材料科学基础课后作业
- 格式:doc
- 大小:784.76 KB
- 文档页数:15
《材料科学基础》课后习题答案第一章材料结构的基本知识4. 简述一次键和二次键区别答:根据结合力的强弱可把结合键分成一次键和二次键两大类。
其中一次键的结合力较强,包括离子键、共价键和金属键。
一次键的三种结合方式都是依靠外壳层电子转移或共享以形成稳定的电子壳层,从而使原子间相互结合起来。
二次键的结合力较弱,包括范德瓦耳斯键和氢键。
二次键是一种在原子和分子之间,由诱导或永久电偶相互作用而产生的一种副键。
6. 为什么金属键结合的固体材料的密度比离子键或共价键固体为高?答:材料的密度与结合键类型有关。
一般金属键结合的固体材料的高密度有两个原因:(1)金属元素有较高的相对原子质量;(2)金属键的结合方式没有方向性,因此金属原子总是趋于密集排列。
相反,对于离子键或共价键结合的材料,原子排列不可能很致密。
共价键结合时,相邻原子的个数要受到共价键数目的限制;离子键结合时,则要满足正、负离子间电荷平衡的要求,它们的相邻原子数都不如金属多,因此离子键或共价键结合的材料密度较低。
9. 什么是单相组织?什么是两相组织?以它们为例说明显微组织的含义以及显微组织对性能的影响。
答:单相组织,顾名思义是具有单一相的组织。
即所有晶粒的化学组成相同,晶体结构也相同。
两相组织是指具有两相的组织。
单相组织特征的主要有晶粒尺寸及形状。
晶粒尺寸对材料性能有重要的影响,细化晶粒可以明显地提高材料的强度,改善材料的塑性和韧性。
单相组织中,根据各方向生长条件的不同,会生成等轴晶和柱状晶。
等轴晶的材料各方向上性能接近,而柱状晶则在各个方向上表现出性能的差异。
对于两相组织,如果两个相的晶粒尺度相当,两者均匀地交替分布,此时合金的力学性能取决于两个相或者两种相或两种组织组成物的相对量及各自的性能。
如果两个相的晶粒尺度相差甚远,其中尺寸较细的相以球状、点状、片状或针状等形态弥散地分布于另一相晶粒的基体内。
如果弥散相的硬度明显高于基体相,则将显著提高材料的强度,同时降低材料的塑韧性。
《材料科学基础》课后习题(西工大版)-图文第一章晶面及102,211,346晶向。
1.作图表示立方晶体的123,012,421,2110,1010,1120,1210等。
2.在六方晶体中,绘出以下常见晶向00013.写出立方晶体中晶面族{100},{110},{111},{112}等所包括的等价晶面。
4.镁的原子堆积密度和所有hcp金属一样,为0.74。
试求镁单位晶胞的体积。
已知Mg的密度r=0.161nm。
5.当CN=6时Na离子半径为0.097nm,试问:1)当CN=4时,其半径为多少?2)当CN=8时,其半径为多少?6.试问:在铜(fcc,a=0.361nm)的<100>方向及铁(bcc,a=0.286nm)的<100>方向,原子的线密度为多少?mg1.74Mg/m3,相对原子质量为24.31,原子半径nm。
试确定在镍的(100),7.镍为面心立方结构,其原子半径为rNi0.1246(110)及(111)平面上1mm中各有多少个原子。
3SiOMg/m28.石英的密度为2.65。
试问:21)1m中有多少个硅原子(与氧原子)?2)当硅与氧的半径分别为0.038nm与0.114nm时,其堆积密度为多少(假设原子是球形的)?10109.在800℃时个原子中有一个原子具有足够能量可在固体内移动,而在3900℃时10个原子中则只有一个原子,试求其激活能(J/原子)。
10.若将一块铁加热至850℃,然后快速冷却到20℃。
试计算处理前后空位数应增加多少倍(设铁中形成一摩尔空位所需要的能量为104600J)。
11.设图1-18所示的立方晶体的滑移面ABCD平行于晶体的上、下底面。
