积,将Gini aS=称为基尼系数.对于下列说法:①Gini 越小,则国民分配越公平;②设劳伦茨曲线对应的函数为()y f x =,则对(0,1)x ∀∈,均有()1f x x >; ③若某国家某年的劳伦茨曲线近似为2([0,1])y x x =∈,则1Gini 4=; ④若某国家某年的劳伦茨曲线近似为3([0,1])y x x =∈,则1Gini 2=. 其中正确的是: A .①④B .②③C .①③④D .①②④ 5.已知椭圆22221x y a b +=(a >b >0)与双曲线222212x y a b -=(a >0,b >0)的焦点相同,则双曲线渐近线方程为( )A .33y x =±B .3y x =C .22y x =±D .2y x =6.已知函数()sin()(0,0)3f x x πωφωφ=+><<满足()(),()12f x f x f ππ+==1,则()12f π-等于( )A .-22B .22C .-12D .127.等比数列{}n a 的前n 项和为n S ,若0n a >,1q >,3520a a +=,2664a a =,则5S =( ) A .48B .36C .42D .318.己知四棱锥-S ABCD 中,四边形ABCD 为等腰梯形,//AD BC ,120BAD ︒∠=,ΔSAD 是等边三角形,且23SA AB ==P 在四棱锥-S ABCD 的外接球面上运动,记点P 到平面ABCD 的距离为d ,若平面SAD ⊥平面ABCD ,则d 的最大值为( )A .131+B .132+C .151+D .152+9.下图是来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC 、直角边AB AC 、,已知以直角边AC AB 、为直径的半圆的面积之比为14,记ABC α∠=,则2cos sin 2αα+=( )A .35B .45C .1D .8510.曲线(2)xy ax e =+在点(0,2)处的切线方程为2y x b =-+,则ab =( ) A .4-B .8-C .4D .811.已知椭圆C 的中心为原点O ,(5,0)F -为C 的左焦点,P 为C 上一点,满足||||OP OF =且||4PF =,则椭圆C 的方程为( )A .221255x y +=B .2213616x y +=C .2213010x y += D .2214525x y += 12.已知a >b >0,c >1,则下列各式成立的是( ) A .sin a >sin bB .c a >c bC .a c <b cD .11c c b a--< 二、填空题:本题共4小题,每小题5分,共20分。
南通市2014届高三第二次调研测试数 学一、填空题:本大题共14小题,每小题5分,共70分.. 1.已知集合{}{}31A x x x x =<-≥,则A =R▲ .2.某学校有8个社团,甲、乙两位同学各自参加其中一个社团,且他俩参加各个社团的可能性相同,则这两位同学参加同一个社团的概率为 ▲ . 3.复数i 1iz =-(其中i 为虚数单位)的模为 ▲ .4.从编号为0,1,2,…,79的80件产品中,采用系统抽样的方法抽取容量是5的样本,若编号为28的产品在样本中,则该样本中产品的最大编号为 ▲ . 5.根据如图所示的伪代码,最后输出的a 的值为 ▲ . 6.若12log 11aa <-,则a 的取值范围是 ▲ . 7.若函数32()f x x ax bx =++为奇函数,其图象的一条切线方程为3y x =-b 的值为 ▲ .8. 设l ,m 表示直线,m 是平面α内的任意一条直线.则“l m ⊥”是“l α⊥”成立的 ▲ 条件.(在“充分不必要”、“必要不充分”、“充要”、“既不充分又不必要”中选填一个)9.在平面直角坐标系xOy 中,设A 是半圆O :222x y +=(0x ≥)上一点,直线OA 的倾斜角为45°,过点A 作x 轴的垂线,垂足为H ,过H 作OA 的平行线交半圆于点B ,则直线AB 的方程是 ▲ . 10.在△ABC 中,D 是BC 的中点,AD =8,BC =20,则AB AC ⋅的值为 ▲ . 11.设x ,y ,z 是实数,9x ,12y ,15z 成等比数列,且1x ,1y ,1z成等差数列,则x z z x +的值是 ▲ .12.设π6是函数()()sin 2f x x ϕ=+的一个零点,则函数()f x 在区间()02π,内所有极值点之和为 ▲ .13. 若不等式(mx -1)[3m 2-( x + 1)m -1]≥0对任意(0)m ∈+∞,恒成立,则实数x 的值为 ▲ . 14.设实数a ,b ,c 满足a 2+b 2 ≤c ≤1,则a +b +c 的最小值为 ▲ .二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答. 解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)(第5题)PABC E(第16题) 在△ABC 中,已知916AB AC AB BC ⋅=⋅=-,.求: (1)AB 的值; (2)sin()sin A B C-的值.16.