1小学数学中常见的数学思想方法有哪些_2
- 格式:doc
- 大小:40.50 KB
- 文档页数:9
中小学数学很重要的20种常见思想方法1、对应思想方法对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。
如直线上的点(数轴)与表示具体的数是一一对应。
2、假设思想方法假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。
假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。
3、比较思想方法比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。
在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。
4、符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。
如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。
如定律、公式、等。
5、类比思想方法类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。
如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。
类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁。
6、转化思想方法转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。
如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。
7、分类思想方法分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。
如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。
又如三角形可以按边分,也可以按角分。
不同的分类标准就会有不同的分类结果,从而产生新的概念。
对数学对象的正确、合理分类取决于分类标准的正确、合理性,数学知识的分类有助于学生对知识的梳理和建构。
小学数学中体现的数学思想与方法有哪些在小学数学中,体现了许多数学思想与方法,以下是其中一些例子:1.抽象思维:小学数学强调从具体的事物中提取共性、去除特殊性,实现抽象思维。
例如,学习数的运算时,通过将具体的事物抽象成数字,进行运算操作;学习几何时,通过将具体的图形抽象成几何形状,并进行相应的运算和推理。
2.归纳与演绎:小学数学通过归纳与演绎的方法培养学生的逻辑思维能力。
通过观察和总结,归纳出事物之间的规律,并进一步演绎出更一般的结论。
例如,学习数列时,通过观察数列中的规律,归纳出通项公式,从而推算出数列的任意项。
3.探究性学习:小学数学注重培养学生的探究精神和问题解决能力。
通过设计问题和情境,引导学生主动思考和探索。
例如,教学中可以使用教具和故事情境,让学生通过操作、实践和讨论解决问题。
这种学习方式能够激发学生的学习兴趣,增强他们的思考能力和创新能力。
4.决策与推理:小学数学通过决策问题和推理问题的解决过程,培养学生的逻辑思维和批判思维能力。
通过分析问题,寻找解决方案,并进行论证和验证。
例如,在解决实际问题时,学生需要选择合适的数学方法,进行计算和推理,从而得到正确的答案。
5.审美与美感:小学数学通过培养学生的审美意识,提高他们对数学美感的感知和理解能力。
例如,在几何学习中,学生通过观察和欣赏各种几何形状、图案和艺术作品,体验到数学的美妙和魅力。
6.适度抽象与形象思维:小学数学在引导学生进行适度抽象时,也注重发展形象思维。
通过使用具体的物体和图形,辅助学生理解数学概念、规则和运算。
例如,在学习分数时,可以使用物体的切割和图形的绘制,帮助学生形象地理解分数的概念和运算。
7.整体与部分:小学数学注重培养学生分析整体与部分之间的关系与变化的能力。
例如,在学习分数时,学生需要理解分数是整体与部分的关系,能够将一个整体分成几个相等的部分,并掌握分数的基本概念和运算规则。
