914772-数字图像处理-图像压缩编码第六讲正交变换编码、图像编码的国际标准简介
- 格式:ppt
- 大小:347.00 KB
- 文档页数:42
图像压缩编码方法图像压缩编码是一种通过减少图像数据的表示量来降低存储和传输成本的技术。
图像压缩编码方法包括有损压缩和无损压缩两种。
有损压缩是指在压缩过程中会丢失一定的图像信息,但通常可以接受的程度在人眼感知上是不可察觉的。
有损压缩编码方法主要通过利用图像中的冗余信息和人眼视觉系统的特性来实现图像的压缩,主要有几种方法:1. 颜色空间转换:将RBG图像转换为YUV或者将CMYK图像转换为RGB,通过减少颜色通道的数量来降低数据量。
2. 离散余弦变换(Discrete Cosine Transform,DCT):DCT是一种将原始图像通过变换后得到一系列频率系数的方法,低频系数所表示的信息对于人眼来说更加重要,而高频系数相对不重要,因此可以对高频系数进行压缩或丢弃。
3. 量化(Quantization):通过对DCT系数进行适当的量化,将系数的数值范围映射到较小的范围内,进一步减小数据量。
量化的精度越高,则数据量越小,但图像质量也会受到影响。
4. 预测编码(Predictive Coding):利用图像中像素之间的相关性,通过对当前像素值的预测来减少需要传输的数据。
常用的预测编码方法有差值编码(Differential Encoding)和运动补偿(Motion Compensation)。
5. 生成码字(Codebook):通过统计图像中各个像素值的频次来生成一个码本,将高频次出现的像素值用较短的码字表示,以减小数据量。
有损压缩编码方法的主要优点是压缩率高,但缺点是压缩后图像质量有损失。
适用于图像中存在较多冗余信息或对图像质量要求不高的场景,如网络传输、存储等。
无损压缩编码是指在压缩过程中不丢失任何图像信息,通过利用图像内部的冗余性来减小数据量。
常用的无损压缩编码方法有:1. 霍夫曼编码(Huffman Coding):将出现频率较高的像素值用较短的编码表示,出现频率较低的像素值用较长的编码表示,以减小数据量。
图像压缩编码方法综述概述:近年来, 随着数字化信息时代的到来和多媒体计算机技术的发展, 使得人们所面对的各种数据量剧增, 数据压缩技术的研究受到人们越来越多的重视。
图像压缩编码就是在满足一定保真度和图像质量的前提下,对图像数据进行变换、编码和压缩,去除多余的数据以减少表示数字图像时需要的数据量,便于图像的存储和传输。
即以较少的数据量有损或无损地表示原来的像素矩阵的技术,也称图像编码。
图像压缩编码原理:图像数据的压缩机理来自两个方面:一是利用图像中存在大量冗余度可供压缩;二是利用人眼的视觉特性。
图像数据的冗余度又可以分为空间冗余、时间冗余、结构冗余、知识冗余和视觉冗余几个方面。
空间冗余:在一幅图像中规则的物体和规则的背景具有很强的相关性。
时间冗余:电视图像序列中相邻两幅图像之间有较大的相关性。
结构冗余和知识冗余:图像从大面积上看常存在有纹理结构,称之为结构冗余。
视觉冗余:人眼的视觉系统对于图像的感知是非均匀和非线性的,对图像的变化并不都能察觉出来。
人眼的视觉特性:亮度辨别阈值:当景物的亮度在背景亮度基础上增加很少时,人眼是辨别不出的,只有当亮度增加到某一数值时,人眼才能感觉其亮度有变化。
人眼刚刚能察觉的亮度变化值称为亮度辨别阈值。
视觉阈值:视觉阈值是指干扰或失真刚好可以被察觉的门限值,低于它就察觉不出来,高于它才看得出来,这是一个统计值。
空间分辨力:空间分辨力是指对一幅图像相邻像素的灰度和细节的分辨力,视觉对于不同图像内容的分辨力不同。
掩盖效应:“掩盖效应”是指人眼对图像中量化误差的敏感程度,与图像信号变化的剧烈程度有关。
图像压缩编码的分类:根据编码过程中是否存在信息损耗可将图像编码分为:无损压缩:又称为可逆编码(Reversible Coding),解压缩时可完全回复原始数据而不引起任何失真;有损压缩:又称不可逆压缩(Non-Reversible Coding),不能完全恢复原始数据,一定的失真换来可观的压缩比。
计算机视觉中的图像压缩与编码技术随着计算机技术和网络通信的迅速发展,图像的使用量也急剧增加。
然而,高分辨率的图像往往占用较大的存储空间和传输带宽,对于存储和传输效率的要求也越来越高。
因此,图像压缩与编码技术成为了计算机视觉领域中的重要研究内容。
本文将介绍计算机视觉中常用的图像压缩与编码技术。
图像压缩与编码技术通过对图像的冗余信息进行削减,从而减小图像的体积,提高存储和传输效率。
常用的图像压缩与编码技术主要包括无损压缩和有损压缩。
无损压缩技术是指在压缩图像的同时不损失任何信息的技术。
这种压缩技术对于那些要求完全保留原始图像信息的应用场景非常重要。
常见的无损压缩技术主要有RLE(Run-Length Encoding)编码、LZW(Lempel-Ziv-Welch)编码和哈夫曼编码。
RLE编码是一种基于图像连续像素冗余特性的编码技术。
它通过统计图像中连续相同像素值的个数,并用一个计数符号和一个像素值符号来代替连续的相同像素值。
