南阳市高中2018-2019学年高二上学期第二次月考试卷数学
- 格式:doc
- 大小:676.00 KB
- 文档页数:16
南阳市三中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知点F 是抛物线y 2=4x 的焦点,点P 在该抛物线上,且点P 的横坐标是2,则|PF|=( ) A .2 B .3 C .4 D .5 2. 棱锥被平行于底面的平面所截,当截面分别平分棱锥的侧棱、侧面积、体积时,相应截面面积 为1S 、2S 、3S ,则( )A .123S S S <<B .123S S S >>C .213S S S <<D .213S S S >> 3. 已知集合A={x|1≤x ≤3},B={x|0<x <a},若A ⊆B ,则实数a 的范围是( )A .[3,+∞)B .(3,+∞)C .[﹣∞,3]D .[﹣∞,3)4. 在△ABC 中,a 2=b 2+c 2+bc ,则A 等于( ) A .120° B .60° C .45° D .30°5. 若方程x 2﹣mx+3=0的两根满足一根大于1,一根小于1,则m 的取值范围是( )A .(2,+∞)B .(0,2)C .(4,+∞)D .(0,4)6. 设a=sin145°,b=cos52°,c=tan47°,则a ,b ,c 的大小关系是( ) A .a <b <c B .c <b <a C .b <a <c D .a <c <b7. 如果点P 在平面区域220,210,20x y x y x y -+≥⎧⎪-+≤⎨⎪+-≤⎩上,点Q 在曲线22(2)1x y ++=上,那么||PQ 的最小值为( )A1 B1-C. 1 D1 8. 如图,一隧道截面由一个长方形和抛物线构成现欲在随道抛物线拱顶上安装交通信息采集装置若位置C 对隧道底AB 的张角θ最大时采集效果最好,则采集效果最好时位置C 到AB 的距离是( )A .2m B .2m C .4 m D .6 m9. 从单词“equation ”选取5个不同的字母排成一排,含有“qu ”(其中“qu ”相连且顺序不变)的不同排列共有( ) A .120个B .480个C .720个D .840个10.已知函数f (x )=a x +b (a >0且a ≠1)的定义域和值域都是[﹣1,0],则a+b=( )A .﹣B .﹣C .﹣D .﹣或﹣11100“光盘”行动,得到所示联表:2.7063.841 6.635附:K 2=,则下列结论正确的是( )A .在犯错误的概率不超过1%的前提下,认为“该校学生能否做到‘光盘’与性别无关”B .有99%以上的把握认为“该校学生能否做到‘光盘’与性别有关”C .在犯错误的概率不超过10%的前提下,认为“该校学生能否做到‘光盘’与性别有关”D .有90%以上的把握认为“该校学生能否做到‘光盘’与性别无关”12.如图,空间四边形ABCD 中,M 、G 分别是BC 、CD 的中点,则等( )A .B .C .D .二、填空题13.已知x ,y 满足条件,则函数z=﹣2x+y 的最大值是 .14.【常熟中学2018届高三10月阶段性抽测(一)】已知函数()()ln R xf x x a a x =+-∈,若曲线122e e 1x x y +=+(e 为自然对数的底数)上存在点()00,x y 使得()()00f f y y =,则实数a 的取值范围为__________.15.某校开设9门课程供学生选修,其中A ,B ,C3门课由于上课时间相同,至多选1门,若学校规定每位学生选修4门,则不同选修方案共有 种.16.从等边三角形纸片ABC 上,剪下如图所示的两个正方形,其中BC=3+,则这两个正方形的面积之和的最小值为 .17.设集合 {}{}22|27150,|0A x x x B x x ax b =+-<=++≤,满足AB =∅,{}|52A B x x =-<≤,求实数a =__________.18.已知=1﹣bi ,其中a ,b 是实数,i 是虚数单位,则|a ﹣bi|= .三、解答题19.△ABC 的三个内角A 、B 、C 所对的边分别为a 、b 、c ,asinAsinB+bcos 2A=a .(Ⅰ)求;(Ⅱ)若c 2=b 2+a 2,求B .20.已知三次函数f (x )的导函数f ′(x )=3x 2﹣3ax ,f (0)=b ,a 、b 为实数. (1)若曲线y=f (x )在点(a+1,f (a+1))处切线的斜率为12,求a 的值;(2)若f (x )在区间[﹣1,1]上的最小值、最大值分别为﹣2、1,且1<a <2,求函数f (x )的解析式.21.已知函数f (x )=|2x+1|,g (x )=|x|+a (Ⅰ)当a=0时,解不等式f (x )≥g (x );(Ⅱ)若存在x∈R,使得f(x)≤g(x)成立,求实数a的取值范围.22.解关于x的不等式12x2﹣ax>a2(a∈R).23.某重点大学自主招生考试过程依次为自荐材料审查、笔试、面试共三轮考核。
南阳市第二中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1.若命题p:∃x0∈R,sinx0=1;命题q:∀x∈R,x2+1<0,则下列结论正确的是()A.¬p为假命题B.¬q为假命题C.p∨q为假命题D.p∧q真命题2.如图Rt△O′A′B′是一平面图形的直观图,斜边O′B′=2,则这个平面图形的面积是()A.B.1 C.D.3.已知某几何体的三视图的侧视图是一个正三角形,如图所示,则该几何体的体积等于()A.B.C.D.4.在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88.若B样本数据恰好是A样本数据都加2后所得数据,则A,B两样本的下列数字特征对应相同的是()A.众数 B.平均数C.中位数D.标准差5.已知函数f(2x+1)=3x+2,且f(a)=2,则a的值等于()A.8 B.1 C.5 D.﹣16.天气预报说,在今后的三天中,每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683431 257 393 027 556 488 730 113 537 989 据此估计,这三天中恰有两天下雨的概率近似为( ) A .0.35 B .0.25 C .0.20 D .0.157. 偶函数f (x )的定义域为R ,若f (x+2)为奇函数,且f (1)=1,则f (89)+f (90)为( ) A .﹣2 B .﹣1 C .0 D .18. 设函数f (x )在R 上的导函数为f ′(x ),且2f (x )+xf ′(x )>x 2,下面的不等式在R 内恒成立的是( )A .f (x )>0B .f (x )<0C .f (x )>xD .f (x )<x9. 某几何体的三视图如图所示,则该几何体的表面积为()A .8+2 B .8+8 C .12+4 D .16+410.一个几何体的三视图如图所示,如果该几何体的侧面面积为12π,则该几何体的体积是()A .4πB .12πC .16πD .48π11.已知三个数1a -,1a +,5a +成等比数列,其倒数重新排列后为递增的等比数列{}n a 的前三 项,则能使不等式1212111n na a a a a a +++≤+++成立的自然数的最大值为( ) A .9 B .8 C.7D . 5 12.记,那么A B C D13x 和所支出的维修费用y (万元)的统计资料如表:根据上表数据可得y 与x 之间的线性回归方程=0.7x+,据此模型估计,该机器使用年限为14年时的维修费用约为 万元.14.已知()212811f x x x -=-+,则函数()f x 的解析式为_________.15.若非零向量,满足|+|=|﹣|,则与所成角的大小为 .16.函数()y f x =图象上不同两点()()1122,,,A x y B x y 处的切线的斜率分别是A B k k ,,规定(),A Bk k A B ABϕ-=(AB 为线段AB 的长度)叫做曲线()y f x =在点A 与点B 之间的“弯曲度”,给 出以下命题:①函数321y x x =-+图象上两点A 与B 的横坐标分别为1和2,则(),A B ϕ ②存在这样的函数,图象上任意两点之间的“弯曲度”为常数; ③设点A,B 是抛物线21y x =+上不同的两点,则(),2A B ϕ≤;④设曲线xy e =(e 是自然对数的底数)上不同两点()()112212,,,,1A x y B x y x x -=且,若(),1t A B ϕ⋅<恒成立,则实数t 的取值范围是(),1-∞.其中真命题的序号为________.(将所有真命题的序号都填上)17.设集合A={x|x+m ≥0},B={x|﹣2<x <4},全集U=R ,且(∁U A )∩B=∅,求实数m 的取值范围为 . 18.如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是.已知样本中平均气温不大于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为 .19.如图,在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.(1)证明:BC1∥平面ACD1.(2)当时,求三棱锥E﹣ACD1的体积.20.△ABC的三个内角A、B、C所对的边分别为a、b、c,asinAsinB+bcos2A=a.(Ⅰ)求;(Ⅱ)若c2=b2+a2,求B.21.已知全集U=R,函数y=+的定义域为A,B={y|y=2x,1≤x≤2},求:(1)集合A,B;(2)(∁U A)∩B.22.已知m ∈R ,函数f (x )=(x 2+mx+m )e x . (1)若函数f (x )没有零点,求实数m 的取值范围;(2)若函数f (x )存在极大值,并记为g (m ),求g (m )的表达式;(3)当m=0时,求证:f (x )≥x 2+x 3.23.如图所示,在边长为的正方形ABCD 中,以A 为圆心画一个扇形,以O 为圆心画一个圆,M ,N ,K 为切点,以扇形为圆锥的侧面,以圆O 为圆锥底面,围成一个圆锥,求圆锥的全面积与体积.24.(本小题满分12分)如图,在四棱锥ABCD S -中,底面ABCD 为菱形,Q P E 、、分别是棱AB SC AD 、、的中点,且⊥SE 平面ABCD .(1)求证://PQ 平面SAD ; (2)求证:平面 SAC 平面SEQ .南阳市第二中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】A【解析】解:时,sinx0=1;∴∃x0∈R,sinx0=1;∴命题p是真命题;由x2+1<0得x2<﹣1,显然不成立;∴命题q是假命题;∴¬p为假命题,¬q为真命题,p∨q为真命题,p∧q为假命题;∴A正确.故选A.【点评】考查对正弦函数的图象的掌握,弧度数是个实数,对∀∈R满足x2≥0,命题¬p,p∨q,p∧q的真假和命题p,q真假的关系.2.【答案】D【解析】解:∵Rt△O'A'B'是一平面图形的直观图,斜边O'B'=2,∴直角三角形的直角边长是,∴直角三角形的面积是,∴原平面图形的面积是1×2=2故选D.3.【答案】C【解析】考点:三视图.4.【答案】D【解析】解:A样本数据:82,84,84,86,86,86,88,88,88,88.B样本数据84,86,86,88,88,88,90,90,90,90众数分别为88,90,不相等,A错.平均数86,88不相等,B错.中位数分别为86,88,不相等,C错A样本方差S2=[(82﹣86)2+2×(84﹣86)2+3×(86﹣86)2+4×(88﹣86)2]=4,标准差S=2,B样本方差S2=[(84﹣88)2+2×(86﹣88)2+3×(88﹣88)2+4×(90﹣88)2]=4,标准差S=2,D正确故选D.【点评】本题考查众数、平均数、中位标准差的定义,属于基础题.5.【答案】B【解析】解:∵函数f(2x+1)=3x+2,且f(a)=2,令3x+2=2,解得x=0,∴a=2×0+1=1.故选:B.6.【答案】B【解析】解:由题意知模拟三天中恰有两天下雨的结果,经随机模拟产生了如下20组随机数,在20组随机数中表示三天中恰有两天下雨的有:191、271、932、812、393,共5组随机数,∴所求概率为.故选B.7.【答案】D【解析】解:∵f(x+2)为奇函数,∴f(﹣x+2)=﹣f(x+2),∵f(x)是偶函数,∴f(﹣x+2)=﹣f(x+2)=f(x﹣2),即﹣f(x+4)=f(x),则f(x+4)=﹣f(x),f(x+8)=﹣f(x+4)=f(x),即函数f(x)是周期为8的周期函数,则f(89)=f(88+1)=f(1)=1,f(90)=f(88+2)=f(2),由﹣f(x+4)=f(x),得当x=﹣2时,﹣f(2)=f(﹣2)=f(2),则f(2)=0,故f(89)+f(90)=0+1=1,故选:D.【点评】本题主要考查函数值的计算,利用函数奇偶性的性质,得到函数的对称轴是解决本题的关键.8.【答案】A【解析】解:∵2f(x)+xf′(x)>x2,令x=0,则f(x)>0,故可排除B,D.如果f(x)=x2+0.1,时已知条件2f(x)+xf′(x)>x2成立,但f(x)>x 未必成立,所以C也是错的,故选A故选A.9.【答案】D【解析】解:根据三视图得出该几何体是一个斜四棱柱,AA=2,AB=2,高为,1根据三视图得出侧棱长度为=2,∴该几何体的表面积为2×(2×+2×2+2×2)=16,故选:D【点评】本题考查了空间几何体的三视图,运用求解表面积,关键是恢复几何体的直观图,属于中档题.10.【答案】B【解析】解:由三视图可知几何体是底面半径为2的圆柱,∴几何体的侧面积为2π×2×h=12π,解得h=3,∴几何体的体积V=π×22×3=12π.