以上只是一些例子,小学数学中还有许多其他数学思想与方法的体现。
小学数学中常见的数学思想方法有哪些1.归纳法:通过观察一般情况,从而推断出普遍规律。
例如,通过寻找一些数列的规律,利用归纳法可以推出数列的通项公式。
2.逆向思维:通过逆向思考问题,从结果出发逆推回起始状态。
逆向思维常用于解决逻辑推理和问题求解。
例如,将一个求和问题转化为找到使得等式成立的数。
3.分解与组合:将一个大问题分解为若干个较小的子问题,然后通过解决子问题得到解决整个问题的方法。
这种思想方法常用于解决复杂的问题,可以降低问题的难度。
4.比较与类比:通过比较或类比不同的情况或对象,找到相似之处或变化的规律,从而解决问题。
例如,可以通过类比找到两个数的最大公约数和两个数的最大公倍数之间的关系。
5.推理与证明:通过逻辑推理和数学证明解决问题。
推理与证明是数学思维中最基本和最重要的方法之一、通过推理和证明,可以建立数学定理和推理规则,从而解决更复杂的问题。
6.抽象与泛化:将问题抽象为一般性质或模式,从而简化问题,找到问题的本质。
抽象与泛化是数学思想中的核心思维方法之一,通过抽象和泛化,可以建立数学概念和定理。
7.反证法:通过反证得到正证结论。
反证法常用于证明一些结论的唯一性或否定性。
通过假设结论不成立,然后推导出与已知条件矛盾的结果,从而得到结论的成立性。
8.猜想与验证:通过猜想和验证的方法解决问题。
猜想与验证是一种探索性的方法,通过发现规律和验证猜想的正确性,找到问题的解决方法。
9.近似与估算:通过近似和估算的方法解决问题。
近似与估算是数学思维中的实用方法之一,可以在缺乏精确计算方法时得到近似的结果。
以上是小学数学中常见的数学思想方法,请注意,数学思想方法的具体应用还受到问题性质、题型以及学生认识和思维水平的影响,因此,教学中还应根据具体情况灵活运用。
1小学数学中常见的数学思想方法有哪些数学思想方法是指在解决数学问题时所运用的思维方式和方法步骤。
下面是小学数学中常见的数学思想方法:1.观察法:通过观察问题中的数据和现象,发现问题的规律和特点。
可以通过观察图形、数据表格、实物等来推测规律。
2.归纳法:通过观察若干个具体的数学问题,总结问题中的共同特点,得出一般规律。
采用归纳法可以从特例推广到一般性结论。
3.推理法:通过逻辑推理的方式,从已知的前提出发,得出结论。
可以采用直接推理法、间接推理法、逆否命题推理法等。
4.分类法:将问题中的元素或对象进行分类,找出每个类别的共性和差异性。
通过分类的方法,可以更好地理解和解决问题。
5.拆解法:将复杂的问题拆解成多个简单的小问题进行分析解决。
通过拆解问题的方法,可以更好地理清思路和解题思路。
6.类比法:将问题中的数学概念和方法与已知的类似问题进行对比,从而找到解决问题的方法和思路。
7.假设法:在解决问题时,可以先进行一定的假设,然后验证是否成立。
通过假设法可以引导学生尝试不同的解题思路。
8.反证法:通过假设问题的反面情况,证明原命题的成立。
采用反证法可以理解和解决一些反常或特殊情况下的问题。
9.逆向思维:将问题的要求逆转或倒过来思考。
逆向思维可以帮助学生从不同的角度思考问题,发现问题的本质。
10.前推法:从已知条件出发,通过按照题目要求的步骤和顺序逐步推导,最终得出结论。
11.空想法:通过想象和设想一些与实际情况不一样的情景或条件,以拓宽解决问题的思路。
12.再化归纳法:对已知的规律和经验进行归纳总结,再应用到新的问题中。
通过再化归纳法可以更好地理解和应用数学知识。
这些数学思想方法在小学数学中常常被运用。
学生通过学习和应用这些方法,可以培养出系统的数学思维和解决问题的能力。
常用的数学思想方法常用的数学思想方法大全在数学的学习过程中,有哪些常见的思想方法呢?下面是店铺网络整理的常见的数学思想方法以供大家学习。
常用的数学思想方法篇11、数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。
2、联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。
数学学科的各部分之间也是相互联系,可以相互转化的。
在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。