若该滑移面上有一正方形位错环,如果位错环的各段分别与滑移面各边平行,其柏氏矢量b∥AB。
91)有人认为“此位错环运动移出晶体后,滑移面上产生的滑移台阶应为4个b,试问这种看法是否正确?为什么?2)指出位错环上各段位错线的类型,并画出位错运动出晶体后,滑移方向及滑移量。
材料科学基础课后作业及答案(分章节)第一章8.计算下列晶体的离于键与共价键的相对比例(1)NaF (2)CaO (3)ZnS 解:1、查表得:XNa=,XF= 根据鲍林公式可得NaF中离子键比例为:[1?e共价键比例为:%=% 2、同理,CaO中离子键比例为:[1?e共价键比例为:%=% 12?(?)412?(?)4]?100%?% ]?100%? % 23、ZnS中离子键比例为:ZnS 中离子键含量?[1?e?1/4(?)]?100%?% 共价键比例为:%=% 10说明结构转变的热力学条件与动力学条件的意义.说明稳态结构与亚稳态结构之间的关系。
答:结构转变的热力学条件决定转变是否可行,是结构转变的推动力,是转变的必要条件;动力学条件决定转变速度的大小,反映转变过程中阻力的大小。
稳态结构与亚稳态结构之间的关系:两种状态都是物质存在的状态,材料得到的结构是稳态或亚稳态,取决于转交过程的推动力和阻力(即热力学条件和动力学条件),阻力小时得到稳态结构,阻力很大时则得到亚稳态结构。
稳态结构能量最低,热力学上最稳定,亚稳态结构能量高,热力学上不稳定,但向稳定结构转变速度慢,能保持相对稳定甚至长期存在。
但在一定条件下,亚稳态结构向稳态结构转变。
第二章1.回答下列问题:(1)在立方晶系的晶胞内画出具有下列密勒指数的晶面和晶向:(001)与[210],(111)与[112],(110)与[111],(132)与[123],(322)与[236](2)在立方晶系的一个晶胞中画出晶面族各包括多少晶面?写出它们的密勒指数。
[1101]4.写出六方晶系的{1012}晶面族中所有晶面的密勒指数,在六方晶胞中画出[1120]、晶向和(1012)晶面,并确定(1012)晶面与六方晶胞交线的晶向指数。
5.根据刚性球模型回答下列问题:(1)以点阵常数为单位,计算体心立方、面心立方和密排六方晶体中的原子半径及四面体和八面体的间隙半径。
材料科学基础课后习题课后习题第⼀章原⼦结构与结合键1.原⼦中⼀个电⼦的空间位置和能量可⽤哪四个量⼦数来决定?2.在多电⼦的原⼦中,核外电⼦的排布应遵循哪些个原则?3.在元素周期表中,同⼀周期或同⼀主族元素原⼦结构有什么共同特点?从左到右或从上到下元素结构有什么区别?性质如何递变?4.何谓同位素?为什么原⼦量不总为整数?5.铬的原⼦序数为24,共有四种同位数:4.31%的Cr原⼦含有26个中⼦,83.76%含有28个中⼦,9.55%含有29个中⼦,且2.38%含有30个中⼦。
试求铬的原⼦量?6.铜的原⼦序数为29,原⼦量为63.54,它共有两种同位素Cu63和Cu65,试求两种铜的同位素之含量百分⽐。
7.铟的原⼦序数为49,除了4f亚层之外其它内部电⼦亚层均已填满。
试从原⼦结构⾓度来确定铟的价电⼦数。
8.铂的原⼦序数为78,它在5d亚层中只有9个电⼦,并且在5f层中没有电⼦,请问在Pt的6s亚层中有⼏个电⼦?9.已知某元素原⼦序数为32,根据原⼦的电⼦结构知识,试指出它属于哪个周期?哪个族?并判断其⾦属性强弱。
10.原⼦间的结合键共有⼏种?各⾃特点如何?11.已知Si的原⼦量为28.09,若100g的Si中有5×1010个电⼦能⾃由运动,试计算:(a)能⾃由运动的电⼦占价电⼦总数的⽐例为多少?(b)必须破坏的共价键之⽐例为多少?12.S的化学⾏为有时象6价的元素,⽽有时却象4价元素。
试解释S这种⾏为的原因。