这种编码技术适合于连续像素值重复较多的图像。
LZW编码算法是一种基于前缀编码的无损压缩算法。
它通过构建字典来动态地更新编码映射表,将频繁出现的像素序列用更短的编码来表示,从而实现对图像的无损压缩。
LZW编码广泛应用于GIF图像格式。
哈夫曼编码是一种通过构建最优二叉树来实现对图像信息压缩的技术。
它通过将出现频率最高的像素值用较短的编码表示,出现频率较低的像素值用较长的编码表示,从而实现不同像素值对应编码长度的优化。
哈夫曼编码被广泛应用于JPEG 和PNG图像格式。
相对于无损压缩技术,有损压缩技术可以进一步减小图像的体积。
它通过牺牲一定的图像信息来获得更高的压缩比。
常见的有损压缩技术主要有基于变换的压缩技术和基于预测的压缩技术。
基于变换的压缩技术主要采用离散余弦变换(DCT)来将图像从空域转换到频域。
DCT将图像分解成一系列的频率分量,再根据频率分量的重要性对其进行量化和编码。
JPEG图像格式就是采用DCT进行压缩的典型例子。
图像处理中的图像压缩与编码算法图像处理是计算机科学与技术领域中的一个重要研究方向,而图像压缩与编码算法则是图像处理中的一个关键问题。
随着科技的不断发展,图像的获取和传输已经成为我们日常生活中不可或缺的一部分。
然而,图像数据的大量存储和传输给计算机系统带来了很大的挑战,因此图像压缩与编码算法应运而生。
图像压缩与编码算法的目标是通过减少图像数据的冗余信息,从而实现图像的压缩和传输。
一种常用的图像压缩方法是基于离散余弦变换(DCT)的压缩算法。
该算法将图像分解为一系列频率分量,然后对这些分量进行量化和编码。
在这个过程中,高频分量被量化为较低的精度,从而减少了图像数据的存储空间。
除了DCT压缩算法外,还有一种常用的图像压缩方法是基于小波变换的压缩算法。
小波变换将图像分解为不同尺度和方向的子图像,然后对这些子图像进行编码。
与DCT压缩算法相比,小波变换能够更好地保留图像的细节信息,因此在某些应用场景下具有更好的效果。
除了压缩算法,图像编码算法也是图像处理中的一个重要问题。
图像编码算法的目标是将压缩后的图像数据转换为可传输的比特流。
一种常用的图像编码算法是基于哈夫曼编码的算法。
该算法通过构建一棵哈夫曼树来实现对不同频率的像素值进行编码。
由于哈夫曼编码可以根据像素值出现的概率分布来进行编码,因此可以实现更高效的压缩。
除了DCT压缩算法和哈夫曼编码算法外,还有一些其他的图像压缩与编码算法。
例如,基于向量量化的压缩算法将图像数据划分为不同的向量,并将这些向量进行编码。
这种算法可以在一定程度上提高图像的压缩比。
此外,还有一些基于预测的压缩算法,通过对图像数据的空间和时间相关性进行建模来实现图像的压缩和编码。
总的来说,图像压缩与编码算法在图像处理中起着至关重要的作用。
通过减少图像数据的冗余信息,这些算法可以实现图像的高效压缩和传输。
在实际应用中,我们需要根据具体的需求选择合适的压缩和编码算法。
未来,随着科技的不断进步,图像压缩与编码算法将继续发展,并在各个领域中发挥更大的作用。
图像编码与压缩的关系解析一、引言在数字化时代,图像成为我们日常生活中必不可少的一部分,无论是社交媒体上的自拍照片,还是电视屏幕上的高清电影,图像都扮演着重要的角色。
然而,随着图像数量和质量的迅速增加,如何有效地存储和传输图像成为一个挑战。
图像编码与压缩就应运而生,本文旨在探讨图像编码与压缩之间的关系以及它们对图像质量的影响。
二、图像编码的概念及原理图像编码是将图像转化为数字数据的过程。
在图像编码中,原始图像被分割成多个像素块,每个像素块通过数学算法进行转换,从而生成一系列数字值。
最常用的图像编码方法是离散余弦变换(Discrete Cosine Transform, DCT),其原理是通过对图像进行频率分析,将图像中的高频信号和低频信号分离开来。
三、图像压缩的概念及分类图像压缩是指通过减小图像的存储空间或传输带宽,来实现图像数据的压缩过程。
根据压缩方式的不同,图像压缩可以分为有损压缩和无损压缩两类。
1. 有损压缩有损压缩通过删除或近似原始图像的一些细节信息来减小图像数据的大小。
最常用的有损压缩算法是基于DCT的JPEG压缩。
JPEG压缩通过量化DCT系数和利用人眼对颜色和细节敏感性较低的特点,来实现较高的压缩比。
然而,有损压缩会导致图像细节的丢失,影响图像的质量。
2. 无损压缩无损压缩是指在图像压缩过程中不会导致任何像素信息的丢失。
最常见的无损压缩算法是基于预测和编码的无损压缩算法,如GIF和PNG。
这些算法通过对图像中的重复结构进行编码,来实现图像的压缩。
无损压缩不会降低图像质量,但通常无法达到与有损压缩相同的高压缩比。
四、图像编码与压缩的关系图像编码和压缩密不可分,编码可以看作是压缩的一部分。
在图像编码的过程中,通过采用不同的编码方式和算法,可以实现对图像的压缩。
编码过程中,提取了图像的关键信息,然后通过压缩算法进行处理,使得图像数据变得更紧凑。
编码与压缩的关系还体现在解码过程中。
压缩后的图像需要通过解码过程还原为原始图像。