如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。
3、分类讨论的思想:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查,这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。
4、待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。
为此,把已知条件代入这个待定形式的式子中,往往会得到含待定字母的方程或方程组,然后解这个方程或方程组就使问题得到解决。
5、配方法:就是把一个代数式设法构造成平方式,然后再进行所需要的变化。
配方法是初中代数中重要的变形技巧,配方法在分解因式、解方程、讨论二次函数等问题,都有重要的作用。
6、换元法:在解题过程中,把某个或某些字母的式子作为一个整体,用一个新的字母表示,以便进一步解决问题的一种方法。
换元法可以把一个较为复杂的式子化简,把问题归结为比原来更为基本的问题,从而达到化繁为简,化难为易的目的。
7、分析法:在研究或证明一个命题时,又结论向已知条件追溯,既从结论开始,推求它成立的充分条件,这个条件的成立还不显然,则再把它当作结论,进一步研究它成立的充分条件,直至达到已知条件为止,从而使命题得到证明。
这种思维过程通常称为“执果寻因”8、综合法:在研究或证明命题时,如果推理的方向是从已知条件开始,逐步推导得到结论,这种思维过程通常称为“由因导果”9、演绎法:由一般到特殊的推理方法。
小学数学教材中蕴涵了几种常见的数学思想方法,梳理一下,大概有以下七种:1.归纳。
归纳是通过特例的分析引出普遍的结论。
在研究一般性问题时,先研究几个简单、个别的、特殊的情况,从中概括出一般的规律和性质,这种由部分到整体、由特殊到一般的推理被称为归纳。
小学数学中的有些数学问题是直接建立在类比之上的归纳,有些数学问题是建立在抽象分析之上的归纳。
小学阶段学生接触较多的是不完全归纳推理。
加法结合律,我们就采用了不完全归纳推理展开教学。
例如,28个男生在跳绳,17个女生在跳绳,23个女生在踢毽子。
求跳绳和踢毽子的一共有多少人,可以先求跳绳的人数列出算式(28+17)+23计算,也可以先求女生的人数列出算式28+(17+23)计算。
这两道算式的算理是等价的,得数也相同,因此可以写成等式(28+17)+23=28+(17+23)。
在这第一个实例中,学生看到的数学现象是不是普遍性的规律,需要在类似的情况中验证。
于是,我们让学生分别算一算(45+25)+13和45+(25+13)、(36+18)+22和36+(18+22),看看每组的两道算式是不是相等,两道算式中间能不能填上等号,再看看这些相等的算式有什么结构上的特点,猜想有这种结构特点的算式结果是否一定相等,通过实验发现第一个实例中的数学现象在类似的情况中同样存在。
接着,鼓励学生自己写出类似的几组算式,进行更多的验证,体验现象的普遍性。
学生通过进行类似的实验,在实验中概括出加法结合律,并用字母a、b、c分别表示三个加数,写成(a+b)+c= a+(b+c)。
这样,学生在学习加法结合律等的过程中,就经历了由具体到一般的抽象、概括过程,不仅可以发现数学规律、定理,而且能够初步感受归纳的思想方法,使思维水平得到提升。
2.演绎。
演绎与归纳相反,是从普遍性结论或一般性的前提推出个别或特殊的结论。
在研究个别问题时,以一般性的逻辑假设为基础,推出特定结论,这种从一般到特殊的推理被称为演绎。
小学数学思想方法17种1、对应思想方法对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。
如直线上的点(数轴)与表示具体的数是一一对应。
2、假设思想方法假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。
假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。
3、比较思想方法比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。
在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。