故选B.【点评】本题考查了圆柱的三视图,结构特征,体积,表面积计算,属于基础题.11.【答案】C【解析】试题分析:因为三个数1,1,5a a a -++等比数列,所以()()()2115,3a a a a +=-+∴=,倒数重新排列后恰好为递增的等比数列{}n a的前三项,为111,,842,公比为,数列1n a ⎧⎫⎨⎬⎩⎭是以为首项,12为公比的等比数列,则不等式1212111n n a a a a a a +++≤+++等价为()1181122811212n n ⎛⎫-- ⎪⎝⎭≤--,整理,得722,17,n n n N +≤∴≤≤≤∈,故选C. 1考点:1、等比数列的性质;2、等比数列前项和公式. 12.【答案】B 【解析】【解析1】,所以【解析2】,二、填空题13.【答案】 7.5【解析】解:∵由表格可知=9, =4, ∴这组数据的样本中心点是(9,4), 根据样本中心点在线性回归直线=0.7x+上,∴4=0.7×9+,∴=﹣2.3,∴这组数据对应的线性回归方程是=0.7x ﹣2.3,∵x=14, ∴=7.5,故答案为:7.5【点评】本题考查线性回归方程,考查样本中心点,做本题时要注意本题把利用最小二乘法来求线性回归方程的系数的过程省掉,只要求a 的值,这样使得题目简化,注意运算不要出错.14.【答案】()2245f x x x =-+ 【解析】试题分析:由题意得,令1t x =-,则1x t =+,则()222(1)8(1)11245f t t t t t =+-++=-+,所以函数()f x 的解析式为()2245f x x x =-+. 考点:函数的解析式. 15.【答案】 90° . 【解析】解:∵∴=∴∴α与β所成角的大小为90° 故答案为90°【点评】本题用向量模的平方等于向量的平方来去掉绝对值.16.【答案】②③ 【解析】试题分析:①错:(1,1),(2,5),|||7,A B A B AB k k -=(,)A B ϕ∴=<②对:如1y =;③对;(,)2A B ϕ==≤;④错;1212(,)x x x x A B ϕ==,1211,(,)A B ϕ==因为1(,)t A B ϕ<恒成立,故1t ≤.故答案为②③.111] 考点:1、利用导数求曲线的切线斜率;2、两点间的距离公式、最值问题、不等式恒成立问题.【方法点晴】本题通过新定义“弯曲度”对多个命题真假的判断考查利用导数求曲线的切线斜率、两点间的距离公式、最值问题、不等式恒成立问题以及及数学化归思想,属于难题.该题型往往出现在在填空题最后两题,综合性较强,同学们往往因为某一点知识掌握不牢就导致本题“全盘皆输”,解答这类问题首先不能慌乱更不能因贪快而审题不清,其次先从最有把握的命题入手,最后集中力量攻坚最不好理解的命题. 17.【答案】 m ≥2 .【解析】解:集合A={x|x+m≥0}={x|x≥﹣m},全集U=R,所以C U A={x|x<﹣m},又B={x|﹣2<x<4},且(∁U A)∩B=∅,所以有﹣m≤﹣2,所以m≥2.故答案为m≥2.18.【答案】9.【解析】解:平均气温低于22.5℃的频率,即最左边两个矩形面积之和为0.10×1+0.12×1=0.22,所以总城市数为11÷0.22=50,平均气温不低于25.5℃的频率即为最右面矩形面积为0.18×1=0.18,所以平均气温不低于25.5℃的城市个数为50×0.18=9.故答案为:9三、解答题19.【答案】【解析】(1)证明:∵AB∥C1D1,AB=C1D1,∴四边形ABC1D1是平行四边形,∴BC1∥AD1,又∵AD1⊂平面ACD1,BC1⊄平面ACD1,∴BC1∥平面ACD1.(2)解:S△ACE=AEAD==.∴V=V===.【点评】本题考查了线面平行的判定,长方体的结构特征,棱锥的体积计算,属于中档题.20.【答案】【解析】解:(Ⅰ)由正弦定理得,sin2AsinB+sinBcos2A=sinA,即sinB(sin2A+cos2A)=sinA∴sinB=sinA,=(Ⅱ)由余弦定理和C2=b2+a2,得cosB=由(Ⅰ)知b2=2a2,故c2=(2+)a2,可得cos2B=,又cosB>0,故cosB=所以B=45°【点评】本题主要考查了正弦定理和余弦定理的应用.解题的过程主要是利用了正弦定理和余弦定理对边角问题进行了互化.21.【答案】【解析】解:(1)由,解得0≤x≤3A=[0,3],由B={y|y=2x,1≤x≤2}=[2,4],(2))∁U A=(﹣∞,0)∪[3,+∞),∴(∁U A)∩B=(3,4]22.【答案】【解析】解:(1)令f(x)=0,得(x2+mx+m)e x=0,所以x2+mx+m=0.因为函数f(x)没有零点,所以△=m2﹣4m<0,所以0<m<4.(2)f'(x)=(2x+m)e x+(x2+mx+m)e x=(x+2)(x+m)e x,令f'(x)=0,得x=﹣2,或x=﹣m,当m>2时,﹣m<﹣2.列出下表:x (﹣∞,﹣m)﹣m (﹣m,﹣2)﹣2 (﹣2,+∞)f'(x)+0 ﹣0 +f(x)↗me﹣m↘(4﹣m)e﹣2↗当x=﹣m时,f(x)取得极大值me﹣m.当m=2时,f'(x)=(x+2)2e x≥0,f(x)在R上为增函数,所以f(x)无极大值.当m<2时,﹣m>﹣2.列出下表:x (﹣∞,﹣2)﹣2 (﹣2,﹣m)﹣m (﹣m,+∞)f'(x)+0 ﹣0 +f(x)↗(4﹣m)e﹣2↘me﹣m↗当x=﹣2时,f(x)取得极大值(4﹣m)e﹣2,所以(3)当m=0时,f(x)=x2e x,令ϕ(x)=e x﹣1﹣x,则ϕ'(x)=e x﹣1,当x>0时,φ'(x)>0,φ(x)为增函数;当x<0时,φ'(x)<0,φ(x)为减函数,所以当x=0时,φ(x)取得最小值0.所以φ(x )≥φ(0)=0,e x ﹣1﹣x ≥0,所以e x≥1+x ,因此x 2e x ≥x 2+x 3,即f (x )≥x 2+x 3.【点评】本题考查的知识点是利用导数研究函数的单调性,利用函数研究函数的极值,其中根据已知函数的解析式,求出函数的导函数是解答此类问题的关键.23.【答案】【解析】解:设圆锥的母线长为l ,底面半径为r ,高为h ,由已知条件,解得,,,∴S=πrl+πr 2=10π,∴24.【答案】(1)详见解析;(2)详见解析. 【解析】试题分析:(1)根据线面平行的判定定理,可先证明PQ 与平面内的直线平行,则线面平行,所以取SD 中点F ,连结PF AF ,,可证明AF PQ //,那就满足了线面平行的判定定理了;(2)要证明面面垂直,可先证明线面垂直,根据所给的条件证明⊥AC 平面SEQ ,即平面⊥SAC 平面SEQ . 试题解析:证明:(1)取SD 中点F ,连结PF AF ,. ∵F P 、分别是棱SD SC 、的中点,∴CD FP //,且CD FP 21=. ∵在菱形ABCD 中,Q 是AB 的中点,∴CD AQ //,且CD AQ 21=,即AQ FP //且AQ FP =. ∴AQPF 为平行四边形,则AF PQ //.∵⊄PQ 平面SAD ,⊂AF 平面SAD ,∴//PQ 平面SAD .考点:1.线线,线面平行关系;2.线线,线面,面面垂直关系.【易错点睛】本题考查了立体几何中的线与面的关系,属于基础题型,重点说说垂直关系,当证明线线垂直时,一般要转化为线面垂直,证明线与面垂直时,即证明线与平面内的两条相交直线垂直,证明面面垂直时,转化为证明线面垂直,所以线与线的证明是基础,这里经常会搞错两个问题,一是,线与平面内的两条相交直线垂直,线与平面垂直,很多同学会记成一条,二是,面面垂直时,平面内的线与交线垂直,才与平面垂直,很多同学会理解为两个平面垂直,平面内的线都与另一个平面垂直,需熟练掌握判定定理以及性质定理.。
南阳市第四中学校2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 函数y=f (x )在[1,3]上单调递减,且函数f (x+3)是偶函数,则下列结论成立的是( ) A .f (2)<f (π)<f (5) B .f (π)<f (2)<f (5)C .f (2)<f (5)<f (π)D .f (5)<f (π)<f (2)2. 已知椭圆C :+y 2=1,点M 1,M 2…,M 5为其长轴AB 的6等分点,分别过这五点作斜率为k (k ≠0)的一组平行线,交椭圆C 于P 1,P 2,…,P 10,则直线AP 1,AP 2,…,AP 10这10条直线的斜率乘积为( )A .﹣B .﹣C .D .﹣3. 函数的定义域为( )A .{x|1<x ≤4}B .{x|1<x ≤4,且x ≠2}C .{x|1≤x ≤4,且x ≠2}D .{x|x ≥4}4. 已知函数⎩⎨⎧≤>=)0(||)0(log )(2x x x x x f ,函数)(x g 满足以下三点条件:①定义域为R ;②对任意R x ∈,有1()(2)2g x g x =+;③当]1,1[-∈x 时,()g x .则函数)()(x g x f y -=在区间]4,4[-上零点的个数为( )A .7B .6C .5D .4【命题意图】本题考查利用函数图象来解决零点问题,突出了对分段函数的转化及数形结合思想的考查,本题综合性强,难度大.5. 已知a=log 23,b=8﹣0.4,c=sinπ,则a ,b ,c 的大小关系是( )A .a >b >cB .a >c >bC .b >a >cD .c >b >a6. 已知全集为R ,集合A={x|()x ≤1},B={x|x 2﹣6x+8≤0},则A ∩(∁R B )=( ) A .{x|x ≤0} B .{x|2≤x ≤4}C .{x|0≤x <2或x >4}D .{x|0<x ≤2或x ≥4}7. 设集合{}|22A x R x =∈-≤≤,{}|10B x x =-≥,则()R A B =ð( )A.{}|12x x <≤B.{}|21x x -≤<C. {}|21x x -≤≤D. {}|22x x -≤≤【命题意图】本题主要考查集合的概念与运算,属容易题.8. 已知函数[)[)1(1)sin 2,2,212()(1)sin 22,21,222nn x n x n n f x x n x n n ππ+⎧-+∈+⎪⎪=⎨⎪-++∈++⎪⎩(n N ∈),若数列{}m a 满足*()()m a f m m N =∈,数列{}m a 的前m 项和为m S ,则10596S S -=( ) A.909 B.910 C.911 D.912【命题意图】本题考查数列求和等基础知识,意在考查分类讨论的数学思想与运算求解能力.9. 定义新运算⊕:当a ≥b 时,a ⊕b=a ;当a <b 时,a ⊕b=b 2,则函数f (x )=(1⊕x )x ﹣(2⊕x ),x ∈[﹣2,2]的最大值等于( ) A .﹣1 B .1 C .6D .1210.已知函数f (x )=⎩⎪⎨⎪⎧log 2(a -x ),x <12x ,x ≥1若f (-6)+f (log 26)=9,则a 的值为( )A .4B .3C .2D .111.函数f (x )=sin ωx (ω>0)在恰有11个零点,则ω的取值范围( ) A . C . D .时,函数f (x )的最大值与最小值的和为( ) A .a+3 B .6C .2D .3﹣a12.已知f (x )是R 上的偶函数,且在(﹣∞,0)上是增函数,设,b=f (log 43),c=f (0.4﹣1.2)则a ,b ,c 的大小关系为( )A .a <c <bB .b <a <cC .c <a <bD .c <b <a二、填空题13.设p :∃x∈使函数有意义,若¬p 为假命题,则t 的取值范围为 .14.若不等式组表示的平面区域是一个锐角三角形,则k 的取值范围是 .15.直线ax ﹣2y+2=0与直线x+(a ﹣3)y+1=0平行,则实数a 的值为 .16.对于函数(),,y f x x R =∈,“|()|y f x =的图象关于y 轴对称”是“()y f x =是奇函数”的 ▲ 条件. (填“充分不必要”, “必要不充分”,“充要”,“既不充分也不必要”)17.已知点A (2,0),点B (0,3),点C 在圆x 2+y 2=1上,当△ABC 的面积最小时,点C 的坐标为 .18.下列四个命题申是真命题的是 (填所有真命题的序号)①“p ∧q 为真”是“p ∨q 为真”的充分不必要条件;②空间中一个角的两边和另一个角的两边分别平行,则这两个角相等; ③在侧棱长为2,底面边长为3的正三棱锥中,侧棱与底面成30°的角;④动圆P 过定点A (﹣2,0),且在定圆B :(x ﹣2)2+y 2=36的内部与其相内切,则动圆圆心P 的轨迹为一个椭圆.三、解答题19.在平面直角坐标系xOy 中,点P (x ,y )满足=3,其中=(2x+3,y ),=(2x ﹣﹣3,3y ).(1)求点P 的轨迹方程;(2)过点F (0,1)的直线l 交点P 的轨迹于A ,B 两点,若|AB|=,求直线l 的方程.20.(本小题满分12分)已知函数()23cos cos 2f x x x x =++. (1)当63x ππ⎡⎤∈-⎢⎥⎣⎦,时,求函数()y f x =的值域;(2)已知0ω>,函数()212x g x f ωπ⎛⎫=+ ⎪⎝⎭,若函数()g x 在区间236ππ⎡⎤-⎢⎥⎣⎦,上是增函数,求ω的最大值.21.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=ax 2+lnx (a ∈R ). (1)当a=12时,求f (x )在区间[1,e]上的最大值和最小值;(2)如果函数g (x ),f 1(x ),f 2(x ),在公共定义域D 上,满足f 1(x )<g (x )<f 2(x ),那么就称g (x )为f 1(x ),f 2(x )的“活动函数”.已知函数()()221121-a ln ,2f x a x ax x ⎛⎫=-++ ⎪⎝⎭.()22122f x x ax =+。