13.⾼分⼦链结构分为近程结构和远程结构。
他们各⾃包括内容是什么?14.按分⼦材料受热的表现分类可分为热塑性和热固性两⼤类,试从⾼分⼦链结构⾓度加以解释之。
15.分别绘出甲烷(CH4)和⼄烯(C2H4)之原⼦排列与键合。
16.下图1-1绘出三类材料——⾦属、离⼦晶体和⾼分⼦材料之能量与距离关系曲线,试指出它们各代表何种材料。
参考答案1.主量⼦数n、轨道⾓动量量⼦数li、磁量⼦数mi和⾃旋⾓动量量⼦数Si。
课后习题练习题1第一章绪论1.什么叫材料?2.材料科学与工程研究内容是什么?第二章物质结构基础原子结构1.材料结构的含义(层次)是什么?2.原子中一个电子的空间位置和能量可用哪4个量子数决定?3.在多电子的原子中,核外电子排布应遵循哪些原则(3个)?4.何谓同位素?为什么元素的相对原子质量不总为正整数?5.教材p102 题2-246.铬的原子序数为24,共有4种同位素:4.31%的Cr原子含有26个中子,83.76%含有28个中子,9.55%含有29个中子,2.38%含有30个中子,试求铬的相对原子质量。
7.铜原子序数29,相对原子质量63.54,共有两种同位素Cu63和Cu65,试求两同位素之含量百分数。
8.原子间的结合键共有几种?各自特点(饱和性和方向性)如何?练习题2原子有序:晶体结构1.纯铝的晶体为面心立方点阵。
已知铝的相对原子质量Ar(Al)=26.97,原子半径r=0.143nm,求铝晶体的密度。
2.按晶体刚性模型,若球直径不变,当Fe从fcc转变为bcc时,计算其体积膨胀率。
3.教材p102 题2-32 (共8题,每个晶胞中画2个晶向)4.教材p102 题2-335.教材p102 题2-34 (写出密勒指数推算过程)6.教材p102 题2-35 (题中的中括号应当改成小括号;共8题,每个晶胞中画2个晶面)练习题3原子无序:固溶体1.什么叫固溶体?2.根据溶质在点阵中的位置,固溶体有哪些类型?3.影响置换型固溶体形成的因素有哪些?4.Al和Ag都是面心立方结构,Al原子半径0.143 nm, Ag原子半径0.144 nm,试问:Al在Ag中能否形成无限固溶体?为什么?原子无序:晶体缺陷1.晶体缺陷有哪些类型?2.为何说点缺陷是热力学平衡缺陷?3.什么叫位错?位错的基本类型?4.位错能否终止于晶体内部?原子无序:材料中的扩散指出下列概念中的错误(判断和回答为什么)1.如果固溶体中不存在宏观扩散流,则说明原子没有发生迁移。
第二章答案2-1略。
2-2〔1〕一晶面在x、y、z轴上的截距分别为2a、3b、6c,求该晶面的晶面指数;〔2〕一晶面在x、y、z轴上的截距分别为a/3、b/2、c,求出该晶面的晶面指数。
答:〔1〕h:k:l==3:2:1,∴该晶面的晶面指数为〔321〕;〔2〕h:k:l=3:2:1,∴该晶面的晶面指数为〔321〕。
2-3在立方晶系晶胞中画出以下晶面指数和晶向指数:〔001〕与[],〔111〕与[],〔〕与[111],〔〕与[236],〔257〕与[],〔123〕与[],〔102〕,〔〕,〔〕,[110],[],[]答:2-4定性描述晶体构造的参量有哪些.定量描述晶体构造的参量又有哪些.答:定性:对称轴、对称中心、晶系、点阵。
定量:晶胞参数。
2-5依据结合力的本质不同,晶体中的键合作用分为哪几类.其特点是什么.答:晶体中的键合作用可分为离子键、共价键、金属键、范德华键和氢键。
离子键的特点是没有方向性和饱和性,结合力很大。
共价键的特点是具有方向性和饱和性,结合力也很大。
金属键是没有方向性和饱和性的的共价键,结合力是离子间的静电库仑力。
范德华键是通过分子力而产生的键合,分子力很弱。
氢键是两个电负性较大的原子相结合形成的键,具有饱和性。