4、符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。
如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。
如定律、公式、等。
5、类比思想方法类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。
如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。
类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟的自然和简洁。
6、转化思想方法转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。
如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。
7、分类思想方法分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。
如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。
又如三角形可以按边分,也可以按角分。
不同的分类标准就会有不同的分类结果,从而产生新的概念。
对数学对象的正确、合理分类取决于分类标准的正确、合理性,数学知识的分类有助于学生对知识的梳理和建构。
小学数学中常见的数学思想方法有哪些?答;1、集合思想。
集合思想对数学的影响巨大,很多的数学分支都需要用集合语言表达。
①教学中要注重集合概念的渗透。
例如,认识“2”的教学中,例举多个两个物体,这多个两个物体的所在类的代表就是“2”。
又如六头猪和六只狗等所在类的代表就是“6”。
这里的2、6就是集合的基数。
”②教学中要注重集合关系的渗透。
如:一一对应关系,包含关系等。
③教学中要注重集合运算的渗透。
如:加法运算其实就是并集,减法运算的结果就是差集。
2、数形结合思想。
数与形是数学中的两个最古老,也是最基本的研究对象,它们在一定条件下可以相互转化。
数与形之间的联系即称为数形结合,或形数结合。
数形结合,主要指的是数与形之间的一一对应关系。
数形结合就是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,通过抽象思维与形象思维的结合,可以使复杂问题简单化,抽象问题具体化,从而起到优化解题途径的目的。
即“以形助数”或“以数解形”。
作为一种数学思想方法,数形结合的应用一般可分为两种情形:或者借助于数的精确性来阐明形的某些属性,或者借助形的几何直观性来阐明数之间某种关系。
数形结合的思想方法是数学教学内容的主线之一,应用数形结合的思想,可以解决很多数学问题。
①利用数与形的对应来理解数学概念。
例如:认识分数的教学。
②利用数与形的对应解应用题。
例如:画线段图解应用题。
③坐标思想。
用方程表示图形,沟通数形之间的关系。
在教学中要培养学生积极主动地利用数形结合的思想解决问题。
3、函数思想。
函数描述了自然界中量的依存关系,反映了一个事物随着另一个事物变化而变化的关系和规律。
函数的思想方法就是提取问题的数学特征,用联系和变化的观点提出数学对象,抽象其数学特征,建立函数关系,并利用函数的性质研究、解决问题的一种数学思想方法。
在小学阶段学习的对应关系,正、反比例关系中就蕴藏中基本的函数思想。
4、变换与转化思想。
变换与转化思想是中小学数学中最重要的数学思想,充分重视这种数学思想方法在解题中的应用,不但可使问题化繁为简、化难为易,而且还可以提高学生的思维品质,培养学生的创新能力。
小学数学思想方法有哪些小学数学是培养学生数学思维能力和逻辑推理能力的重要阶段。
为了帮助学生培养正确的数学思想和方法,我们可以运用以下几种思想方法。
一、观察与发现思想方法二、综合思想方法综合思想方法强调把多种知识和方法进行综合运用,从而解决复杂的问题。
例如,在解决一个应用题时,学生可以结合整数、分数、小数等数的知识,运用四则运算的基本法则进行综合计算。
三、抽象思维方法抽象思维方法是指学生通过抽象事物的共同特点和规律,将问题进行归纳和概括,从而进行类比和推理。
例如,学生可以通过观察和比较三角形、四边形、五边形等多边形的特点,得出它们的共同规律,然后解决一些有关多边形的问题。