河南省南阳市2017-2018学年高二数学上学期第二次月考试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.等差数列{}n a 中,14739a a a ++=,36927a a a ++=,则前9项和9S 的值为( ) A .66 B .99 C .144 D .297 2.在ABC ∆中,若3a =,1cos 2A =-,则ABC ∆的外接圆半径是( )A .12B C .3.不等式()()120x x --≥的解集为( )A .{}12x x ≤≤ B .{1x x ≤或}2x ≥ C .{}12x x << D .{1x x <或}2x >4.设数列{}n a 的前n 项和21n S n =+,1315a a a +++=L ( )A .124B .120C .128D .1215.在ABC ∆中,若2cos sin sin B A C =,则ABC ∆的形状一定是( )A .等腰直角三角形B .直角三角形C .等腰三角形D .等边三角形 6.设,a b 是非零实数,若a b >,则一定有( ) A .11a b < B .2a ab > C .2211ab a b > D .11a b a b->-7.在ABC ∆中,2a =,b =4A π=,则角B =( )A .6πB .6π或56πC .3πD .56π8.设数列{}n a 满足()21*1232222n n n a a a a n -++++=∈N L ,通项公式是( )A .12n a n =B .112n n a -=C .12n n a =D .112n n a +=9.若221xy+=,则x y +的取值范围是( )A .[]0,2B .[]2,0-C .[)2,-+∞D .(],2-∞-10.在ABC ∆中,角A B C 、、所对的边分别为a b c 、、,若3A π=,()1cos cos b C c A -=,2b =,则ABC ∆的面积为( )A B . D 或11.ABC ∆的内角,,A B C 的所对的边,,a b c 成等比数列,且公比为q ,则sin sin Cq A+的取值范围为( )A .()0,+∞B .(1,2C .()1,+∞D .)1-12.数列{}n a 的通项公式为123n a n =-,12n n n n b a a a ++=⋅⋅,n S 是数列{}n b 的前n 项和,则n S 的最大值为( )A .280B .308C .310D .320第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.在ABC ∆中,三边a b c 、、所对的角分别为A B C 、、,若2220a b c +-+=,则角C 的大小为 .14.在数列{}n a 中,其前n 项和32nn S k =⋅+,若数列{}n a 是等比数列,则常数k 的值为 . 15.已知0x >,0y >,141x y+=,不等式280m m x y ---<恒成立,则m 的取值范围是 .(答案写成集合或区间格式)16.已知数列{}n a 的通项公式为3n n a =,记数列{}n a 的前n 项和为n T ,若对任意的*n ∈N ,3362n T k n ⎛⎫+≥- ⎪⎝⎭恒成立,则实数k 的取值范围 .(答案写成集合或区间格式) 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.已知()211f x x a x a ⎛⎫=-++ ⎪⎝⎭. (1)当12a =时,解不等式()0f x ≤;(2)若0a >,解关于x 的不等式()0f x ≤.18.设ABC ∆的内角,,A B C 所对的边分别为,,a b c 且1cos 2a C cb +=. (1)求角A 的大小;(2)若1a =,求ABC ∆的周长L 的取值范围.19.某房地产开发公司计划在一楼区内建造一个长方形公园ABCD ,公园由长方形的休闲区1111A B C D (阴影部分)和环公园人行道组成.已知休闲区1111A B C D 的面积为4000平方米,人行道的宽分别为4米和10米.(1)若设休闲区的长11A B x =米,求公园ABCD 所占面积S 关于x 的函数()S x 的解析式; (2)要使公园所占面积最小,休闲区1111A B C D 的长和宽该如何设计?20.已知数列{}n a 中,12a =,11322n nn na a ++=+. (1)求数列{}n a 的通项公式; (2)求数列{}n a 的前n 项和.21.(1)在锐角ABC ∆中,1BC =,2B A =,求cos ACA的值及AC 的取值范围; (2)在ABC ∆中,已知2221cos cos cos A B C +=+,试判断ABC ∆的形状.22.设正项数列{}n a 的前n 项和n S ,且满足22n n n S a a =+.(1)求数列{}n a 的通项公式; (2)若数列1221n n n n n a a b a a ++++=+,数列{}n b 的前n 项和为n T ,求证:122n T n <+.南阳一中2017秋高二第二次月考数学答案一、选择题1-5:BDADC 6-10:CACDD 11、12:BC 二、填空题 13.34π(或135°) 14.3- 15.()1,9- 16.2,27⎡⎫+∞⎪⎢⎣⎭三、解答题 17.解:(1)当12a =时,有不等式()25102f x x x =-+≤,∴()1202x x ⎛⎫--≤ ⎪⎝⎭,∴不等式的解集为122x x ⎧⎫≤≤⎨⎬⎩⎭(2)∵不等式()()10f x x x a a ⎛⎫=--≤ ⎪⎝⎭当1a a >时,有01a <<,∴不等式的解集为1x a x a ⎧⎫≤≤⎨⎬⎩⎭; 当1a a <时,有1a >,∴不等式的解集为1x x a a ⎧⎫≤≤⎨⎬⎩⎭; 当1a a=时,有1a =,∴不等式的解集为{}1. 18.解:(1)∵1cos 2a C cb +=,由正弦定理得12sin cos 2sin 2sin 2R A C R C R B +=,即1sin cos sin sin 2A C CB +=,又∵()sin sin sin cos cos sin B A C A C A C =+=+, ∴1sin cos sin 2C A C =, ∵sin 0C ≠, ∴1cos 2A =, 又∵0A π<<, ∴3A π=.(2)由正弦定理得:sinsin a B b A ==,c =,∴1a b c =++)1sin sinB C =+ ())1sin sinB A B =++112cos 2B B ⎫=++⎪⎪⎝⎭12sin 6B π⎛⎫=++ ⎪⎝⎭∵3A π=,∴20,3B π⎛⎫∈ ⎪⎝⎭,∴5,666B πππ⎛⎫+∈ ⎪⎝⎭, ∴1sin ,162B π⎛⎫⎛⎤+∈ ⎪ ⎥⎝⎭⎝⎦. 故ABC ∆的周长L 的取值范围为(]2,3. 19.解:(1)由11A B x =,知114000B C x=()4000208S x x ⎛⎫=++ ⎪⎝⎭()8000416080x x x=++>(2)8000041608S x x=++≥41605760+= 当且仅当800008x x=即100x =时取等号 ∴要使公园所占面积最小,休闲区1111A B C D 的长为100米,宽为40米. 20.解:(1)2n n n a b =,则1112n n n a b +++=,由题13n n b b +=+ 则13n n b b +-= ∴2n n a ⎧⎫⎨⎬⎩⎭是公差为3,首项为1的等差数列,∴()131322nn a n n =+-=- ∴()322n n a n =-⋅ (2)设23124272n S =⋅+⋅+⋅++L ()()1352322n n n n --⋅+-⋅ 则2342124272n S =⋅+⋅+⋅++L ()()1352322n n n n +-⋅+-⋅相减得()()23123222322n n n S n +-=++++--⋅L()()2112212332221n n n -+-=+⋅--⋅-()()112324322n n n ++=+---⋅()110532n n +=-+-⋅∴()110352n n S n +=+-⋅.21.解:(1)设2A B θθ∠=⇒=,由正弦定理得sin 2sin AC BCθθ=, ∴122cos cos AC ACθθ=⇒=.由锐角ABC ∆得0290045θθ<<⇒<<︒ooo,又01803903060θθ︒<︒-<︒⇒︒<<︒,故3045cos 22θθ︒<<︒⇒<<.∴2cos AC θ=∈.(2)由题,2222sin 2sin sin A B C -=--,∴222sin sin sin A B C =+ 由正弦定理得222a b c =+,∴ABC ∆为直角三角形.22.解:(1)由题意可得22n n n S a a =+,21112n n n S a a ---=+,两式相减得, 22112n n n n n a a a a a --=-++,所以22110n n n n a a a a -----=,即()()1110n n n n a a a a --+--=,又因为数列{}n a 为正项数列,所以11n n a a -+=,即数列{}n a 为等差数列,又1n =时,2112a a a =+,所以11a =,11n a a n n =+-=.(2)由(1)知1221n n n b n n ++=+++,又因为12121n n n b n n ++=+=-++1111122112n n n n ++=+-++++,所以()12222n n T b b b =+++=+++L L 111111233412n n ⎡⎤⎛⎫⎛⎫⎛⎫+-+-++- ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎣⎦L所以12n n T b b b =+++=L 11122222n n n +-<++.。
南阳市第四中学校2018-2019学年高二上学期第二次月考试卷数学班级__________姓名__________ 分数__________一、选择题1. 已知三棱柱 的侧棱与底面边长都相等,在底面上的射影为的中点, 111ABC A B C -1A ABC BC 则异面直线与所成的角的余弦值为()AB 1CCA B D .342. 下列式子表示正确的是( )A 、B 、C 、D 、{}00,2,3⊆{}{}22,3∈{}1,2φ∈{}0φ⊆3. 设f (x )=asin (πx+α)+bcos (πx+β)+4,其中a ,b ,α,β均为非零的常数,f (1988)=3,则f (2008)的值为( )A .1B .3C .5D .不确定4. 已知f (x )=x 3﹣3x+m ,在区间[0,2]上任取三个数a ,b ,c ,均存在以f (a ),f (b ),f (c )为边长的三角形,则m 的取值范围是( )A .m >2B .m >4C .m >6D .m >85. 459和357的最大公约数()A .3B .9C .17D .516. 己知y=f (x )是定义在R 上的奇函数,当x <0时,f (x )=x+2,那么不等式2f (x )﹣1<0的解集是( )A .B .或C .D .或7. 函数的定义域是( )A .[0,+∞)B .[1,+∞)C .(0,+∞)D .(1,+∞)8. 在二项式(x 3﹣)n (n ∈N *)的展开式中,常数项为28,则n 的值为( )A .12B .8C .6D .49. 已知函数f (2x+1)=3x+2,且f (a )=2,则a 的值等于( )A .8B .1C .5D .﹣110.若向量=(3,m ),=(2,﹣1),∥,则实数m 的值为( )A .﹣B .C .2D .611.函数,的值域为( )2-21y x x =-[0,3]x ∈ A. B. C. D.12.已知点M (a ,b ,c )是空间直角坐标系O ﹣xyz 中的一点,则与点M 关于z 轴对称的点的坐标是( )A .(a ,﹣b ,﹣c )B .(﹣a ,b ,﹣c )C .(﹣a ,﹣b ,c )D .(﹣a ,﹣b ,﹣c )二、填空题13.下列关于圆锥曲线的命题:其中真命题的序号 .(写出所有真命题的序号).①设A ,B 为两个定点,若|PA|﹣|PB|=2,则动点P 的轨迹为双曲线;②设A ,B 为两个定点,若动点P 满足|PA|=10﹣|PB|,且|AB|=6,则|PA|的最大值为8;③方程2x 2﹣5x+2=0的两根可分别作椭圆和双曲线的离心率;④双曲线﹣=1与椭圆有相同的焦点.14.直角坐标P (﹣1,1)的极坐标为(ρ>0,0<θ<π) .15.在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 .16.8名支教名额分配到三所学校,每个学校至少一个名额,且甲学校至少分到两个名额的分配方案为 (用数字作答) 17.已知是等差数列,为其公差, 是其前项和,若只有是中的最小项,则可得出的结论中所有正确的序号是___________①②③④⑤18.下图是某算法的程序框图,则程序运行后输出的结果是____.三、解答题19.已知椭圆C 1:+x 2=1(a >1)与抛物线C:x 2=4y 有相同焦点F 1.(Ⅰ)求椭圆C 1的标准方程;(Ⅱ)已知直线l1过椭圆C1的另一焦点F2,且与抛物线C2相切于第一象限的点A,设平行l1的直线l交椭圆C1于B,C两点,当△OBC面积最大时,求直线l的方程.20.已知函数,(其中常数m>0)(1)当m=2时,求f(x)的极大值;(2)试讨论f(x)在区间(0,1)上的单调性;(3)当m∈[3,+∞)时,曲线y=f(x)上总存在相异两点P(x1,f(x1))、Q(x2,f(x2)),使得曲线y=f (x)在点P、Q处的切线互相平行,求x1+x2的取值范围.21.