数字图像处理7
- 格式:ppt
- 大小:2.94 MB
- 文档页数:75
数字图像处理第一章1、1解释术语(2) 数字图像:为了便于用计算机对图像进行处理,通过将二维连续(模拟)图像在空间上离散化,也即采样,并同时将二维连续图像的幅值等间隔的划分成多个等级(层次)也即均匀量化,以此来用二维数字阵列并表示其中各个像素的空间位置与每个像素的灰度级数的图像形式称为数字图像。
(3)图像处理:就是指对图像信息进行加工以满足人的视觉或应用需求的行为。
1、7 包括图像变化、图像增强、图像恢复、图像压缩编码、图像的特征提取、形态学图像处理方法等。
彩色图像、多光谱图像与高光谱图像的处理技术沿用了前述的基本图像处理技术,也发展除了一些特有的图像处理技术与方法。
1、8基本思路就是,或简单地突出图像中感兴趣的特征,或想方法显现图像中那些模糊了的细节,以使图像更清晰地被显示或更适合于人或及其的处理与分析。
1、9基本思路就是,从图像退化的数学或概率模型出发,研究改进图像的外观,从而使恢复以后的图像尽可能地反映原始图像的本来面目,从而获得与景物真实面貌相像的图像。
1、10基本思路就是,,在不损失图像质量或少损失图像质量的前提下,尽可能的减少图像的存储量,以满足图像存储与实时传输的应用需求。
1、11基本思路就是,通过数学方法与图像变换算法对图像的某种变换,以便简化图像进一步处理过程,或在进一步的图像处理中获得更好的处理效果。
1、12基本目的就是,找出便于区分与描述一幅图像中背景与目标的方法,以方便图像中感兴趣的目标的提取与描述。
第二章2、1解释下列术语(18)空间分辨率:定义为单位距离内可分辨的最少黑白线对的数目,用于表示图像中可分辨的最小细节,主要取决于采样间隔值的大小。
(19)灰度分辨率:就是指在灰度级别中可分辨的最小变化,通常把灰度级数L称为图像的灰度级分辨率。
(20)像素的4邻域:对于图像中位于(x,y)的像素p来说,与其水平相邻与垂直相邻的4个像素称为该像素的4邻域像素,她们的坐标分别为(x-1,y)(x,y-1)(x,y+1)(x+1,y)。
这次作业的内容是理解噪声的生成,同时了解各种随机噪声的特性。
第一项作业主要是监测按照不同的模型生成的随机数与原本模型的契合度,这里举了两个例子,我就来根据代码以及程序运行的结果来一一进行解释。
代码如下:x = -5:0.1:5; %直方图的范围y = randn(10000,1);%产生一组随机序列,10000个。
z=rand(1,10000)*10-5;t = -5:0.01:5;hist(y,x);%画出直方图hold on;xm=mean(y);xv=var(y);disp(xm);disp(xv);pdf = length(y)*0.1*exp(-t.^2/2)/sqrt(2*pi);%产生高斯概率分布pdfplot(t,pdf,'r')%画出高斯概率分布函数a=xcorr(y);figure;plot(a);figure;hist(z,x);hold on;xm=mean(z);xv=var(z);disp(xm);disp(xv);pdf = t*0+length(y)/(10/0.1);%产生均匀概率分布pdfplot(t,pdf,'r')%画出均匀概率分布函数im1 im2 im3首先来看程序,程序先中定义了直方图的范围,从-5到5,其中分度值为0.1,也就是一共10/0.1=100个量化等级。
随后产生了两组随机数,y是基于高斯分布模型产生的随机数,z是均匀分布的随机数,二者都产生了10000个数据。
随后先对y这组数据进行处理,用hist函数,根据之前定义的范围,画出了这组随机数的概率分布函数。
可以看出其基本的轮廓和正态分布还是非常接近的,但是在某些值上参差不齐,会有突然突出或者凹陷的情况。
在画完之后,程序调用mean和var函数对这一组数据分别进行了求方差和求均值的操作。
这里的输出分别为方差0.9909,而均值为-8.9737e-04,也就是0.00089737.randn函数默认的模型是方差为1而均值为0的正态分布函数,因此生成的随机数虽然有些误差,但是在大体方向上还是遵循了这个模型的方差与均值。
数字图像处理每章课后题参考答案第一章和第二章作业:1.简述数字图像处理的研究内容。
2.什么是图像工程?根据抽象程度和研究方法等的不同,图像工程可分为哪几个层次?每个层次包含哪些研究内容?3.列举并简述常用表色系。
1.简述数字图像处理的研究内容?答:数字图像处理的主要研究内容,根据其主要的处理流程与处理目标大致可以分为图像信息的描述、图像信息的处理、图像信息的分析、图像信息的编码以及图像信息的显示等几个方面,将这几个方面展开,具体有以下的研究方向:1.图像数字化,2.图像增强,3.图像几何变换,4.图像恢复,5.图像重建,6.图像隐藏,7.图像变换,8.图像编码,9.图像识别与理解。