四、归纳与演绎思想方法归纳与演绎思想方法是指学生通过归纳和总结大量的具体事例和数据,从而发现其中的共同规律。
例如,学生可以通过观察和总结两个数之间的运算特点,得出数的运算规律,然后根据这个规律解决一些计算问题。
五、借助工具思想方法借助工具思想方法是指学生可以通过使用具体的工具,如尺子、天平等来帮助解决问题。
例如,在学习长度的比较时,学生可以使用尺子来测量和比较两个物体的长度,以便更直观地理解大小关系。
六、探究与实践思想方法探究与实践思想方法是指学生通过实际操作和探索,从而获得数学知识和解决问题的能力。
例如,在学习几何形状时,学生可以通过剪纸、折纸等手工活动,来探索不同形状的特点和性质。
以上是小学数学常用的思想方法,通过合理运用这些方法,可以帮助学生更好地理解和掌握数学知识,提高解决问题的能力。
同时,在教学中也需要注意灵活运用这些方法,根据学生的实际情况和能力发展的要求,选择适合的思想方法进行教学。
小学十大数学思想方法
1. 预测和推论:预测和推论是数学思想方法的重要部分。
小学生可以通过观察数据和图表来做出预测,并据此推断出结果。
2. 抽象和分类:数学思维可以通过分类和抽象来提高。
小学生可以按照特定的属性将事物分组,并将它们视为一个整体。
3. 排列和组合:排列和组合是掌握初级数学思维的重要步骤。
小学生可以利用排列和组合来解决问题,从而提高他们的思维能力。
4. 逻辑推理:数学思维方法中的逻辑推理是使小学生思考的关键。
通过逻辑推理,小学生可以理解和解决问题的思考逻辑。
5. 连续性和平滑性:在数学思维中,连续性和平滑性很重要。
小学生应能够察觉到不同形状和尺寸之间的变化。
6. 比较与对比:比较和对比可让小学生看到不同事物之间的共性和差异。
这种思维方式可以在计算能力和问题解决方面帮助他们。
7. 建模与测量:建模以及测量纪录对于小学生的数学思维发展也是至关重要的。
他们可以用模型来表示数学规律,并通过测量和比较得出结论。
8. 模式发现:模式发现是小学生学习数学的关键之一。
他们应该能够看到形式之间的关系,并识别出有规律的模式。
9. 变化和变形:变化和变形是数学思维方法中的关键。
小学生应该能够理解数学概念和数据之间的变化和变形。
10. 探索和发现:小学生应该主动去探索和发现,发现新的数学规律和规则。
在探索和发现过程中,他们可以更好地理解数学规律并得到更深刻的体验。
1.小学数学中常见的数学思想方法有哪些?答:小学数学中常见的数学思想方法有:转化思想、集合思想、数形结合思想、函数思想、符号化思想、对应思想、分类思想、归纳思想、模型思想、统计思想等。
2.小学生应该形成的基本活动经验有哪些?答:小学生应该形成的基本活动经验有操作、观察、实验、猜测、度量、验证、推理、交流。
(1)、基本数学活动经验。
我们大致把数学基本经验分为:日常生活中的数学经验,社会科学文化情境中的数学经验,以及纯粹数学活动累积的数学经验。
(2)、日常生活中的数学经验。
第一类:可以直接拿来促进学生数学学习的生活经验。
第二类;可以通过类比来促进学生数学学习的生活经验。
第三类:可能对学生的数学学习产生负面影响的生活经验。
第四类:包含着一搬规律的生活经验。
(3)、关注学生生活经验、积累生活中的数学活动经验。
(4)、围绕新课程下的数学教学,我们要帮助学生积累生活中数学活动经验,应该依据学生生活经验、利用学生生活经验、提升学生生活经验。
(一)依据学生生活经验(二)利用学生生活经验(三)提升学生生活经验3.简要谈谈学业评价具有哪些功能?答:(一)学业评价的基本功能:巩固功能、反馈功能、矫正功能。
(二)学业评价的新增功能:发展功能、激励功能、沟通功能另外,学业评价的功能还有选拔功能、自测功能、展美功能、育人功能等、这些功能不是单一的、孤立的,而是相互联系、相互促进的,有时还是相互转化的。
4、具体谈谈学业评价具有哪些特征?答:学业评价呈现以下基本特征:一、学业评价具有系统性(1)前测性的学业评价。
前测性的学业评价可以是一节课开始之初的评价,也可以是一个教学单元甚至一门课程开始之前的评价。
这种评价的主要目的是想弄清楚学生是否具备即将开始学习所必需的知识和技能,即确定学生的学习准备情况,它是进行教学活动的基础,直接关系到教学目标是否能够达成。
(2)形成性的学业评价。