(本小题满分12分)某媒体对“男女延迟退休”这一公众关注的问题进行名意调查,下表是在某单位得到的数据:赞同反对合计男50150200女30170200合计8032040097.5%(Ⅰ)能否有能否有的把握认为对这一问题的看法与性别有关?(Ⅱ)从赞同“男女延迟退休”的80人中,利用分层抽样的方法抽出8人,然后从中选出3人进行陈述X X发言,设发言的女士人数为,求的分布列和期望.参考公式:,22()K ()()()()n ad bc a b c d a c b d -=++++()n a b c d =+++22.某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获Y (单位:kg )与它的“相近”作物株数X 之间的关系如下表所示:X 1234Y 51484542这里,两株作物“相近”是指它们之间的直线距离不超过1米.(I )从三角形地块的内部和边界上分别随机选取一株作物,求它们恰 好“相近”的概率;(II )在所种作物中随机选取一株,求它的年收获量的分布列与数学期望.23.(本小题满分12分)一个盒子里装有编号为1、2、3、4、5的五个大小相同的小球,第一次从盒子里随机抽取2个小球,记下球的编号,并将小球放回盒子,第二次再从盒子里随机抽取2个小球,记下球的编号.(Ⅰ)求第一次或第二次取到3号球的概率;ξξ(Ⅱ)设为两次取球时取到相同编号的小球的个数,求的分布列与数学期望.24.某同学在研究性学习中,了解到淘宝网站一批发店铺在今年的前五个月的销售量(单位:百件)的数据如表:月份x12345销售量y(百件)44566(Ⅰ)该同学为了求出y关于x的回归方程=x+,根据表中数据已经正确算出=0.6,试求出的值,并估计该店铺6月份的产品销售量;(单位:百件)(Ⅱ)一零售商现存有从该淘宝批发店铺2月份进货的4件和3月份进货的5件产品,顾客甲现从该零售商处随机购买了3件,后经了解,该淘宝批发店铺今年2月份的产品都有质量问题,而3月份的产品都没有质量问题.记顾客甲所购买的3件产品中存在质量问题的件数为X,求X的分布列和数学期望.南阳市第四中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】D【解析】考点:异面直线所成的角.2.【答案】D【解析】试题分析:空集是任意集合的子集。
南阳一中2017年秋期高二第二次月考数学试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 等差数列中,,,则前9项和的值为()A. 66B. 99C. 144D. 297【答案】B【解析】试题分析:由已知得,,所以,,,故选B.考点:等差数列的性质与求和公式.2. 在中,若,,则的外接圆半径是()A. B. C. D.【答案】D【解析】试题分析:因为正弦定理内容可以计算出外接圆的半径.,由正弦定理知故选D.考点: 同角的三角函数关系正弦定理3. 不等式的解集为()A. B. 或 C. D. 或【答案】A【解析】,选A.4. 设数列的前项和,()A. 124B. 120C. 128D. 121【答案】D【解析】当时,,当时,,不符合,则,,选D.【点睛】已知数列的前n项和,求通项公式分两步,第一步n=1 时,求出首项,第二步,当时利用前n项和与前n-1项和作差求出第n项,若首项满足后者,则可书写统一的通项公式,若首项不满足,则通项公式要写成分段函数形式,本题求和要注意首项不满足,数列从第二项开始成等差数列,从第二项以后利用等差数列前n项和公式求和,而第一项要要单独相加.5. 在中,若,则的形状一定是()A. 等腰直角三角形B. 直角三角形C. 等腰三角形D. 等边三角形【答案】C6. 设是非零实数,若,则一定有()A. B. C. D.【答案】C【解析】试题分析:因为是非零实数,,所以,所以,所以,故选C.考点:不等式的性质.7. 在中,,,,则角()A. B. 或 C. D.【答案】A【解析】试题分析:由题意得,根据正弦定理可知,又因为,所以,故选A.考点:正弦定理.8. 设数列满足,通项公式是()A. B. C. D.【答案】C【解析】当时,,…………...(1) ,……....(2),(1)-(2)得:,,符合,则通项公式是,选C.9. 若,则的取值范围是()A. B. C. D.【答案】D【解析】试题分析:∵,变形为,即,当且仅当时取等号,则的取值范围是,故选D.考点:1.指数式的运算性质;2.基本不等式求最值.【方法点睛】本题主要考查的是指数式的运算性质,利用基本不等式求最值,属于中档题,解决此类题目利用基本不等式,构造关于某个变量的不等式,解此不等式便可求出该变量的取值范围,再验证等号是否成立,便可确定该变量的最值,这是解决最值问题或范围问题的常用方法,应熟练掌握,除此之外,对式子的观察能力变形能力也是解决此类问题的关键.10. 在中,角所对的边分别为,若,,,则的面积为()A. B. C. D. 或【答案】D【解析】,,,,或,则,或;当时,,则,,;当时,,,为等边三角形,,选D.11. 的内角的所对的边成等比数列,且公比为,则的取值范围为()A. B. C. D.【答案】B【解析】根据题意,,,由于,,,,则,根据二次函数的相关知识求出的取值范围为.【点睛】由于三角形三边a,b,c成等比数列,满足等比数列的要求,另外需要注意三角形本身的要求,即两边之和大于第三边,两边之差小于第三边,由此产生了范围要求,把原式化为关于的二次函数,根据t范围要求,借助于二次函数图像,求出相应的取值范围.12. 数列的通项公式为,,是数列的前项和,则的最大值为()A. 280B. 308C. 310D. 320【答案】C【解析】已知数列的通项公式为,可知数列是递减的,前4项为正,从第5项以后为负,因此数列的前2项为正,所以数列前n项和当时,最大值为.选C. 【点睛】已知数列的通项公式,立即可以表达出数列的通项公式,展开通项公式求数列的前n项和,需要利用公式法,涉及三个求和公式,及利用导数求最值,因此比较繁琐,不适合选填题,所以本题采用分析数列各项的符号及各项的值,小题小做,分析数列各项及前n项的和,找出最大值.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 在中,三边所对的角分别为,若,则角的大小为__________.【答案】(或135°)【解析】,,则.14. 在数列中,其前项和,若数列是等比数列,则常数的值为__________.【答案】-3【解析】,,当时,,要求符合,则.15. 已知,,,不等式恒成立,则的取值范围是__________.(答案写成集合或区间格式)【答案】【解析】因为,,,则,(当且仅当时取等号),,不等式恒成立,即:只需,则,则的取值范围是.【点睛】关于利用基本不等式求最值问题,需要掌握一些基本知识和基本方法,利用基本不等式求最值要注意“一正、二定、三相等”,当两个正数的积为定值时,这两个数的和取得最小值;当两个正数的和为定值时,这两个数的积取得最大值;利用基本不等式求最值的技巧方法有三种:第一是“1的妙用”,第二是“做乘法”,第三是“等转不等”.16. 已知数列的通项公式为,记数列的前项和为,若对任意的,恒成立,则实数的取值范围__________.(答案写成集合或区间格式)【答案】【解析】由题意可得,,即求的最大值,所以当n=3时,,所以,填。
南阳市第二中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 线段AB 在平面α内,则直线AB 与平面α的位置关系是( )A .AB ⊂αB .AB ⊄αC .由线段AB 的长短而定D .以上都不对2. 在中,、、分别为角、、所对的边,若,则此三角形的形状一定是( ) A .等腰直角 B .等腰或直角 C .等腰D .直角3. “1<m <3”是“方程+=1表示椭圆”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4. 已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l ⊥m ,l ⊥n ,l ⊄α,l ⊄β,则( ) A .α∥β且l ∥α B .α⊥β且l ⊥βC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l 5. 边长为2的正方形ABCD 的定点都在同一球面上,球心到平面ABCD 的距离为1,则此球的表面积为( ) A .3π B .5πC .12πD .20π6. 下列命题中错误的是( )A .圆柱的轴截面是过母线的截面中面积最大的一个B .圆锥的轴截面是所在过顶点的截面中面积最大的一个C .圆台的所有平行于底面的截面都是圆面D .圆锥所有的轴截面是全等的等腰三角形7. 与﹣463°终边相同的角可以表示为(k ∈Z )( )A .k360°+463°B .k360°+103°C .k360°+257°D .k360°﹣257°8. 若复数满足71i i z+=(为虚数单位),则复数的虚部为( ) A .1 B .1- C . D .i -9. 已知,,x y z 均为正实数,且22log x x =-,22log y y -=-,22log z z -=,则( )A .x y z <<B .z x y <<C .z y z <<D .y x z <<10.若向量(1,0,x)与向量(2,1,2)的夹角的余弦值为,则x为()A.0 B.1 C.﹣1 D.211.已知函数f(x)=1+x﹣+﹣+…+,则下列结论正确的是()A.f(x)在(0,1)上恰有一个零点B.f(x)在(﹣1,0)上恰有一个零点C.f(x)在(0,1)上恰有两个零点D.f(x)在(﹣1,0)上恰有两个零点10101化为十进制数的结果为()12.二进制数)(2A.15B.21C.33D.41二、填空题13.执行如图所示的程序框图,输出的所有值之和是.【命题意图】本题考查程序框图的功能识别,突出对逻辑推理能力的考查,难度中等.,对任意的m∈[﹣2,2],f(mx 14.【盐城中学2018届高三上第一次阶段性考试】已知函数f(x)=3x x﹣2)+f(x)<0恒成立,则x的取值范围为_____.15.如图,在棱长为1的正方体ABCD﹣A1B1C1D1中,M、N分别是A1B1和BB1的中点,那么直线AM和CN所成角的余弦值为.16.若函数()f x 的定义域为[]1,2-,则函数(32)f x -的定义域是 .17.已知条件p :{x||x ﹣a|<3},条件q :{x|x 2﹣2x ﹣3<0},且q 是p 的充分不必要条件,则a 的取值范围是 .18.过点(0,1)的直线与x 2+y 2=4相交于A 、B 两点,则|AB|的最小值为 .三、解答题19.已知函数f (x )=cosx (sinx+cosx )﹣.(1)若0<α<,且sin α=,求f (α)的值;(2)求函数f (x )的最小正周期及单调递增区间.20.已知正项等差{a n },lga 1,lga 2,lga 4成等差数列,又b n =(1)求证{b n }为等比数列.(2)若{b n }前3项的和等于,求{a n }的首项a 1和公差d .21.已知函数f(x0=.(1)画出y=f(x)的图象,并指出函数的单调递增区间和递减区间;(2)解不等式f(x﹣1)≤﹣.22.已知曲线C的极坐标方程为4ρ2cos2θ+9ρ2sin2θ=36,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系;(Ⅰ)求曲线C的直角坐标方程;(Ⅱ)若P(x,y)是曲线C上的一个动点,求3x+4y的最大值.23.已知椭圆C的中心在坐标原点O,长轴在x轴上,离心率为,且椭圆C上一点到两个焦点的距离之和为4.(Ⅰ)椭圆C的标准方程.(Ⅱ)已知P、Q是椭圆C上的两点,若OP⊥OQ,求证:为定值.(Ⅲ)当为(Ⅱ)所求定值时,试探究OP⊥OQ是否成立?并说明理由.24.已知抛物线C:y2=2px(p>0)过点A(1,﹣2).(Ⅰ)求抛物线C的方程,并求其准线方程;(Ⅱ)是否存在平行于OA(O为坐标原点)的直线L,使得直线L与抛物线C有公共点,且直线OA与L的距离等于?若存在,求直线L的方程;若不存在,说明理由.南阳市第二中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】A【解析】解:∵线段AB在平面α内,∴直线AB上所有的点都在平面α内,∴直线AB与平面α的位置关系:直线在平面α内,用符号表示为:AB⊂α故选A.【点评】本题考查了空间中直线与直线的位置关系及公理一,主要根据定义进行判断,考查了空间想象能力.公理一:如果一条线上的两个点在平面上则该线在平面上.2.【答案】B【解析】因为,所以由余弦定理得,即,所以或,即此三角形为等腰三角形或直角三角形,故选B答案:B3.【答案】B【解析】解:若方程+=1表示椭圆,则满足,即,即1<m<3且m≠2,此时1<m<3成立,即必要性成立,当m=2时,满足1<m<3,但此时方程+=1等价为为圆,不是椭圆,不满足条件.即充分性不成立故“1<m<3”是“方程+=1表示椭圆”的必要不充分条件,故选:B【点评】本题主要考查充分条件和必要条件的判断,根据椭圆的定义和方程是解决本题的关键.4.【答案】D【解析】解:由m⊥平面α,直线l满足l⊥m,且l⊄α,所以l∥α,又n⊥平面β,l⊥n,l⊄β,所以l∥β.由直线m,n为异面直线,且m⊥平面α,n⊥平面β,则α与β相交,否则,若α∥β则推出m∥n,与m,n异面矛盾.故α与β相交,且交线平行于l.故选D.【点评】本题考查了平面与平面之间的位置关系,考查了平面的基本性质及推论,考查了线面平行、线面垂直的判定与性质,考查了学生的空间想象和思维能力,是中档题.5.