2-6等径球最严密堆积的空隙有哪两种.一个球的周围有多少个四面体空隙、多少个八面体空隙.答:等径球最严密堆积有六方和面心立方严密堆积两种,一个球的周围有8个四面体空隙、6个八面体空隙。
2-7n个等径球作最严密堆积时可形成多少个四面体空隙、多少个八面体空隙.不等径球是如何进展堆积的.答:n个等径球作最严密堆积时可形成n个八面体空隙、2n个四面体空隙。
不等径球体进展严密堆积时,可以看成由大球按等径球体严密堆积后,小球按其大小分别填充到其空隙中,稍大的小球填充八面体空隙,稍小的小球填充四面体空隙,形成不等径球体严密堆积。
2-8写出面心立方格子的单位平行六面体上所有结点的坐标。
答:面心立方格子的单位平行六面体上所有结点为:〔000〕、〔001〕〔100〕〔101〕〔110〕〔010〕〔011〕〔111〕〔0〕〔0〕〔0〕〔1〕〔1〕〔1〕。
第一章10.说明结构转变的热力学条件与动力学条件的意义.说明稳态结构与亚稳态结构之间的关系。
答:结构转变的热力学条件决定转变是否可行,是结构转变的推动力,是转变的必要条件;动力学条件决定转变速度的大小,反映转变过程中阻力的大小。
稳态结构与亚稳态结构之间的关系:两种状态都是物质存在的状态,材料得到的结构是稳态或亚稳态,取决于转交过程的推动力和阻力(即热力学条件和动力学条件),阻力小时得到稳态结构,阻力很大时则得到亚稳态结构。
稳态结构能量最低,热力学上最稳定,亚稳态结构能量高,热力学上不稳定,但向稳定结构转变速度慢,能保持相对稳定甚至长期存在。
但在一定条件下,亚稳态结构向稳态结构转变。
第二章1.回答下列问题:(1)在立方晶系的晶胞内画出具有下列密勒指数的晶面和晶向:(001)与[210],(111)与[112],(110)与 [111],(132)与[123],(322)与[236](2)在立方晶系的一个晶胞中画出(111)和 (112)晶面,并写出两晶面交线的晶向指数。
(3)在立方晶系的一个晶胞中画出同时位于(101). (011)和(112)晶面上的[111]晶向。
解:6.用密勒指数表示出体心立方、面心立方和密排六方结构中的原子密排面和原子密排方向,并分别计算这些晶面和晶向上的原子密度。
解:1、体心立方:密排面:{110}2114 1.414a -+⨯=;密排方向:<111> 11.15a -= 2、面心立方:密排面:{111},21133 2.3a -⨯+⨯=;密排方向:<110>,11.414a -=3、密排六方:密排面:{0001}2161 1.1522a -⨯+=;密排方向:<>,原子密度:122a a -= 8.回答下列问题:(1)通过计算判断(110), (132), (311)晶面是否属于同一晶带?(2)求(211)和(110)晶面的晶带轴,并列出五个属于该晶带的晶面的密勒指数。
1. 有关晶面及晶向附图2.1所示。
2. 见附图2.2所示。
3. {100}=(100)十(010)+(001), 共3个等价面。
{110}=(110)十( )+(101)+( )+(011)+( ), 共6个等价面。
{111}=(111)+( )+( )+( ), 共4个等价面。
)121()112()112()211()112()121( )211()121()211()211()121()112(}112{+++++++++++=共12个等价面。
4. 单位晶胞的体积为VCu =0.14 nm3(或1.4×10-28m3)5. (1)0.088 nm ;(2)0.100 nm 。
6. Cu 原子的线密度为2.77×106个原子/mm 。
Fe 原子的线密度为3.50×106个原子/mm 。
7. 1.6l ×l013个原子/mm2;1.14X1013个原子/mm2;1.86×1013个原子/mm2。