形成性的学业评价可以是一节课之中的评价,也可以是一个教学单元之中甚至一门课程实施之中的评价。
这种评价主要被用于监测学习进步、检测学习中的错误,并为学生和教师提供反馈。
这种评价是监控学生学习进展最重要的手段,也是进一步教学的基础。
对于那些在形成性评价中持续出现困难的学生,教师必须找准导致学习障碍的原因,采取切实有效的帮救措施,从而为学生的发展提供最有价值的建议。
(3)终结性的学业评价。
终结性的学业评价是在一节课、一个教学单元或一门课程结束时,评估学生的学习成果达到预期目标的程度。
终结性评价并非是学业评价的结束,它可以是下一轮学业评价的前测性评价,它也可以是评价体系中的形成性评价。
因此,学业评价不是一次性工作,它是一项系统的、动态的一种学习过程。
二、学业评价具有综合性(1)学科内综合。
小学数学学业评价不是单一数学知识的再现,一般都具有综合性的特征。
在评价范围上,不仅应该有知识与技能的评价,还要有过程与方法、情感态度与价值观等全方位的评价;在评价内容上,不仅应该有数与代数知识领域的评价,还要有空间与图形、统计与概率等知识领域的评价。
(2)学科间综合。
小学数学学业评价除了具有学科内综合的特征外,一般还具有与其他学科综合的特点。
在进入信息化时代的今天,小学数学还具有与现代信息技术整合的特点。
如在学习求比值以后,有位数学老师设计了一道数学题。
要求学生上网查询“黄金分割与生活”这个关键词,然后把看到的最有趣的信息改编成一道数学题,并在班上交流。
学生对这类作业非常感兴趣,完成作业的热情非常高。
最后答案有以下几种。
三、学业评价具有差异性(1)学生个体成长具有差异性。
心理学告诉我们,遗传素质为人的身心发展提供了可能性,环境和教育规定了人的身心发展的现实性。
遗传素质为人的身心发展提供了必要的生物前提。
但是,要使遗传为人的发展提供的可能性能够成为现实性,关键在于后天的环境和教育。
一个遗传素质较差的儿童,未必终身无所作为。
在现实条件下,不同的条件、教育程度或教育专业,在很大程度上,作为一种实际的驱动机制产生着各种不相同的现实的人:文盲、工程师、艺术家,并直接导致他们身心发展的水平、性质、领域等方面的种种差别。
因此,学生个体成长具有差异性。
(2)学生学业成就具有差异性。
学生个体成长具有差异性,必然导致学业成就具有差异性。
学业评价要依据课程目标的要求,结合教学内容和学生实际,尽量做到全体学生都有适合自己水平的评价习题。
同一评价习题,可从要求上分层也可从数量上分层,要尽量使不同层次的学生在同一时间里都能完成老师交给他们的学习任务,从而体验学习的乐趣。
学业评价也可为不同层次的学生分别设计不同内容的习题,这样的学业评价并没有用一把尺子来度量他们,而是增大了思维量,拓宽了思路,调动了所有学生的学习积极性,使每个学生都在原有基础上得到了不同程度的提高。
总之,学业评价应找准不同层次学生的“最近发展区”,尽量满足不同层次学生的学习需要,潜能生必须达到课程标准的最低要求,学优生尽其所能拔尖提高,使他们人人学有所获、学有所乐。
四、学业评价具有多元性(1)学业评价主体具有多元性。
学业评价要让学生、家长共同参与,主要形式有学生自评、伙伴互评、家长评价、教师评价等。
首先,学生是学习的主人,也应该是自我评价的主人,要指导学生实事求是地对自己的努力程度、学习情况作出分析;同时,也要鼓励学生就教师对自己的评价提出不同的看法。
其次,学生之间的相互了解度有时比教师对学生的了解更为全面和准确,学生间的相互评价往往更能够说明被评价者的实际情况;教师有必要加以引导,让学生在相互评价的过程中学会相互勉励,共同进步。
另外,家长是学生校外生活的最亲密接触者,对孩子在兴趣、学习习惯等方面的情况了如指掌,家长的评价能够为教师的教学工作提供许多有价值的信息。
无论是过去、现在、还是将来,数学教师在小学生的学业评价方面的主导作用都是旁人无法取代的。
(2)学业评价内容具有多元性。
数学学业评价重点关注的内容有对学生基础知识和基本能力的评价、对学生学习过程和学习效果的评价、对学生发现问题和解决问题能力的评价等。
学业评价不仅要了解学生知道什么,还要关注学生是采取怎样的学习方式,通过怎样的思维活动获得发展的。
学业评价重视对学生发现问题和解决问题能力的评价,考查学生能否从现象中发现并提出简单的数学问题,能否选择合适的方法解决数学问题,是否愿意与他人合作解决数学问题,能否大胆表达自己的思维过程与成果,是否养成了反思自我学习活动与成效的良好习惯,等等。