【答案】C【解析】解:∵正方形的边长为2,∴正方形的对角线长为=2,∵球心到平面ABCD的距离为1,∴球的半径R==,则此球的表面积为S=4πR2=12π.故选:C.【点评】此题考查了球的体积和表面积,求出球的半径是解本题的关键.6.【答案】B【解析】解:对于A,设圆柱的底面半径为r,高为h,设圆柱的过母线的截面四边形在圆柱底面的边长为a,则截面面积S=ah≤2rh.∴当a=2r时截面面积最大,即轴截面面积最大,故A正确.对于B,设圆锥SO的底面半径为r,高为h,过圆锥定点的截面在底面的边长为AB=a,则O到AB的距离为,∴截面三角形SAB的高为,∴截面面积S==≤=.故截面的最大面积为.故B 错误.对于C ,由圆台的结构特征可知平行于底面的截面截圆台,所得几何体仍是圆台,故截面为圆面,故C 正确.对于D ,由于圆锥的所有母线长都相等,轴截面的底面边长为圆锥底面的直径,故圆锥所有的轴截面是全等的等腰三角形,故D 正确.故选:B .【点评】本题考查了旋转体的结构特征,属于中档题.7. 【答案】C【解析】解:与﹣463°终边相同的角可以表示为:k360°﹣463°,(k ∈Z )即:k360°+257°,(k ∈Z )故选C【点评】本题考查终边相同的角,是基础题.8. 【答案】A 【解析】试题分析:42731,1i i i i i ==-∴==-,因为复数满足71i i z +=,所以()1,1i i i i z i z+=-∴=-,所以复数的虚部为,故选A.考点:1、复数的基本概念;2、复数代数形式的乘除运算. 9. 【答案】A 【解析】考点:对数函数,指数函数性质. 10.【答案】A【解析】解:由题意=,∴1+x=,解得x=0故选A【点评】本题考查空间向量的夹角与距离求解公式,考查根据公式建立方程求解未知数,是向量中的基本题型,此类题直接考查公式的记忆与对概念的理解,正确利用概念与公式解题是此类题的特点.11.【答案】B【解析】解:∵f ′(x )=1﹣x+x 2﹣x 3+…+x 2014=(1﹣x )(1+x 2+…+x 2012)+x 2014; ∴f ′(x )>0在(﹣1,0)上恒成立; 故f (x )在(﹣1,0)上是增函数;又∵f (0)=1,f (﹣1)=1﹣1﹣﹣﹣…﹣<0;故f (x )在(﹣1,0)上恰有一个零点;故选B .【点评】本题考查了导数的综合应用及函数零点的个数的判断,属于中档题.12.【答案】B 【解析】试题分析:()21212121101010242=⨯+⨯+⨯=,故选B. 考点:进位制二、填空题13.【答案】54【解析】根据程序框图可知循环体共运行了9次,输出的x 是1,3,5,7,9,11,13,15, 17中不是3的倍数的数,所以所有输出值的和54171311751=+++++. 14.【答案】22,3⎛⎫- ⎪⎝⎭【解析】15.【答案】.【解析】解:如图,将AM平移到B1E,NC平移到B1F,则∠EB1F为直线AM与CN所成角设边长为1,则BE=B1F=,EF=1∴cos∠EB1F=,故答案为【点评】本小题主要考查异面直线所成的角,考查空间想象能力、运算能力和推理论证能力,属于基础题.16.【答案】1,22⎡⎤⎢⎥⎣⎦【解析】试题分析:依题意得11322,,22x x ⎡⎤-≤-≤∈⎢⎥⎣⎦.考点:抽象函数定义域.17.【答案】 [0,2] .【解析】解:命题p :||x ﹣a|<3,解得a ﹣3<x <a+3,即p=(a ﹣3,a+3);命题q :x 2﹣2x ﹣3<0,解得﹣1<x <3,即q=(﹣1,3).∵q 是p 的充分不必要条件,∴q ⊊p ,∴,解得0≤a ≤2, 则实数a 的取值范围是[0,2].故答案为:[0,2].【点评】本题考查了绝对值不等式的解法、一元二次不等式的解法、充分必要条件的判定与应用,考查了推理能力与计算能力,属于中档题18.【答案】 2【解析】解:∵x 2+y 2=4的圆心O (0,0),半径r=2, ∴点(0,1)到圆心O (0,0)的距离d=1, ∴点(0,1)在圆内.如图,|AB|最小时,弦心距最大为1,∴|AB|min=2=2.故答案为:2.三、解答题19.【答案】【解析】解:(1)∵0<α<,且sinα=,∴cosα=,∴f(α)=cosα(sinα+cosα)﹣,=×(+)﹣=.(2)f(x)=cosx(sinx+cosx)﹣.=sinxcosx+cos2x﹣=sin2x+cos2x=sin(2x+),∴T==π,由2kπ﹣≤2x+≤2kπ+,k∈Z,得kπ﹣≤x≤kπ+,k∈Z,∴f(x)的单调递增区间为[kπ﹣,kπ+],k∈Z.20.【答案】【解析】(1)证明:设{a n}中首项为a1,公差为d.∵lga1,lga2,lga4成等差数列,∴2lga2=lga1+lga4,∴a22=a1a4.即(a1+d)2=a1(a1+3d),∴d=0或d=a1.当d=0时,a n=a1,b n==,∴=1,∴{b n}为等比数列;当d=a1时,a n=na1,b n==,∴=,∴{b n}为等比数列.综上可知{b n}为等比数列.(2)解:当d=0时,S3==,所以a1=;当d=a1时,S3==,故a1=3=d.【点评】本题主要考查等差数列与等比数列的综合以及分类讨论思想的应用,涉及数列的公式多,复杂多样,故应多下点功夫记忆.21.【答案】【解析】解:(1)图象如图所示:由图象可知函数的单调递增区间为(﹣∞,0),(1,+∞),丹迪减区间是(0,1)(2)由已知可得或,解得x≤﹣1或≤x≤,故不等式的解集为(﹣∞,﹣1]∪[,].【点评】本题考查了分段函数的图象的画法和不等式的解集的求法,属于基础题.22.【答案】【解析】解:(Ⅰ)由4ρ2cos2θ+9ρ2sin2θ=36得4x2+9y2=36,化为;(Ⅱ)设P(3cosθ,2sinθ),则3x+4y=,∵θ∈R,∴当sin(θ+φ)=1时,3x+4y的最大值为.【点评】本题考查了椭圆的极坐标方程、三角函数的单调性与值域,考查了推理能力与计算能力,属于中档题.23.【答案】【解析】(I)解:由题意可设椭圆的坐标方程为(a>b>0).∵离心率为,且椭圆C上一点到两个焦点的距离之和为4.∴,2a=4,解得a=2,c=1.∴b2=a2﹣c2=3.∴椭圆C的标准方程为.(II)证明:当OP与OQ的斜率都存在时,设直线OP的方程为y=kx(k≠0),则直线OQ的方程为y=﹣x (k≠0),P(x,y).联立,化为,∴|OP|2=x2+y2=,同理可得|OQ|2=,∴=+=为定值.当直线OP或OQ的斜率一个为0而另一个不存在时,上式也成立.因此=为定值.(III)当=定值时,试探究OP⊥OQ是否成立?并说明理由.OP⊥OQ不一定成立.下面给出证明.证明:当直线OP或OQ的斜率一个为0而另一个不存在时,则===,满足条件.当直线OP或OQ的斜率都存在时,设直线OP的方程为y=kx(k≠0),则直线OQ的方程为y=k′x(k≠k′,k′≠0),P(x,y).联立,化为,∴|OP|2=x2+y2=,同理可得|OQ|2=,∴=+=.化为(kk′)2=1,∴kk′=±1.∴OP⊥OQ或kk′=1.因此OP⊥OQ不一定成立.【点评】本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立可得交点坐标、相互垂直的直线斜率之间的关系,考查了分析问题与解决问题的能力,考查了推理能力与计算能力,属于难题.24.【答案】【解析】解:(I)将(1,﹣2)代入抛物线方程y2=2px,得4=2p,p=2∴抛物线C的方程为:y2=4x,其准线方程为x=﹣1(II)假设存在符合题意的直线l,其方程为y=﹣2x+t,由得y2+2y﹣2t=0,∵直线l与抛物线有公共点,∴△=4+8t≥0,解得t≥﹣又∵直线OA与L的距离d==,求得t=±1∵t≥﹣∴t=1∴符合题意的直线l存在,方程为2x+y﹣1=0【点评】本题小题主要考查了直线,抛物线等基础知识,考查推理论证能力,运算求解能力,考查函数与方程思想,数形结合的思想,化归与转化思想,分类讨论与整合思想.。
南阳市第三中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知直线l ⊥平面α,直线m ⊂平面β,有下面四个命题: (1)α∥β⇒l ⊥m ,(2)α⊥β⇒l ∥m , (3)l ∥m ⇒α⊥β,(4)l ⊥m ⇒α∥β, 其中正确命题是( )A .(1)与(2)B .(1)与(3)C .(2)与(4)D .(3)与(4)2. 偶函数f (x )的定义域为R ,若f (x+2)为奇函数,且f (1)=1,则f (89)+f (90)为( ) A .﹣2 B .﹣1 C .0 D .1 3. 已知集合A={0,m ,m 2﹣3m+2},且2∈A ,则实数m 为( )A .2B .3C .0或3D .0,2,3均可4. 已知复数z 满足:zi=1+i (i 是虚数单位),则z 的虚部为( )A .﹣iB .iC .1D .﹣15. 已知ω>0,0<φ<π,直线x=和x=是函数f (x )=sin (ωx+φ)图象的两条相邻的对称轴,则φ=( )A .B .C .D .6. cos80cos130sin100sin130︒︒-︒︒等于( )A B .12 C .12- D . 7. 函数y=f ′(x )是函数y=f (x )的导函数,且函数y=f (x )在点p (x 0,f (x 0))处的切线为l :y=g (x )=f ′(x 0)(x ﹣x 0)+f (x 0),F (x )=f (x )﹣g (x ),如果函数y=f (x )在区间[a ,b]上的图象如图所示,且a <x 0<b ,那么( )A .F ′(x 0)=0,x=x 0是F (x )的极大值点B .F ′(x 0)=0,x=x 0是F (x )的极小值点C .F ′(x 0)≠0,x=x 0不是F (x )极值点D .F ′(x 0)≠0,x=x 0是F (x )极值点8. 若圆柱、圆锥的底面直径和高都等于球的直径,则圆柱、圆锥、球的体积的比为( )A .1:2:3B .2:3:4C .3:2:4D .3:1:29. 已知函数f (x )=x 2﹣6x+7,x ∈(2,5]的值域是( )A .(﹣1,2]B .(﹣2,2]C .[﹣2,2]D .[﹣2,﹣1)10.点A 是椭圆上一点,F 1、F 2分别是椭圆的左、右焦点,I 是△AF 1F 2的内心.若,则该椭圆的离心率为( )A .B .C .D .11.在复平面内,复数(﹣4+5i )i (i 为虚数单位)的共轭复数对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 12.如果集合 ,A B ,同时满足{}{}{}{}1,2,3,41,1,1AB B A B =≠≠,A =,就称有序集对(),A B 为“ 好集对”. 这里有序集对(),A B 是指当A B ≠时,(),A B 和(),B A 是不同的集对, 那么“好集对” 一共有( )个A .个B .个C .个D .个二、填空题13.函数)(x f (R x ∈)满足2)1(=f 且)(x f 在R 上的导数)('x f 满足03)('>-x f ,则不等式1log 3)(log 33-<x x f 的解集为 .【命题意图】本题考查利用函数的单调性解抽象不等式问题,本题对运算能力、化归能力及构造能力都有较高要求,难度大.14.直角坐标P (﹣1,1)的极坐标为(ρ>0,0<θ<π) .15.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()1e exx f x =-,其中e 为自然对数的底数,则不等式()()2240f x f x -+-<的解集为________.16.若函数()f x 的定义域为[]1,2-,则函数(32)f x -的定义域是 .17.【启东中学2018届高三上学期第一次月考(10月)】已知函数()f x xlnx ax =-+在()0e ,上是增函数,函数()22xa g x e a =-+,当[]03x ln ∈,时,函数g (x )的最大值M 与最小值m 的差为32,则a 的值为______.18.已知条件p:{x||x﹣a|<3},条件q:{x|x2﹣2x﹣3<0},且q是p的充分不必要条件,则a的取值范围是.三、解答题19.如图,在四棱柱中,底面,,,.(Ⅰ)求证:平面;(Ⅱ)求证:;(Ⅲ)若,判断直线与平面是否垂直?并说明理由.20.如图,菱形ABCD的边长为2,现将△ACD沿对角线AC折起至△ACP位置,并使平面PAC⊥平面ABC.(Ⅰ)求证:AC⊥PB;(Ⅱ)在菱形ABCD中,若∠ABC=60°,求直线AB与平面PBC所成角的正弦值;(Ⅲ)求四面体PABC体积的最大值.21.如图所示,在菱形ABCD中,对角线AC,BD交于E点,F,G分别为AD,BC的中点,AB=2,∠DAB=60°,沿对角线BD将△ABD折起,使得AC=.(1)求证:平面ABD⊥平面BCD;(2)求二面角F﹣DG﹣C的余弦值.22.在极坐标系下,已知圆O:ρ=cosθ+sinθ和直线l:.(1)求圆O和直线l的直角坐标方程;(2)当θ∈(0,π)时,求直线l与圆O公共点的极坐标.23.已知=(sinx,cosx),=(sinx,sinx),设函数f(x)=﹣.(1)写出函数f(x)的周期,并求函数f(x)的单调递增区间;(2)求f(x)在区间[π,]上的最大值和最小值.24.设圆C满足三个条件①过原点;②圆心在y=x上;③截y轴所得的弦长为4,求圆C的方程.南阳市第三中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】B【解析】解:∵直线l⊥平面α,α∥β,∴l⊥平面β,又∵直线m⊂平面β,∴l⊥m,故(1)正确;∵直线l⊥平面α,α⊥β,∴l∥平面β,或l⊂平面β,又∵直线m⊂平面β,∴l与m可能平行也可能相交,还可以异面,故(2)错误;∵直线l⊥平面α,l∥m,∴m⊥α,∵直线m⊂平面β,∴α⊥β,故(3)正确;∵直线l⊥平面α,l⊥m,∴m∥α或m⊂α,又∵直线m⊂平面β,则α与β可能平行也可能相交,故(4)错误;故选B.