(本小题满分14分)在四棱锥P -ABCD 中,AB ∥DC ,AB ⊥平面P AD , PD =AD ,AB =2DC ,E 是PB 的中点. 求证:(1)CE ∥平面P AD ;(2)平面PBC ⊥平面P AB .17.(本小题满分14分)为了净化空气,某科研单位根据实验得出,在一定范围内,每喷洒1个单位的净化剂,空气中释放的浓度y (单位:毫克/立方米)随着时间x (单位:天)变化的函数关系式近似为161048154102x xy x x ⎧-⎪-=⎨⎪-<⎩,≤≤,,≤.若多次喷洒,则某一时刻空气中的净化剂浓度为每次投放的净化剂在相应时刻所释放的浓度之和.由实验知,当空气中净化剂的浓度不低于4(毫克/立方米)时,它才能起到净化空气的作用.(1)若一次喷洒4个单位的净化剂,则净化时间可达几天?(2)若第一次喷洒2个单位的净化剂,6天后再喷洒a (14a ≤≤)个单位的药剂,要使接下来的4天中能够持续有效净化,试求a 的最小值(精确到0.1 1.4).18.(本小题满分16分)在平面直角坐标系xOy 中,设曲线C 1:1(0)xy a b a b+=>>所围成的封闭图形的面积为C 1上的点到原点O 的最短距离为.以曲线C 1与坐标轴的交点为顶点的椭圆记为C 2.(1)求椭圆C 2的标准方程;(2)设AB 是过椭圆C 2中心O 的任意弦,l 是线段AB 的垂直平分线.M 是l 上的点(与O 不 重合).①若MO =2OA ,当点A 在椭圆C 2上运动时,求点M 的轨迹方程; ②若M 是l 与椭圆C 2的交点,求△AMB 的面积的最小值.19.(本小题满分16分)设数列{a n }的首项不为零,前n 项和为S n ,且对任意的r ,t ∈N *,都有()2rt S r S t=.(1)求数列{a n }的通项公式(用a 1表示); (2)设a 1=1,b 1=3,()1*2n n b b S n n -=∈N ≥,,求证:数列{}3log nb 为等比数列;(3)在(2)的条件下,求121nk n kk b T b-==-∑.20.(本小题满分16分)设函数()e ()xf x ax a a =-+∈R ,其图象与x 轴交于1(0)A x ,,2(0)B x ,两点,且x 1<x 2. (1)求a 的取值范围; (2)证明:0f '<(()f x '为函数()f x 的导函数); (3)设点C 在函数()y f x =的图象上,且△ABCt =,求(1)(1)a t --的值.南通市2014届高三第二次调研测试数学Ⅱ(附加题)21A.选修4—1:几何证明选讲如图,△ABC内接于圆O,D为弦BC上一点,过D作直线DP // AC,交AB于点E,交圆O在A点处的切线于点P.求证:△P AE∽△BDE.(第21—AABCDDA 1B 1CE(第22题)21B .选修4—2:矩阵与变换已知二阶矩阵M 有特征值1λ=及对应的一个特征向量111⎡⎤=⎢⎥-⎣⎦e ,且M 11⎡⎤⎢⎥⎣⎦=31⎡⎤⎢⎥⎣⎦.求矩阵M .21C .选修4—4:坐标系与参数方程在平面直角坐标系xOy 中,设动点P ,Q 都在曲线C :12cos 2sin x y θθ=+⎧⎨=⎩,(θ为参数)上,且这两点对应的参数分别为θ=α与θ=2α(0<α<2π),设PQ 的中点M 与定点A (1,0)间的距离为d ,求d 的取值范围.21D .选修4—5:不等式选讲已知:2a x ∈≥,R . 求证:|1|||x a x a -++-≥3.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)在长方体ABCD —A 1B 1C 1D 1中,112AD AA AB ==,点E 是棱AB 上一点.且AE EBλ=.(1)证明:11D E A D ⊥; (2)若二面角D 1—EC —D 的大小为π4,求λ的值.23.(本小题满分10分)设数列{a n }共有n (3n n ∈N ≥,)项,且11n a a ==,对每个i (1≤i ≤1n -,i ∈N ),均有{}11122i i a a +∈,, (1)当3n =时,写出满足条件的所有数列{a n }(不必写出过程); (2)当8n =时,求满足条件的数列{a n }的个数.南通市2014届高三第二次调研测试数学参考答案及评分建议一、填空题:本大题共14小题,每小题5分,共70分.1.{}13xx -<≤.2.18. . 4.76. 5.48. 6.()4+∞,. 7.3-.8.充要. 10y +=. 10.-36. 11. 3415. 12.14π3 13.1. 14.12-.二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答. 解答时应写出文字说明、证明过程或演算步骤. 15.