(3)学业评价形式具有多元性。
学业评价要充分尊重个体间的差异,关注每一个学生的成功体验和自我发展的本能需求,这就决定了其评价形式具有多元性。
学业评价的主要形式有质性评价、量化评价、延迟评价等。
质性评价的典型样本是数学成长记录袋,它是用来记录学生在某一段学习过程中的活动表现的实物袋子或电子档案,如观课、笔记、计算、分析、思维、判断、推理、观察、操作、合作交流等记录。
量化评价包括各种专项测试、单元考核、期终质性评价等,当然,量化评价的最终目的是为了学生更好地发展,绝不是为了给学生排名。
延迟评价指如果学生在完成某次作业时对结果不满意,教师可以给学生创造条件,在学生通过自己努力改正内容后再作出评价。
5、教师如何通过学业评价促进学生公平发展?答:教师要在学业评价中体现公平,要通过学业评价促进学生公平发展,分析学业评价导致学生不能公平发展的成因,找出学业评价促进学生公平发展的对策和措施。
(一)明确公平的基本特征(1)相对性。
(2)发展性。
(3)综合性。
(二)分析学业评价导致不公平的成因(1)个体差异与相同标准。
(2)多元评价与成绩独尊。
(3)综合评价与简易操作。
(4)教师素质与同绩异果。
(三)增添学业评价促进学生公平发展的措施(1)强调发展性评价,体现学业评价的激励性。
(2)突出综合性评价,体现学业评价的科学性。
(3)实行弹性评价,体现学业评价的灵活性。
(4)提升评价者修养,实现学业评价的公正性。
6. 数学作业有哪些功能?答:数学作业的功能:(1)有效落实基础知识与基本技能。
(2)提升学生的数学素养。
(3)优化学生的学习品质。
(4)激发学生的学习兴趣。
(5)促进情感交流。
作业是师生情感互动、心灵互通的纽带。
(6)增强家校合作。
7. 简述试题的编制过程。
答:(1)制定考试说明。
又称为考试标准。
拟定考试标准,首先要弄清本次数学考试的性质、目的。
其次,深入研读《数学课程标准》,准确掌握考量尺度。
课标是指导教育教学实践的纲领性文件,有教育“小宪法”之称。
它是一切教育活动(包括考试)必须遵循的准则。
考试标准的拟定,应根据数学学科的特点和性质,既要体现整体要求,又要突出重点。
(2)拟定编题计划。
它包括两项内容:一是编制试题的原则和要求,说明考试的内容范围、方法目标、试题类型、编制试题和组配试卷的要求。
二是规定试卷中试题的分布,即具体考试内容中各部分试题的数量分布、所占比例以及各部分内容所需的大概时间。
编制命题计划,要依据学科《课程目标》规定的考试内容、考试范围和教科书中涉及的各项知识所要求掌握的程度,来确定试题分布范围、难易程度、重点难点。
但同时要把握好试卷对考试内容的覆盖率、代表性,以避免测试的偏差给教学工作带来不必要的副作用。
(3)确定双向细目表。
所谓双向细目表,是一种考查目标(能力)和考查内容之间的联系表。
一般纵向为要考查的内容即知识点,横向为列出的各项要考查的能力,或者说是在认知行为上要达到的水平,通常采用识记、理解、运用、分析、综合、评价六个等级。
双向细目表的制定,可以减少考试命题的盲目性,使命题者有明确的检验目标,把握试题的比例分量,提高命题的效率和质量。
同时,它对于审查试题的效度也有重要的指导意义。
衡量考试质量通常有四个重要指标,即考试的效度、信度,试题的难度和区分度。
(4)草拟试题。
严格按考试标准和编题计划(双向细目表)设计试题。
草拟试题要紧扣考试目标,一方面要考虑以哪方面命题才能将该教学目标界定内容都检测到,另一方面必须按测试要求的认知水平(一般为记忆认知、理解、运用三级)设计题目。
客观性试题和主观性试题分别编制。
客观题的答案要唯一或准确,主观题要充分体现开放性和多元性。
题量应大于实际考试题的量,以备筛选。
(5)筛选组卷。
尽管遵循了以上项目,但是试题的命制也不是一蹴而就的,命题者还要对照双向细目表,审查所设计的试题是否与各知识点及其学习水平相符,并根据具体情况进行增补或删减、修订。
拟好简明扼要的试题指导语,依据考试时间,控制试卷的总题量和试题数,按先易后难的顺序进行组合,形成整卷。
使用统一的试卷纸,语言表述要准确,符号规范,用计算机打印。
注意卷面字迹清晰,疏密有致,整齐美观。
(6)拟定参考答案及评分细则。
新课程背景下试题的参考答案及评分意见的拟定,要注意合理而富有参考价值。