【点评】本题考查的知识点是空间中直线与平面之间的位置关系,其中熟练掌握空间中直线与平面位置关系的判定及性质定理,建立良好的空间想像能力是解答本题的关键.2.【答案】D【解析】解:∵f(x+2)为奇函数,∴f(﹣x+2)=﹣f(x+2),∵f(x)是偶函数,∴f(﹣x+2)=﹣f(x+2)=f(x﹣2),即﹣f(x+4)=f(x),则f(x+4)=﹣f(x),f(x+8)=﹣f(x+4)=f(x),即函数f(x)是周期为8的周期函数,则f(89)=f(88+1)=f(1)=1,f(90)=f(88+2)=f(2),由﹣f(x+4)=f(x),得当x=﹣2时,﹣f(2)=f(﹣2)=f(2),则f(2)=0,故f(89)+f(90)=0+1=1,故选:D.【点评】本题主要考查函数值的计算,利用函数奇偶性的性质,得到函数的对称轴是解决本题的关键.3.【答案】B【解析】解:∵A={0,m,m2﹣3m+2},且2∈A,∴m=2或m 2﹣3m+2=2,解得m=2或m=0或m=3.当m=0时,集合A={0,0,2}不成立. 当m=2时,集合A={0,0,2}不成立. 当m=3时,集合A={0,3,2}成立.故m=3. 故选:B .【点评】本题主要考查集合元素和集合之间的关系的应用,注意求解之后要进行验证.4. 【答案】D【解析】解:由zi=1+i ,得,∴z 的虚部为﹣1. 故选:D .【点评】本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.5. 【答案】A【解析】解:因为直线x=和x=是函数f (x )=sin (ωx+φ)图象的两条相邻的对称轴,所以T==2π.所以ω=1,并且sin (+φ)与sin (+φ)分别是最大值与最小值,0<φ<π,所以φ=.故选A .【点评】本题考查三角函数的解析式的求法,注意函数的最值的应用,考查计算能力.6. 【答案】D 【解析】试题分析:原式()()cos80cos130sin80sin130cos 80130cos210cos 30180cos30=︒︒-︒︒=︒+︒=︒=︒+︒=-︒=. 考点:余弦的两角和公式.7. 【答案】 B【解析】解:∵F (x )=f (x )﹣g (x )=f (x )﹣f ′(x 0)(x ﹣x 0)﹣f (x 0),∴F'(x)=f'(x)﹣f′(x0)∴F'(x0)=0,又由a<x0<b,得出当a<x<x0时,f'(x)<f′(x0),F'(x)<0,当x0<x<b时,f'(x)<f′(x0),F'(x)>0,∴x=x0是F(x)的极小值点故选B.【点评】本题主要考查函数的极值与其导函数的关系,即当函数取到极值时导函数一定等于0,反之当导函数等于0时还要判断原函数的单调性才能确定是否有极值.8.【答案】D【解析】解:设球的半径为R,则圆柱、圆锥的底面半径也为R,高为2R,则球的体积V球=圆柱的体积V圆柱=2πR3圆锥的体积V圆锥=故圆柱、圆锥、球的体积的比为2πR3::=3:1:2故选D【点评】本题考查的知识点是旋转体,球的体积,圆柱的体积和圆锥的体积,其中设出球的半径,并根据圆柱、圆锥的底面直径和高都等于球的直径,依次求出圆柱、圆锥和球的体积是解答本题的关键.9.【答案】C【解析】解:由f(x)=x2﹣6x+7=(x﹣3)2﹣2,x∈(2,5].∴当x=3时,f(x)min=﹣2.当x=5时,.∴函数f(x)=x2﹣6x+7,x∈(2,5]的值域是[﹣2,2].故选:C.10.【答案】B【解析】解:设△AF1F2的内切圆半径为r,则S△IAF1=|AF1|r,S△IAF2=|AF2|r,S△IF1F2=|F1F2|r,∵,∴|AF 1|r=2×|F 1F 2|r ﹣|AF 2|r ,整理,得|AF1|+|AF 2|=2|F 1F 2|.∴a=2,∴椭圆的离心率e===.故选:B .11.【答案】B【解析】解:∵(﹣4+5i )i=﹣5﹣4i , ∴复数(﹣4+5i )i 的共轭复数为:﹣5+4i ,∴在复平面内,复数(﹣4+5i )i 的共轭复数对应的点的坐标为:(﹣5,4),位于第二象限. 故选:B .12.【答案】B 【解析】试题分析:因为{}{}{}{}1,2,3,41,1,1AB B A B =≠≠,A =,所以当{1,2}A =时,{1,2,4}B =;当{1,3}A =时,{1,2,4}B =;当{1,4}A =时,{1,2,3}B =;当{1,2,3}A =时,{1,4}B =;当{1,2,4}A =时,{1,3}B =;当{1,3,4}A =时,{1,2}B =;所以满足条件的“好集对”一共有个,故选B.考点:元素与集合的关系的判断.【方法点晴】本题主要考查了元素与集合关系的判断与应用,其中解答中涉及到集合的交集和集合的并集运算与应用、元素与集合的关系等知识点的综合考查,着重考查了分类讨论思想的应用,以及学生分析问题和解答问题的能力,试题有一定的难度,属于中档试题,本题的解答中正确的理解题意是解答的关键.1111]二、填空题13.【答案】)3,0(【解析】构造函数x x f x F 3)()(-=,则03)(')('>-=x f x F ,说明)(x F 在R 上是增函数,且13)1()1(-=-=f F .又不等式1log 3)(log 33-<x x f 可化为1l o g 3)(l o g 33-<-x x f ,即)1()(l o g 3F x F <,∴1log 3<x ,解得30<<x .∴不等式1log 3)(log 33-<x x f 的解集为)3,0(.14.【答案】 .【解析】解:ρ==,tan θ==﹣1,且0<θ<π,∴θ=.∴点P 的极坐标为.故答案为:.15.【答案】()32-,【解析】∵()1e ,e x x f x x R =-∈,∴()()11xx x x f x e e f x e e --⎛⎫-=-=--=- ⎪⎝⎭,即函数()f x 为奇函数,又∵()0x xf x e e-=+>'恒成立,故函数()f x 在R 上单调递增,不等式()()2240f x f x -+-<可转化为()()224f x f x -<-,即224x x -<-,解得:32x -<<,即不等式()()2240f x f x -+-<的解集为()32-,,故答案为()32-,. 16.【答案】1,22⎡⎤⎢⎥⎣⎦【解析】试题分析:依题意得11322,,22x x ⎡⎤-≤-≤∈⎢⎥⎣⎦.考点:抽象函数定义域. 17.【答案】52【解析】()1ln f x x a =--+',因为()f x 在()0e ,上是增函数,即()0f x '≥在()0e ,上恒成立,ln 1a x ∴≥+,则()max ln 1a x ≥+,当x e =时,2a ≥,又()22xa g x e a =-+,令xt e =,则()[]2,1,32a g t t a t =-+∈, (1)当23a ≤≤时,()()2max 112a g t g a ==-+,()()2min 2a g t g a ==,则()()max min 312g t g t a -=-=,则52a =,(2)当3a >时,()()2max 112a g t g a ==-+,()()2min 332a g t g a ==-+,则()()max min 2g t g t -=,舍。
南阳市第二高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 已知集合A={﹣1,0,1,2},集合B={0,2,4},则A ∪B 等于( )A .{﹣1,0,1,2,4}B .{﹣1,0,2,4}C .{0,2,4}D .{0,1,2,4}2. 设命题p :,则p 为( )A .B .C .D .3. 棱长都是1的三棱锥的表面积为( )A .B .C .D .4. 下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的是( ) A .B .y=x 2C .y=﹣x|x|D .y=x ﹣25. 在等比数列中,,前项和为,若数列也是等比数列,则等于( )A .B .C .D .6. 某大学数学系共有本科生1000人,其中一、二、三、四年级的人数比为4:3:2:1,要用分层抽样的方法从所有本科生中抽取一个容量为200的样本,则应抽取三年级的学生人数为( ) A .80 B .40 C .60 D .207. 若,[]0,1b ∈,则不等式221a b +≤成立的概率为( )A .16π B .12π C .8π D .4π 8. 函数2(44)xy a a a =-+是指数函数,则的值是( )A .4B .1或3C .3D .1 9. 函数y=2sin 2x+sin2x 的最小正周期( )A .B .C .πD .2π10.如图所示的程序框图,若输入的x 值为0,则输出的y 值为( )A.B.0 C.1 D.或011.已知一组函数f n(x)=sin n x+cos n x,x∈[0,],n∈N*,则下列说法正确的个数是()①∀n∈N*,f n(x)≤恒成立②若f n(x)为常数函数,则n=2③f4(x)在[0,]上单调递减,在[,]上单调递增.A.0 B.1 C.2 D.312.已知F1,F2是椭圆和双曲线的公共焦点,M是它们的一个公共点,且∠F1MF2=,则椭圆和双曲线的离心率的倒数之和的最大值为()A.2 B. C. D.4二、填空题13.在三棱柱ABC﹣A1B1C1中,底面为棱长为1的正三角形,侧棱AA1⊥底面ABC,点D在棱BB1上,且BD=1,若AD与平面AA1C1C所成的角为α,则sinα的值是.14.【徐州市2018届高三上学期期中】已知函数(为自然对数的底数),若,则实数的取值范围为______.15.若命题“∀x∈R,|x﹣2|>kx+1”为真,则k的取值范围是.16.如图,一船以每小时20km的速度向东航行,船在A处看到一个灯塔B在北偏东60°方向,行驶4小时后,船到达C处,看到这个灯塔在北偏东15°方向,这时船与灯塔间的距离为km.17.曲线y=x+e x在点A(0,1)处的切线方程是.18.已知实数x,y满足,则目标函数z=x﹣3y的最大值为三、解答题19.若数列{a n}的前n项和为S n,点(a n,S n)在y=x的图象上(n∈N*),(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若c1=0,且对任意正整数n都有,求证:对任意正整数n≥2,总有.20.在△ABC中,角A,B,C所对的边分别为a,b,c.已知b2+c2=a2+bc.(Ⅰ)求A的大小;(Ⅱ)如果cosB=,b=2,求a的值.21.已知函数f(x)=.(1)求函数f(x)的最小正周期及单调递减区间;(2)当时,求f(x)的最大值,并求此时对应的x的值.22.已知函数f(x)=(Ⅰ)求函数f(x)单调递增区间;(Ⅱ)在△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a﹣c)cosB=bcosC,求f(A)的取值范围.23.如图所示,在边长为的正方形ABCD中,以A为圆心画一个扇形,以O为圆心画一个圆,M,N,K为切点,以扇形为圆锥的侧面,以圆O为圆锥底面,围成一个圆锥,求圆锥的全面积与体积.A B-到它的距离相等的直线1,22,3,0,5P的直线,且使()()24.(本小题满分10分)求经过点()方程.南阳市第二高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】A【解析】解:∵A={﹣1,0,1,2},B={0,2,4},∴A∪B={﹣1,0,1,2}∪{0,2,4}={﹣1,0,1,2,4}.故选:A.【点评】本题考查并集及其运算,是基础的会考题型.2.【答案】A【解析】【知识点】全称量词与存在性量词【试题解析】因为特称命题的否定是全称命题,p为:。