【解】(1)(方法1)因为916AB AC AB BC ⋅=⋅=-,, …………………………… 4分所以91625AB AC AB BC ⋅-⋅=+=,即()25AB AC CB +=,亦即225AB =,故5AB =. …………………………… 7分(方法2)设A ,B ,C 的对边依次为a ,b ,c ,PABCDE (第16题)PABCD E(第16题)FM则由条件得cos 9cos 16bc A ac B ==,. …………………………… 3分 两式相加得(cos cos )91625c b A a B +=+=,即225c =,故5AB c ==. ……………… 7分 (方法3)设A ,B ,C 的对边依次为a ,b ,c ,则由条件得cos 9cos 16bc A ac B ==,. …………………………… 3分 由余弦定理得()()2222221191622b c a c a b +-=+-=,,两式相加得225c =,故5AB c ==. …………………………… 7分 (2)sin()sin cos cos sin sin sin A B A B A BC C--=………………………… 10分 由正弦定理得sin()cos cos sin A B a B b A C c--=22cos cos 169725ac B bc A c c --===.……… 14分 16.(本小题满分14分)【证】(1)(方法1)取P A 的中点F ,连EF ,DF .…… 2分因为E 是PB 的中点,所以EF // AB ,且12EF AB =.因为AB ∥CD ,AB =2DC ,所以EF ∥CD ,……………… 4分EF CD =,于是四边形DCEF 是平行四边形,从而CE ∥DF ,而CE ⊄平面P AD ,DF⊂平面P AD ,故CE ∥平面P AD . …………………… 7分 (方法2)取AB 的中点M ,连EM ,CM . ……………… 2分因为E 是PB 的中点,所以EM // P A .因为AB ∥CD ,AB =2DC ,所以CM // AD .……………… 4分 因为EM ⊄平面P AD ,PA ⊂平面P AD , 所以EM ∥平面P AD .同理,CM ∥平面P AD . 因为EMCM M =,EM CM ⊂,平面CEM ,所以平面CEM ∥平面P AD .而CE ⊂平面P AD ,故CE ∥平面P AD .……………………… 7分 (2)(接(1)中方法1)因为PD =AD ,且F 是P A 的中点,所以DF PA ⊥.因为AB ⊥平面P AD ,DF⊂平面P AD ,所以DF AB ⊥. ……………………… 10分因为CE ∥DF ,所以CE PA ⊥,CE AB ⊥. 因为PA AB ⊂,平面P AB ,PAAB A =,所以CE ⊥平面P AB .因为CE ⊂平面PBC ,所以平面PBC ⊥平面P AB . ………………………… 14分 17.(本小题满分14分)【解】(1)因为一次喷洒4个单位的净化剂,所以浓度644048()4202410x x f x y x x ⎧-⎪-==⎨⎪-<⎩,≤≤,,≤.则当04x ≤≤时,由64448x--≥,解得0x ≥,所以此时04x ≤≤.…………………… 3分 当410x <≤时,由2024x -≥解得8x ≤,所以此时48x <≤.综合得08x ≤≤,若一次投放4个单位的制剂,则有效净化时间可达8天. …………… 7分 (2)设从第一次喷洒起,经x (610x ≤≤)天, 浓度()1161616()25110(14)428(6)1414a a g x x a x a x a x x x ⎡⎤=-+-=-+-=-+--⎢⎥----⎣⎦.…… 10分因为14[48]x -∈,,而14a ≤≤,所以[48],,故当且仅当14x -=y有最小值为4a --.令44a -≥,解得244a -≤,所以a的最小值为24 1.6-.……… 14分 18.(本小题满分16分)【解】(1)由题意得2ab ⎧=⎪= 又0a b >>,解得28a =,21b =.因此所求椭圆的标准方程为2218x y +=. ………………………… 4分(2)①设()M x y ,,()A m n ,,则由题设知:2OM OA =,0OA OM ⋅=.即22224()0x y m n mx ny ⎧+=+⎨+=⎩,, 解得22221414m y n x ⎧=⎪⎨⎪=⎩,. ………………………8分因为点()A m n ,在椭圆C 2上,所以2218m n +=,即()()222182y x+=,亦即221432x y +=.所以点M 的轨迹方程为221432x y +=. ………………………10分②(方法1)设()M x y ,,则()(0)A y x λλλλ-∈≠R ,,,因为点A 在椭圆C 2上,所以222(8)8y x λ+=,即22288y x λ+=(i )又2288x y += (ii )(i )+(ii )得()2228119x y λ+=+, ………………………13分所以()228116||()||99AMB S OM OA x y λλλ∆=⋅=+=+≥.当且仅当1λ=±(即1AB k =±)时,()min 169AMB S ∆=. ………………………16分 (方法2)假设AB 所在的直线斜率存在且不为零,设AB 所在直线方程为y =kx (k ≠0).解方程组2218x y y kx ⎧+=⎪⎨⎪=⎩,,得22818A x k =+,222818A k y k =+, 所以22222222888(1)181818A Ak k OA x y k k k +=+=+=+++,222232(1)418k AB OA k+==+. 又22181x y y x k ⎧+=⎪⎪⎨⎪=-⎪⎩,,解得2228+8M k x k =,228+8M y k =,所以2228(1)+8k OM k +=.