8. (1) 5.29×1028个矽原子/m3; (2) 0.33。
9. .9.0.4×10-18/个原子。
10. 1.06×1014倍。
11. (1) 这种看法不正确。
在位错环运动移出晶体后, 滑移面上、下两部分晶体相对移动的距离是由其柏氏矢量决定的。
位错环的柏氏矢量为b, 故其相对滑移了一个b 的距离。
(2) A'B'为右螺型位错, C'D'为左螺型位错;B'C'为正刃型位错, D'A'为负刃型位错。
位错运动移出晶体后滑移方向及滑移量如附图2.3所示。
12. (1)应沿滑移面上、下两部分晶体施加一切应力τ0, 的方向应与de 位错线平行。
(2)在上述切应力作用下, 位错线de 将向左(或右)移动, 即沿着与位错线de 垂直的方向(且在滑移面上)移动。
在位错线沿滑移面旋转360°后, 在晶体表面沿柏氏矢量方向产生宽度为一个b 的台阶。
材料科学基础课后习题答案第一章8.计算下列晶体的离于键与共价键的相对比例 (1)NaF(2)CaO(3)ZnS解:1、查表得:X Na =0.93,X F =3.98根据鲍林公式可得NaF 中离子键比例为:21(0.93 3.98)4[1]100%90.2%e ---⨯=共价键比例为:1-90.2%=9.8% 2、同理,CaO 中离子键比例为:21(1.00 3.44)4[1]100%77.4%e---⨯=共价键比例为:1-77.4%=22.6%3、ZnS 中离子键比例为:21/4(2.581.65)[1]100%19.44%ZnS e --=-⨯=中离子键含量共价键比例为:1-19.44%=80.56%10说明结构转变的热力学条件与动力学条件的意义.说明稳态结构与亚稳态结构之间的关系。
答:结构转变的热力学条件决定转变是否可行,是结构转变的推动力,是转变的必要条件;动力学条件决定转变速度的大小,反映转变过程中阻力的大小。
稳态结构与亚稳态结构之间的关系:两种状态都是物质存在的状态,材料得到的结构是稳态或亚稳态,取决于转交过程的推动力和阻力(即热力学条件和动力学条件),阻力小时得到稳态结构,阻力很大时则得到亚稳态结构。
稳态结构能量最低,热力学上最稳定,亚稳态结构能量高,热力学上不稳定,但向稳定结构转变速度慢,能保持相对稳定甚至长期存在。
但在一定条件下,亚稳态结构向稳态结构转变。
第二章1.回答下列问题:(1)在立方晶系的晶胞内画出具有下列密勒指数的晶面和晶向:(001)与[210],(111)与[112],(110)与 [111],(132)与[123],(322)与[236](2)在立方晶系的一个晶胞中画出(111)和 (112)晶面,并写出两晶面交线的晶向指数。
(3)在立方晶系的一个晶胞中画出同时位于(101). (011)和(112)晶面上的[111]晶向。
解:1、2.有一正交点阵的 a=b, c=a/2。
某晶面在三个晶轴上的截距分别为 6个、2个和4个原子间距,求该晶面的密勒指数。
3.立方晶系的 {111}, 1110}, {123)晶面族各包括多少晶面?写出它们的密勒指数。
4.写出六方晶系的{1012}晶面族中所有晶面的密勒指数,在六方晶胞中画出[1120]、[1101]晶向和(1012)晶面,并确定(1012)晶面与六方晶胞交线的晶向指数。
5.根据刚性球模型回答下列问题:(1)以点阵常数为单位,计算体心立方、面心立方和密排六方晶体中的原子半径及四面体和八面体的间隙半径。
(2)计算体心立方、面心立方和密排六方晶胞中的原子数、致密度和配位数。
6.用密勒指数表示出体心立方、面心立方和密排六方结构中的原子密排面和原子密排方向,并分别计算这些晶面和晶向上的原子密度。