南阳市第四高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________姓名__________ 分数__________一、选择题1. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若(acosB+bcosA )=2csinC ,a+b=8,且△ABC 的面积的最大值为4,则此时△ABC 的形状为( )A .等腰三角形B .正三角形C .直角三角形D .钝角三角形2. 已知两条直线,其中为实数,当这两条直线的夹角在内变动12:,:0L y x L ax y =-=0,12π⎛⎫⎪⎝⎭时,的取值范围是( )A .B .C .D .()0,1(⎫⎪⎪⎭(3. 已知为抛物线上两个不同的点,为抛物线的焦点.若线段的中点的纵坐标为,M N 、24y x =F MN 2,则直线的方程为( )||||10MF NF +=MN A . B . 240x y +-=240x y --= C .D .20x y +-=20x y --=4. 已知双曲线﹣=1的右焦点与抛物线y 2=12x 的焦点重合,则该双曲线的焦点到其渐近线的距离等于()A .B .C .3D .55. 函数f (x )=﹣lnx 的零点个数为( )A .0B .1C .2D .36. 已知实数,,则点落在区域 内的概率为( )[1,1]x ∈-[0,2]y ∈(,)P x y 20210220x y x y x y +-⎧⎪-+⎨⎪-+⎩………A. B. C.D.34381418【命题意图】本题考查线性规划、几何概型等基础知识,意在考查数形结合思想及基本运算能力.7. 德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数f (x )=被称为狄利克雷函数,其中R 为实数集,Q 为有理数集,则关于函数f (x )有如下四个命题:①f (f (x ))=1;②函数f (x )是偶函数;③任取一个不为零的有理数T ,f (x+T )=f (x )对任意的x=R 恒成立;④存在三个点A (x 1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),使得△ABC为等边三角形.其中真命题的个数有()A.1个B.2个C.3个D.4个8.已知回归直线的斜率的估计值是1.23,样本点的中心为(4,5),则回归直线的方程是()A.=1.23x+4B.=1.23x﹣0.08C.=1.23x+0.8D.=1.23x+0.089.不等式恒成立的条件是()A.m>2B.m<2C.m<0或m>2D.0<m<210.已知函数f(x)=1+x﹣+﹣+…+,则下列结论正确的是()A.f(x)在(0,1)上恰有一个零点B.f(x)在(﹣1,0)上恰有一个零点C.f(x)在(0,1)上恰有两个零点D.f(x)在(﹣1,0)上恰有两个零点11.幂函数y=f(x)的图象经过点(﹣2,﹣),则满足f(x)=27的x的值是()A.B.﹣C.3D.﹣312.已知集合A={0,m,m2﹣3m+2},且2∈A,则实数m为()A.2B.3C.0或3D.0,2,3均可二、填空题13.已知集合{}B x x x R=-∈≤≤,则A∪B=▲.|03,|12,A x x x R=<∈≤,{}14.【南通中学2018届高三10月月考】定义在上的函数满足,为的导函数,且对恒成立,则的取值范围是__________________.15.定义在R上的偶函数f(x)在[0,+∞)上是增函数,且f(2)=0,则不等式f(log8x)>0的解集是 .16.在△ABC中,角A,B,C的对边分别为a,b,c,已知sinAsinB+sinBsinC+cos2B=1.若C=,则= .17.已知圆O:x2+y2=1和双曲线C:﹣=1(a>0,b>0).若对双曲线C上任意一点A(点A在圆O外),均存在与圆O外切且顶点都在双曲线C上的菱形ABCD,则﹣= . 18.若与共线,则y= .三、解答题19.已知函数f (x )的导函数f ′(x )=x 2+2ax+b (ab ≠0),且f (0)=0.设曲线y=f (x )在原点处的切线l 1的斜率为k 1,过原点的另一条切线l 2的斜率为k 2.(1)若k 1:k 2=4:5,求函数f (x )的单调区间;(2)若k 2=tk 1时,函数f (x )无极值,且存在实数t 使f (b )<f (1﹣2t )成立,求实数a 的取值范围. 20.本小题满分12分 设函数()ln xf x e a x =-Ⅰ讨论的导函数零点个数;()f x '()f x Ⅱ证明:当时,0a >()2ln f x a a a ≥-21.如图所示,在菱形ABCD中,对角线AC,BD交于E点,F,G分别为AD,BC的中点,AB=2,∠DAB=60°,沿对角线BD将△ABD折起,使得AC=.(1)求证:平面ABD⊥平面BCD;(2)求二面角F﹣DG﹣C的余弦值.22.已知函数f(x)=sinωxcosωx﹣cos2ωx+(ω>0)经化简后利用“五点法”画其在某一个周期内的图象时,列表并填入的部分数据如下表:x①ππf(x)010﹣10(Ⅰ)请直接写出①处应填的值,并求函数f(x)在区间[﹣,]上的值域;(Ⅱ)△ABC的内角A,B,C所对的边分别为a,b,c,已知f(A+)=1,b+c=4,a=,求△ABC的面积.23.已知函数的图象在y轴右侧的第一个最大值点和最小值点分别为(π,2)和(4π,﹣2).(1)试求f(x)的解析式;(2)将y=f(x)图象上所有点的横坐标缩短到原来的(纵坐标不变),然后再将新的图象向轴正方向平移个单位,得到函数y=g(x)的图象.写出函数y=g(x)的解析式.24.已知矩阵M所对应的线性变换把点A(x,y)变成点A′(13,5),试求M的逆矩阵及点A的坐标.南阳市第四高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】A 【解析】解:∵(acosB+bcosA )=2csinC ,∴(sinAcosB+sinBcosA )=2sin 2C ,∴sinC=2sin 2C ,且sinC >0,∴sinC=,∵a+b=8,可得:8≥2,解得:ab ≤16,(当且仅当a=b=4成立)∵△ABC 的面积的最大值S △ABC =absinC ≤=4,∴a=b=4,则此时△ABC 的形状为等腰三角形.故选:A . 2. 【答案】C 【解析】1111]试题分析:由直线方程,可得直线的倾斜角为,又因为这两条直线的夹角在,所以1:L y x =045α=0,12π⎛⎫⎪⎝⎭直线的倾斜角的取值范围是且,所以直线的斜率为2:0L ax y -=03060α<<045α≠且或,故选C.00tan 30tan 60a <<0tan 45α≠1a <<1a <<考点:直线的倾斜角与斜率.3. 【答案】D【解析】解析:本题考查抛物线的焦半径公式的应用与“中点弦”问题的解法.设,那么,,∴线段的中点坐标为1122(,)(,)M x y N x y 、12||||210MF NF x x +=++=128x x +=MN .由,两式相减得,而,∴,∴(4,2)2114y x =2224y x =121212()()4()y y y y x x +-=-1222y y +=12121y y x x -=-直线的方程为,即,选D .MN 24y x -=-20x y --=4. 【答案】A【解析】解:抛物线y 2=12x 的焦点坐标为(3,0)∵双曲线的右焦点与抛物线y 2=12x 的焦点重合∴4+b 2=9∴b2=5∴双曲线的一条渐近线方程为,即∴双曲线的焦点到其渐近线的距离等于故选A.【点评】本题考查抛物线的性质,考查时却显得性质,确定双曲线的渐近线方程是关键.5.【答案】B【解析】解:函数f(x)=﹣lnx的零点个数等价于函数y=与函数y=lnx图象交点的个数,在同一坐标系中,作出它们的图象:由图象可知,函数图象有1个交点,即函数的零点个数为1故选B6.【答案】B【解析】7.【答案】D【解析】解:①∵当x为有理数时,f(x)=1;当x为无理数时,f(x)=0∴当x为有理数时,f(f(x))=f(1)=1;当x为无理数时,f(f(x))=f(0)=1即不管x是有理数还是无理数,均有f(f(x))=1,故①正确;②∵有理数的相反数还是有理数,无理数的相反数还是无理数,∴对任意x∈R,都有f(﹣x)=f(x),故②正确;③若x是有理数,则x+T也是有理数;若x是无理数,则x+T也是无理数∴根据函数的表达式,任取一个不为零的有理数T,f(x+T)=f(x)对x∈R恒成立,故③正确;④取x1=﹣,x2=0,x3=,可得f(x1)=0,f(x2)=1,f(x3)=0∴A(,0),B(0,1),C(﹣,0),恰好△ABC为等边三角形,故④正确.故选:D.【点评】本题给出特殊函数表达式,求函数的值并讨论它的奇偶性,着重考查了有理数、无理数的性质和函数的奇偶性等知识,属于中档题.8.【答案】D【解析】解:设回归直线方程为=1.23x+a∵样本点的中心为(4,5),∴5=1.23×4+a∴a=0.08∴回归直线方程为=1.23x+0.08故选D.【点评】本题考查线性回归方程,考查学生的计算能力,属于基础题.9.【答案】D【解析】解:令f(x)=x2+mx+=(x+)2﹣+则f min(x)=﹣+.∵恒成立,∴﹣+>0解得0<m<2.故选D.【点评】本题考查了函数恒成立问题,是基础题.10.【答案】B【解析】解:∵f′(x)=1﹣x+x2﹣x3+…+x2014=(1﹣x)(1+x2+…+x2012)+x2014;∴f′(x)>0在(﹣1,0)上恒成立;故f(x)在(﹣1,0)上是增函数;又∵f(0)=1,f(﹣1)=1﹣1﹣﹣﹣…﹣<0;故f(x)在(﹣1,0)上恰有一个零点;故选B.【点评】本题考查了导数的综合应用及函数零点的个数的判断,属于中档题.11.【答案】A【解析】解:设幂函数为y=xα,因为图象过点(﹣2,﹣),所以有=(﹣2)α,解得:α=﹣3所以幂函数解析式为y=x﹣3,由f(x)=27,得:x﹣3=27,所以x=.故选A.12.【答案】B【解析】解:∵A={0,m,m2﹣3m+2},且2∈A,∴m=2或m2﹣3m+2=2,解得m=2或m=0或m=3.当m=0时,集合A={0,0,2}不成立.当m=2时,集合A={0,0,2}不成立.当m=3时,集合A={0,3,2}成立.故m=3.故选:B.【点评】本题主要考查集合元素和集合之间的关系的应用,注意求解之后要进行验证.二、填空题13.【答案】1-1,3]【解析】试题分析:A∪B={}{}≤≤≤=1-1,3]|03,|12,<∈-∈x x x R x x x R考点:集合运算【方法点睛】1.用描述法表示集合,首先要弄清集合中代表元素的含义,再看元素的限制条件,明确集合类型,是数集、点集还是其他的集合.2.求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解.3.在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn 图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.14.【答案】【解析】点睛:函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中。
南阳市高中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. sin45°sin105°+sin45°sin15°=( )A .0B .C .D .12. 在长方体ABCD ﹣A 1B 1C 1D 1中,底面是边长为2的正方形,高为4,则点A 1到截面AB 1D 1的距离是( )A .B .C .D .3. 方程x= 所表示的曲线是( )A .双曲线B .椭圆C .双曲线的一部分D .椭圆的一部分4. 独立性检验中,假设H 0:变量X 与变量Y 没有关系.则在H 0成立的情况下,估算概率P (K 2≥6.635)≈0.01表示的意义是( )A .变量X 与变量Y 有关系的概率为1%B .变量X 与变量Y 没有关系的概率为99%C .变量X 与变量Y 有关系的概率为99%D .变量X 与变量Y 没有关系的概率为99.9%5. 设f (x )与g (x )是定义在同一区间[a ,b]上的两个函数,若函数y=f (x )﹣g (x )在x ∈[a ,b]上有两个不同的零点,则称f (x )和g (x )在[a ,b]上是“关联函数”,区间[a ,b]称为“关联区间”.若f (x )=x 2﹣3x+4与g (x )=2x+m 在[0,3]上是“关联函数”,则m 的取值范围为( )A .(﹣,﹣2]B .[﹣1,0]C .(﹣∞,﹣2]D .(﹣,+∞)6. 已知抛物线C :y x 82=的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若FQ PF 2=,则=QF ( ) A .6B .3C .38D .34 第Ⅱ卷(非选择题,共100分)7. 已知向量=(2,1),=10,|+|=,则||=( )A .B .C .5D .258. 若等式(2x ﹣1)2014=a 0+a 1x+a 2x 2+…+a 2014x 2014对于一切实数x 都成立,则a 0+1+a 2+…+a 2014=( )A. B. C. D .09. 函数f (x )=log 2(x+2)﹣(x >0)的零点所在的大致区间是( ) A .(0,1) B .(1,2) C .(2,e ) D .(3,4)10.定义在R 上的偶函数()f x 满足(3)()f x f x -=-,对12,[0,3]x x ∀∈且12x x ≠,都有1212()()0f x f x x x ->-,则有( )A .(49)(64)(81)f f f <<B .(49)(81)(64)f f f << C. (64)(49)(81)f f f << D .(64)(81)(49)f f f <<11.定义在R 上的奇函数f (x )满足f (x+3)=f (x ),当0<x ≤1时,f (x )=2x ,则f (2015)=( ) A .2B .﹣2C.﹣D.12.下列函数中,既是奇函数又是减函数的为( ) A .y=x+1B .y=﹣x 2C .D .y=﹣x|x|二、填空题13.某工厂产生的废气经过过虑后排放,过虑过程中废气的污染物数量P (单位:毫克/升)与时间t (单位:小时)间的关系为0ektP P -=(0P ,k 均为正常数).如果前5个小时消除了10%的污染物,为了 消除27.1%的污染物,则需要___________小时.【命题意图】本题考指数函数的简单应用,考查函数思想,方程思想的灵活运用.14.函数y=f (x )的图象在点M (1,f (1))处的切线方程是y=3x ﹣2,则f (1)+f ′(1)= .15.设函数f (x )=若f[f (a )],则a 的取值范围是 .16.当下社会热议中国人口政策,下表是中国人民大学人口预测课题组根据我过2000年第五次人口普查预测1564根据上表,y关于t的线性回归方程为附:回归直线的斜率和截距的最小二乘估计公式分别为:=,=﹣.17.=.18.已知随机变量ξ﹣N(2,σ2),若P(ξ>4)=0.4,则P(ξ>0)=.三、解答题19.已知函数f(x)=ax2+2x﹣lnx(a∈R).(Ⅰ)若a=4,求函数f(x)的极值;(Ⅱ)若f′(x)在(0,1)有唯一的零点x0,求a的取值范围;(Ⅲ)若a∈(﹣,0),设g(x)=a(1﹣x)2﹣2x﹣1﹣ln(1﹣x),求证:g(x)在(0,1)内有唯一的零点x1,且对(Ⅱ)中的x0,满足x0+x1>1.20.