…………… 12分 (解法1)由于22214AMBS AB OM =⋅△2222132(1)8(1)418+8k k k k ++=⨯⨯+222264(1)(18)(+8)k k k +=+ ()2222264(1)18+82k k k +++≥222264(1)2568181(1)4k k +==+, 当且仅当22188k k +=+时等号成立,即k =±1时等号成立, 此时△AMB 面积的最小值是S △AMB =169. …………… 15分 当k =0,S △AMB 116129=⨯=>; 当k 不存在时,S △AMB 116229=⨯=>.综上所述,△AMB 面积的最小值为169. …………… 16分(解法2)因为22222211118(1)8(1)18+8k k OA OM k k +=++++22218+898(1)8k k k ++==+, 又22112OA OM OA OM+⋅≥,于是169OA OM ⋅≥, 当且仅当22188k k +=+时等号成立,即k =±1时等号成立.(后同方法1) 19.(本小题满分16分)【解】(1)因为110a S =≠,令1t =,r n =,则()2r t S r S t=,得21nS n S =,即21n S a n =.… 2分 当2n ≥时,11(21)n n n a S S a n -=-=-,且当1n =时,此式也成立.故数列{a n }的通项公式为1(21)n a a n =-. …………… 5分 (2)当11a =时,由(1)知1(21)21n a a n n =-=-,S n =n 2.依题意,2n ≥时,121n n b n b S b --==, ……… 7分于是233131log log 2log (2)n n n b b b n n --==∈N ≥,,且31log 1b =,故数列{}3log n b 是首项为1,公比为2的等比数列. …………… 10分 (3)由(2)得113log 122n n n b --=⨯=,所以12*3()n n b n -=∈N . ……… 12分于是()()()22121222212222231131113131313+131k k k k k k k k k b b --------+-===------. ……… 15分 所以()211122222111112313131k k n nnk n k k k b T b ----====-=-----∑∑. ……… 16分 20.(本小题满分16分) 【解】(1)()e xf x a '=-.若0a ≤,则()0f x '>,则函数()f x 是单调增函数,这与题设矛盾.………………… 2分 所以0a >,令()0f x '=,则ln x a =.当ln x a <时,()0f x '<,()f x 是单调减函数;ln x a >时,()0f x '>,()f x 是单调增函数; 于是当ln x a =时,()f x 取得极小值. ……………………… 4分 因为函数()e ()xf x ax a a =-+∈R 的图象与x 轴交于两点1(0)A x ,,2(0)B x ,(x 1<x 2),所以(ln )(2ln )0f a a a =-<,即2e a >.. 此时,存在1ln (1)e 0af <=>,;存在33ln ln (3ln )3ln a a f a a a a a >=-+,3230a a a >-+>, 又由()f x 在(ln )a -∞,及(ln )a +∞,上的单调性及曲线在R 上不间断, 可知2e a >为所求取值范围. ……………………………… 6分(2)因为1212e 0e 0xx ax a ax a ⎧-+=⎪⎨-+=⎪⎩,,两式相减得2121e e x x a x x -=-.记21(0)2x x s s -=>,则()121221212221e e e e 2(e e )22x x x x x x s s x x f s x x s ++-+-'⎡⎤=-=--⎣⎦-,…………… 8分 设()2(e e )s s g s s -=--,则()2(e e )0s sg s -'=-+<,所以()g s 是单调减函数,则有()(0)0g s g <=,而122e02x x s+>,所以()1202x x f +'<. 又()e xf x a '=-是单调增函数,且122x x +>所以0f '<. ………………………………………… 11分(3)依题意有e 0i xi ax a -+=,则(1)e 0i xi a x -=>⇒112i x i >=(,).于是122ex x +=,在等腰三角形ABC 中,显然C = 90°,…………………… 13分 所以12012()2x x x x x +=∈,,即00()0y f x =<,(第21—A 题)由直角三角形斜边的中线性质,可知2102x x y -=-, 所以21002x x y -+=,即1221212e ()022x x x x a x x a +--+++=,所以2112()022x x a x x a -+++=,即2112(1)(1)[(1)(1)]022x x a x x ----+-+=.