解:1、体心立方密排面:{110}2114 1.414a -+⨯= 密排方向:<111>11.15a -= 2、面心立方密排面:{111}21133 2.3a -⨯+⨯=密排方向:<110>11.414a -= 3、密排六方密排面:{0001}2161 1.15a -⨯+= 密排方向:1120<>,原子密度:122a a-=7.求下列晶面的晶面间距,并指出晶面间距最大的晶面 :(1)已知室温下 α-Fe 的点阵常数为0. 286nm ,分别求出 (100), (110), (123)的晶面间距 。
(2)已知 9160C 时γ-Fe 的点阵常数为 0. 365nm ,分别求出 (100), (111), (112)的晶面间距 。
(3)已知室温下 Mg 的点阵常数为a=0.321nm, c=0. 521nm ,分别求出 (1120), (1010),(1012)的晶面间距。
8.回答下列问题:(1)通过计算判断(110), (132), (311)晶面是否属于同一晶带?(2)求 (211)和 ((110)晶面的晶带轴 ,并列出五个属于该晶带的晶面的密勒指数。
解:1、根据晶带定律,hu+kv+lw=0,可得(110), (132)的晶带轴为[112]3×1+1×1-2×1=2≠0或 (132), (311)的晶带轴为[158] -1×1+1×5-0×8=4≠0 故(110), (132), (311)晶面不属于同一晶带 2、根据晶带定律,hu+kv+lw=0,可得 2u+v+w=0 u+v=0联立求解,得:u:v:w=-1:1:1,故晶带轴为[111]属于该晶带的晶面:(321)、(312)、(101)、(011)、(431) 等。
9.回答下列问题:(1)试求出立方晶系中[321]与[401]晶向之间的夹角。
(2)试求出立方晶系中(210)与(320)晶面之间的夹角。
(3)试求出立方晶系中(111)晶面与[112]晶向之间的夹角。
解:1、根据晶向指数标定法可知:矢量32OA i j k =++必然平行于[321]晶向 矢量4OB i k =+必然平行于[401]晶向则:这两个矢量夹角即为[321]与[401]晶向之间的夹角根据矢量点积公式:cos OA OBOA OB α= 即13α=α=32.58°或2AB OB OA i k =-=-矢量,,OA OB AB根据余弦定理:51417α=+- 解得: α=32.58°2、立方系中同指数的晶面与晶向相互垂直,故(210)与(320)晶面之间的夹角与[210]与[320]晶向之间的夹角相等, 根据晶向指数标定法可知:矢量21OA i j =+必然平行于[210]晶向 矢量32OB i j =+必然平行于[320]晶向则:这两个矢量夹角即为[210]与[320]晶向之间的夹角根据矢量点积公式:cos OA OBOA OB α= 即8α= α=7.1°或AB OBOA i j =-=+矢量,,OA OB AB根据余弦定理:2513α=+- 解得: α=7.1°3、由于(111)晶面与[112]晶向之间满足晶带定律:hu+kv+lw=0,根据晶带定律可知,立方晶系中(111)晶面与[112]晶向平行,故他们之间的夹角为0°。
方法2,1、求[111]与[112]之间夹角为90° 2、(111)与[112]之间夹角为0°第四章1.纯 Cu 的空位形成能为 1.5aJ/atom (1aJ=10-18J),将纯Cu 加热至850℃后激冷至室温 (20℃),若高温下的空位全部保留,试求过饱和空位浓度与室温平衡空位浓度的比值。