中国高铁的某个通讯器材中配置有9个相同的元件,各自独立工作,每个元件正常工作的概率为p(0<p <1),若通讯器械中有超过一半的元件正常工作,则通讯器械正常工作,通讯器械正常工作的概率为通讯器械的有效率(Ⅰ)设通讯器械上正常工作的元件个数为X,求X的数学期望,并求该通讯器械正常工作的概率P′(列代数式表示)(Ⅱ)现为改善通讯器械的性能,拟增加2个元件,试分析这样操作能否提高通讯器械的有效率.21.已知S n为等差数列{a n}的前n项和,且a4=7,S4=16.(1)求数列{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和T n.22.已知梯形ABCD中,AB∥CD,∠B=,DC=2AB=2BC=2,以直线AD为旋转轴旋转一周的都如图所示的几何体(Ⅰ)求几何体的表面积(Ⅱ)判断在圆A上是否存在点M,使二面角M﹣BC﹣D的大小为45°,且∠CAM为锐角若存在,请求出CM的弦长,若不存在,请说明理由.23.已知平面直角坐标系xoy中的一个椭圆,它的中心在原点,左焦点为,右顶点为D(2,0),设点A(1,).(1)求该椭圆的标准方程;(2)若P是椭圆上的动点,求线段PA的中点M的轨迹方程;(3)过原点O的直线交椭圆于B,C两点,求△ABC面积的最大值,并求此时直线BC的方程.24.(1)计算:(﹣)0+lne﹣+8+log62+log63;(2)已知向量=(sinθ,cosθ),=(﹣2,1),满足∥,其中θ∈(,π),求cosθ的值.南阳市高中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】C【解析】解:sin45°sin105°+sin45°sin15°=cos45°cos15°+sin45°sin15°=cos(45°﹣15°)=cos30°=.故选:C.【点评】本题主要考查了诱导公式,两角差的余弦函数公式,特殊角的三角函数值在三角函数化简求值中的应用,考查了转化思想,属于基础题.2.【答案】C【解析】解:如图,设A1C1∩B1D1=O1,∵B1D1⊥A1O1,B1D1⊥AA1,∴B1D1⊥平面AA1O1,故平面AA1O1⊥面AB1D1,交线为AO1,在面AA1O1内过B1作B1H⊥AO1于H,则易知AH的长即是点A1到截面AB1D1的距离,在Rt△A1O1A中,A1O1=,1AO1=3,由A1O1•A1A=h•AO1,可得A1H=,故选:C.【点评】本题主要考查了点到平面的距离,同时考查空间想象能力、推理与论证的能力,属于基础题.3.【答案】C【解析】解:x=两边平方,可变为3y2﹣x2=1(x≥0),表示的曲线为双曲线的一部分;故选C.【点评】本题主要考查了曲线与方程.解题的过程中注意x的范围,注意数形结合的思想.4.【答案】C【解析】解:∵概率P(K2≥6.635)≈0.01,∴两个变量有关系的可信度是1﹣0.01=99%, 即两个变量有关系的概率是99%,故选C .【点评】本题考查实际推断原理和假设检验的应用,本题解题的关键是理解所求出的概率的意义,本题是一个基础题.5. 【答案】A【解析】解:∵f (x )=x 2﹣3x+4与g (x )=2x+m 在[0,3]上是“关联函数”,故函数y=h (x )=f (x )﹣g (x )=x 2﹣5x+4﹣m 在[0,3]上有两个不同的零点,故有,即,解得﹣<m ≤﹣2,故选A .【点评】本题考查函数零点的判定定理,“关联函数”的定义,二次函数的性质,体现了转化的数学思想,属于基础题.6. 【答案】A解析:抛物线C :y x 82 的焦点为F (0,2),准线为l :y=﹣2,设P (a ,﹣2),B (m ,),则=(﹣a ,4),=(m ,﹣2),∵,∴2m=﹣a ,4=﹣4,∴m 2=32,由抛物线的定义可得|QF|=+2=4+2=6.故选A .7. 【答案】C【解析】解:∵|+|=,||=∴(+)2=2+2+2=50,得||=5 故选C .【点评】本题考查平面向量数量积运算和性质,根据所给的向量表示出要求模的向量,用求模长的公式写出关于变量的方程,解方程即可,解题过程中注意对于变量的应用.8. 【答案】B【解析】解法一:∵,∴(C 为常数),取x=1得,再取x=0得,即得,∴,故选B.解法二:∵,∴,∴,故选B.【点评】本题考查二项式定理的应用,定积分的求法,考查转化思想的应用.9.【答案】B【解析】解:∵f(1)=﹣3<0,f(2)=﹣=2﹣>0,∴函数f(x)=log2(x+2)﹣(x>0)的零点所在的大致区间是(1,2),故选:B.10.【答案】A【解析】考点:1、函数的周期性;2、奇偶性与单调性的综合.1111]11.【答案】B【解析】解:因为f(x+3)=f(x),函数f(x)的周期是3,所以f(2015)=f(3×672﹣1)=f(﹣1);又因为函数f(x)是定义R上的奇函数,当0<x≤1时,f(x)=2x,所以f (﹣1)=﹣f (1)=﹣2,即f (2015)=﹣2. 故选:B .【点评】本题主要考查了函数的周期性、奇偶性的运用,属于基础题,解答此题的关键是分析出f (2015)=f (3×672﹣1)=f (﹣1).12.【答案】D【解析】解:y=x+1不是奇函数; y=﹣x 2不是奇函数;是奇函数,但不是减函数; y=﹣x|x|既是奇函数又是减函数, 故选:D .【点评】本题考查的知识点是函数的奇偶性和函数的单调性,难度不大,属于基础题.二、填空题13.【答案】15【解析】由条件知5000.9e kP P -=,所以5e 0.9k-=.消除了27.1%的污染物后,废气中的污染物数量为00.729P ,于是000.729ekt P P -=,∴315e 0.7290.9e ktk --===,所以15t =小时.14.【答案】 4 .【解析】解:由题意得f ′(1)=3,且f (1)=3×1﹣2=1所以f (1)+f ′(1)=3+1=4.故答案为4.【点评】本题主要考查导数的几何意义,要注意分清f (a )与f ′(a ).15.【答案】 或a=1 .【解析】解:当时,.∵,由,解得:,所以;当,f (a )=2(1﹣a ),∵0≤2(1﹣a )≤1,若,则,分析可得a=1.若,即,因为2[1﹣2(1﹣a)]=4a﹣2,由,得:.综上得:或a=1.故答案为:或a=1.【点评】本题考查了函数的值域,考查了分类讨论的数学思想,此题涉及二次讨论,解答时容易出错,此题为中档题.16.【答案】y=﹣1.7t+68.7【解析】解:=,==63.6.=(﹣2)×4.4+(﹣1)×1.4+0+1×(﹣1.6)+2×(﹣2.6)=﹣17.=4+1+0+1+2=10.∴=﹣=﹣1.7.=63.6+1.7×3=68.7.∴y关于t的线性回归方程为y=﹣1.7t+68.7.故答案为y=﹣1.7t+68.7.【点评】本题考查了线性回归方程的解法,属于基础题.17.【答案】2.【解析】解:=2+lg100﹣2=2+2﹣2=2,故答案为:2.【点评】本题考查了对数的运算性质,属于基础题.18.【答案】0.6.【解析】解:随机变量ξ服从正态分布N(2,σ2),∴曲线关于x=2对称,∴P(ξ>0)=P(ξ<4)=1﹣P(ξ>4)=0.6,故答案为:0.6.【点评】本题考查正态分布曲线的特点及曲线所表示的意义,考查概率的性质,是一个基础题.三、解答题19.【答案】【解析】满分(14分).解法一:(Ⅰ)当a=4时,f(x)=4x2+2x﹣lnx,x∈(0,+∞),.…(1分)由x∈(0,+∞),令f′(x)=0,得.xf′(x)﹣0 +f(x)↘极小值↗故函数f(x)在单调递减,在单调递增,…(3分)f(x)有极小值,无极大值.…(4分)(Ⅱ),令f′(x)=0,得2ax2+2x﹣1=0,设h(x)=2ax2+2x﹣1.则f′(x)在(0,1)有唯一的零点x0等价于h(x)在(0,1)有唯一的零点x0当a=0时,方程的解为,满足题意;…(5分)当a>0时,由函数h(x)图象的对称轴,函数h(x)在(0,1)上单调递增,且h(0)=﹣1,h(1)=2a+1>0,所以满足题意;…(6分)当a<0,△=0时,,此时方程的解为x=1,不符合题意;当a<0,△≠0时,由h(0)=﹣1,只需h(1)=2a+1>0,得.…(7分)综上,.…(8分)(说明:△=0未讨论扣1分)(Ⅲ)设t=1﹣x,则t∈(0,1),p(t)=g(1﹣t)=at2+2t﹣3﹣lnt,…(9分),由,故由(Ⅱ)可知,方程2at2+2t﹣1=0在(0,1)内有唯一的解x0,且当t∈(0,x0)时,p′(t)<0,p(t)单调递减;t∈(x0,1)时,p′(t)>0,p(t)单调递增.…(11分)又p(1)=a﹣1<0,所以p(x0)<0.…(12分)取t=e﹣3+2a∈(0,1),则p(e﹣3+2a)=ae﹣6+4a+2e﹣3+2a﹣3﹣lne﹣3+2a=ae﹣6+4a+2e﹣3+2a﹣3+3﹣2a=a(e﹣6+4a﹣2)+2e﹣3+2a>0,从而当t∈(0,x0)时,p(t)必存在唯一的零点t1,且0<t1<x0,即0<1﹣x1<x0,得x1∈(0,1),且x0+x1>1,从而函数g(x)在(0,1)内有唯一的零点x1,满足x0+x1>1.…(14分)解法二:(Ⅰ)同解法一;…(4分)(Ⅱ),令f′(x)=0,由2ax2+2x﹣1=0,得.…(5分)设,则m∈(1,+∞),,…(6分)问题转化为直线y=a与函数的图象在(1,+∞)恰有一个交点问题.又当m∈(1,+∞)时,h(m)单调递增,…(7分)故直线y=a与函数h(m)的图象恰有一个交点,当且仅当.…(8分)(Ⅲ)同解法一.(说明:第(Ⅲ)问判断零点存在时,利用t→0时,p(t)→+∞进行证明,扣1分)【点评】本题考查函数与导数等基本知识,考查推理论证能力和运算求解能力,考查函数与方程的思想、化归与转化的思想、数形结合的思想,考查运用数学知识分析和解决问题的能力.20.【答案】【解析】解:(Ⅰ)由题意可知:X~B(9,p),故EX=9p.在通讯器械配置的9个元件中,恰有5个元件正常工作的概率为:.在通讯器械配置的9个元件中,恰有6个元件正常工作的概率为:.在通讯器械配置的9个元件中,恰有7个元件正常工作的概率为:.在通讯器械配置的9个元件中,恰有8个元件正常工作的概率为:.在通讯器械配置的9个元件中,恰有9个元件正常工作的概率为:.通讯器械正常工作的概率P′=;(Ⅱ)当电路板上有11个元件时,考虑前9个元件,为使通讯器械正常工作,前9个元件中至少有4个元件正常工作.①若前9个元素有4个正常工作,则它的概率为:.此时后两个元件都必须正常工作,它的概率为:p2;②若前9个元素有5个正常工作,则它的概率为:.此时后两个元件至少有一个正常工作,它的概率为:;③若前9个元素至少有6个正常工作,则它的概率为:;此时通讯器械正常工作,故它的概率为:P″=p2++,可得P″﹣P′=p2+﹣,==.故当p=时,P″=P′,即增加2个元件,不改变通讯器械的有效率;当0<p时,P″<P′,即增加2个元件,通讯器械的有效率降低;当p时,P″>P′,即增加2个元件,通讯器械的有效率提高.【点评】本题考查二项分布,考查了相互独立事件及其概率,关键是对题意的理解,属概率统计部分难度较大的题目.21.【答案】【解析】解:(1)设等差数列{a n}的公差为d,依题意得…(2分)解得:a1=1,d=2a n=2n﹣1…(2)由①得…(7分)∴…(11分)∴…(12分)【点评】本题考查等差数列的通项公式的求法及数列的求和,突出考查裂项法求和的应用,属于中档题.22.【答案】【解析】解:(1)根据题意,得;该旋转体的下半部分是一个圆锥,上半部分是一个圆台中间挖空一个圆锥而剩下的几何体,其表面积为S=×4π×2×2=8π,或S=×4π×2+×(4π×2﹣2π×)+×2π×=8π;(2)作ME⊥AC,EF⊥BC,连结FM,易证FM⊥BC,∴∠MFE为二面角M﹣BC﹣D的平面角,设∠CAM=θ,∴EM=2sinθ,EF=,∵tan∠MFE=1,∴,∴tan=,∴,∴CM=2.【点评】本题考查了空间几何体的表面积与体积的计算问题,也考查了空间想象能力的应用问题,是综合性题目.23.【答案】【解析】解;(1)由题意可设椭圆的标准方程为,c为半焦距.∵右顶点为D(2,0),左焦点为,∴a=2,,.∴该椭圆的标准方程为.(2)设点P(x0,y0),线段PA的中点M(x,y).由中点坐标公式可得,解得.(*)∵点P是椭圆上的动点,∴.把(*)代入上式可得,可化为.即线段PA的中点M的轨迹方程为一焦点在x轴上的椭圆.(3)①当直线BC的斜率不存在时,可得B(0,﹣1),C(0,1).∴|BC|=2,点A到y轴的距离为1,∴=1;②当直线BC的斜率存在时,设直线BC的方程为y=kx,B(x1,y1),C(﹣x1,﹣y1)(x1<0).联立,化为(1+4k2)x2=4.解得,∴.∴|BC|==2=.又点A到直线BC的距离d=.∴==,∴==,令f(k)=,则.令f′(k)=0,解得.列表如下:又由表格可知:当k=时,函数f(x)取得极小值,即取得最大值2,即.而当x→+∞时,f(x)→0,→1.综上可得:当k=时,△ABC的面积取得最大值,即.【点评】熟练掌握椭圆的标准方程及其性质、中点坐标公式及“代点法”、分类讨论的思想方法、直线与椭圆相交问题转化为直线的方程与椭圆的方程联立解方程组、两点间的距离公式、点到直线的距离公式、三角形的面积计算公式、利用导数研究函数的单调性及其极值.24.【答案】【解析】(本小题满分12分)解析:(1)原式=1+1﹣5+2+1=0;…(6分)(2)∵向量=(sinθ,cosθ),=(﹣2,1),满足∥,∴sinθ=﹣2cosθ,①…(9分)又sin2θ+cos2θ+=1,②由①②解得cos2θ=,…(11分)∵θ∈(,π),∴cosθ=﹣.…(12分)【点评】本题考查对数运算法则以及三角函数的化简求值,向量共线的应用,考查计算能力.。