因为110x -≠,则()2211111110212x x x a x ----++=-,t =,所以221(1)(1)022a at t t -++-=, …………………………………… 15分 即211a t =+-,所以(1)(1) 2.a t --= …………………………………… 16分南通市2014届高三第二次调研测试数学Ⅱ(附加题)21A .选修4—1:几何证明选讲【证明】因为P A 是圆O 在点A 处的切线,所以∠P AB =∠ACB .因为PD ∥AC ,所以∠EDB =∠ACB , 所以∠P AE =∠P AB =∠ACB =∠BDE .又∠PEA =∠BED ,故△P AE ∽△BDE .…………………… 10分 21B .选修4—2:矩阵与变换 【解】设a b c d ⎡⎤=⎢⎥⎣⎦M ,则由 1 111a b c d ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦,得11a b c d -=⎧⎨-=-⎩,. 再由1311⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ab c d ,得31a b c d +=⎧⎨+=⎩.,联立以上方程组解得a =2,b =1,c =0,d =1,故2101⎡⎤=⎢⎥⎣⎦M .……………………… 10分 21C .选修4—4:坐标系与参数方程【解】由题设可知P ( 1 + 2cos α,2sin α ),Q ( 1 + 2cos2α,sin2α ),………………………… 2分于是PQ 的中点M ()1cos cos 2sin sin 2αααα+++,. ……………………… 4分 从而()()2222cos cos 2sin sin 222cos d MA ααααα==+++=+ ………………… 6分因为0<α<2π,所以-1≤cos α<1, ………………………… 8分word 格式-可编辑-感谢下载支持ABC D D ABC E(第22题)于是0≤d 2<4,故d 的取值范围是[)02,. ………………………… 10分 21D .选修4—5:不等式选讲 证明:因为|m|+|n|≥|m -n|,所以|1|||1()21|x a x a x a x a a -++--+---≥||=|.………………………………… 8分 又a ≥2,故21|a -|≥3.所以|1|||3x a x a -++-≥.………………………………………………………………… 10分【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)【证】(1)以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴建立空间直角坐标系.不妨设AD =AA 1=1,AB =2,则D (0,0,0),A (1,0,0),B (1,2,0),C (0,2,0),A 1(1,0,1), B 1(1,2,1),C 1(0,2,1),D 1(0,0,1). 因为AE EB =λ,所以()2101E λλ+,,,于是()112111D E A D λλ=-=+,,,(-1,0,-1).所以()11211(101)01D E A D λλ⋅=-⋅--=+,,,,.故D 1E ⊥A 1D . ……… 5分(2)因为D 1D ⊥平面ABCD ,所以平面DEC 的法向量为n 1=(0,0,1).又()21201CE λλ=+,-,,1CD =(0,-2,1).设平面D 1CE 的法向量为n 2=(x ,y ,z ),则n 2·()2201CE x y λλ=+-=+,n 2·120CD y z =-+=, 所以向量n 2的一个解为()22121λλ-+,,. 因为二面角D 1—EC—D 的大小为π4,则1212|||⋅=n n |n n .解得λ=±2 33-1.又因E 是棱AB 上的一点,所以λ>0,故所求的λ值为2 33-1. ……… 10分 23.(本小题满分10分)【解】(1)当3n =时,131a a ==.因为{}211122a a ∈,,,{}321122a a ∈,,,即{}21122a ∈,,,{}211122a ∈,,, 所以212a =或21a =或22a =.故此时满足条件的数列{a n }共有3个:1112,,; 1,1,1; 1,2,1. ……… 3分word 格式-可编辑-感谢下载支持(2)令b i =a i +1a i(1≤i ≤7),则对每个符合条件的数列{a n },满足条件:77181111i i i i i a a b a a +=====∏∏,且b i ∈{}1122,, (1≤i ≤7). 反之,由符合上述条件的7项数列{b n }可唯一确定一个符合条件的8项数列{a n }.………7分记符合条件的数列{b n }的个数为N . 显然,b i (1≤i ≤7)中有k 个2;从而有k 个12,7-2k 个1.当k 给定时,{b n }的取法有77C C kkk -种,易得k 的可能值只有0,1,2,3, 故1122337675741C C C C C C 393N =+++=.因此,符合条件的数列{a n }的个数为393. ……… 10分。