解:平衡空位浓度:expv u C A kT-= 8508502085020201823274.2exp11exp[()]exp1.51011exp[()]1.3810850273.1520273.15uA C u kT u C k T T A kT e ----==---⨯=-⨯++= 2.已知银在 800℃下的平衡空位数为 3. 6 ×1023/m 3,该温度下银的密度ρAg = 9. 58g/crn 3 ,银的摩尔质量为M Ag =107.9g/mol ,计算银的空位形成能。
解:平衡空位浓度:exp v u C A kT-= 1m 3内银原子总数:23602836.02109.5810 5.3410/107.9Ag AgN N m M ρ⨯⨯⨯===⨯2328233.6101exp 5.3410 1.3810(800273.15)u-⨯-=⨯⨯⨯+191.7610/u J atom -=⨯3.空位对材料行为的主要影响是什么?4.某晶体中有一条柏氏矢量为a [001]的位错线,位错线的一端露头于晶体表面,另一端与两条位错线相连接,其中一条的柏氏矢量为/2[111]a ,求另一条位错线的柏氏矢量。
答:根据柏氏矢量的守恒性,另一条位错的柏氏矢量为:[110][111][111]22a aa -=5.在图 4-52所示的晶体中,ABCD 滑移面上有一个位错环,其柏氏矢量b 平行于AC(1)指出位错环各部分的位错类型。
(2)在图中表示出使位错环向外运动所需施加的切应力方向。
(3)该位错环运动出晶体后,晶体外形如何变化?答:(1)位错环和与AC 平行的直线相切的部分为纯螺位错,位错环和与AC 垂直的直线相切的部分为纯刃位错,其余部分为混合位错,作图(2)切应力与b 平行,作用在晶体上下两面上。
t ×b →多余原子面,作图 (3)沿b 方向滑出一个柏氏矢量单位的距离 6.在图 4-53所示的晶体中有一位错线 fed, de 段正好处于位错的滑移面上,of 段处于非滑移面上,位错的柏氏矢量 b 与 AB 平行而垂直于 BC, (1)欲使de 段位错线在 ABCD 滑移面上运动 (of 段因处于非滑移面是固定不动的),应对晶体施加怎样的应力? (2)在 上述 应力作用下 de 段位错线如何运动 ,晶体外协 如 1可贾 化 ? 7.在图 4-54所示的面心立方 晶体 的 (111)滑移 面上有 两条弯 折 的位错线 OS 和 O'S'其 中 O'S'位错 的台阶垂直十 ((111),它们的桕氏天量如图中箭头P)rT o 0)判断位错线上各段位错的类型。
(2)有一切应力施加于滑移面,且与柏氏矢量平行时,两条位错线的滑移特征有何差异?8.在两个相互垂直的滑移面上各有一条刃型位错线,位错线的柏氏矢量如图 4-55a, b 所示。
设其中一条位错线 AB 在切应力作用下发生如图所示的运动,试问交截后两条位错线的形状有何变化?各段位错线的位错类型是什么? (1)交截前两条刃位错的柏氏矢量相互垂直的情况 (图a) (2)交截前两条刃位错的柏氏矢量相互平行的情况 (图b)9.在晶体的同一滑移面上有两个直径分别为 r ;和r :的位错环,其中rl>r2,它们的柏氏矢量相同,试问在切应力作用下何者更容易运动?为什么? 10.判断下列位错反应能否进行:[101][121][111]263a a a+→ 几何条件:[101][121][222][111]2663a a a a+==能量条件:反应前 222222222211)(121)263a ab a =++++=∑反应后2222221(111)33a b a =++=∑ 满足几何条件和能量条件,故反应能够进行。
[100][101][101]22a aa →+几何条件:[101][101][200][100]222a a aa +==能量条件:反应前2222(1)b a a==∑反应后222222(11)2ab a =+=∑满足几何条件,但反应前后能量相等,不满足能量条件,故无外力作用时,该位错反应不能进行。