2.什么是图像工程?根据抽象程度和研究方法等的不同,图像工程可分为哪几个层次?每个层次包含哪些研究内容?答:图像工程是一门系统地研究各种图像理论、技术和应用的新的交叉科学。
根据抽象程度、研究方法、操作对象和数据量等的不同,图像工程可分为三个层次:图像处理、图像分析、图像理解。
图像处理着重强调在图像之间进行的变换。
比较狭义的图像处理主要满足对图像进行各种加工以改善图像的视觉效果。
图像处理主要在图像的像素级上进行处理,处理的数据量非常大。
图像分析则主要是对图像中感兴趣的目标进行检测和测量,以获得它们的客观信息从而建立对图像的描述。
图像分析处于中层,分割和特征提取把原来以像素描述的图像转变成比较简洁的非图形式描述。
图像理解的重点是进一步研究图像中各目标的性质和它们之间的相互联系,并得出对图像内容含义的理解以及对原来客观场景的解释,从而指导和规划行为。
图像理解主要描述高层的操作,基本上根据较抽象地描述进行解析、判断、决策,其处理过程与方法与人类的思维推理有许多相似之处。
第三章图像基本概念1.图像量化时,如果量化级比较小时会出现什么现象?为什么?答:当实际场景中存在如天空、白色墙面、人脸等灰度变化比较平缓的区域时,采用比较低的量化级数,则这类图像会在画面上产生伪轮廓(即原始场景中不存在的轮廓)。
数字图像处理技术数字图像处理技术是一种针对数字图像进行处理和分析的技术。
随着计算机技术的不断发展和普及,数字图像处理技术在图像处理领域中扮演着越来越重要的角色。
本文将详细介绍数字图像处理技术的概念、原理、应用及未来发展方向。
概念数字图像处理技术是指利用计算机对数字图像进行处理和分析的技术。
数字图像是通过像素表示的图像,而像素是图像最小的单元,每个像素都有其特定的数值表示颜色和亮度。
数字图像处理技术可以对图像进行各种操作,如增强图像的质量、提取图像特征、恢复图像信息等。
原理数字图像处理技术的原理主要包括图像获取、图像预处理、图像增强、图像分割、特征提取和图像识别等基本步骤。
1.图像获取:通过相机或扫描仪等设备获取数字图像,将图像转换为数字信号。
2.图像预处理:对原始图像进行去噪、几何校正、尺度变换等预处理操作,以提高后续处理的效果。
3.图像增强:通过直方图均衡化、滤波等方法增强图像的对比度、亮度等特征。
4.图像分割:将图像分割成若干个区域或对象,以便更好地分析和处理图像。
5.特征提取:提取图像中的特征信息,如颜色、纹理、形状等,为图像识别和分类提供依据。
6.图像识别:利用机器学习、深度学习等算法对图像进行分类、识别和分析。
应用数字图像处理技术在各个领域都有广泛的应用,如医疗影像分析、无人驾驶、安防监控、智能交通等。
以下列举一些典型的应用场景:•医疗影像分析:利用数字图像处理技术分析医学影像,辅助医生进行疾病诊断和治疗。
•安防监控:通过视频监控系统、人脸识别技术等实现对安全领域的监控和警报。
•智能交通:通过交通监控系统、车辆识别技术等提高交通管理效率和道路安全。
未来发展数字图像处理技术在人工智能、物联网等新兴技术的推动下不断发展和创新,未来的发展方向主要包括以下几个方面:1.深度学习在图像处理中的应用:深度学习技术在图像分类、目标检测等方面取得重大突破,将在数字图像处理领域得到更广泛的应用。
2.虚拟现实与增强现实:数字图像处理技术将与虚拟现实、增强现实技术结合,实现更加沉浸式的用户体验。
《数字图像处理(实验部分)》教案实验七:图像增强1.实验目的1.掌握MATLAB 的基本操作。
2.了解数字图像处理在MATLAB 中的基本处理过程。
3.学习图像增强的原理,观察算法处理结果2.实验设备2.1.PC 兼容机一台;操作系统为WindowsWindowsXP 。
2.2.数字图像处理开发环境:MATLAB 软件3.实验原理图像增强:运用5种不同的梯度增强法进行图像锐化4.实验步骤.1 打开MA TLAB 开发环境.2点击MATLAB 窗口上File 菜单,选择New-〉M —File ,在弹出的Edit 编辑器内输入如下程序:clear;close all ;[I,map]=imread('cameraman.tif' ;figure(1;subplot(2,3,1,imshow(I,map;title(' 原图' ;I=double(I;[Gx,Gy]=gradient(I; % 计算梯度, 获得的是二维偏导向量G=sqrt(Gx.*Gx+Gy.*Gy; % 注意是矩阵点乘J1=G;subplot(2,3,2,imshow(J1,map;title(' 梯度图' ; % 第一种图像增强J2=I; % 第二种图像增强K1=find(G>=7; %返回满足条件的索引号, 如果是N 行M 列的数组, 索引号顺序为从左边第一列开始, % 按列向顺序.J2(K1=G(K1;subplot(2,3,3,imshow(J2,map;title(' 超过7的梯度图' ;J3=I; % 第三种图像增强K=find(G>=7;J3(K=255;subplot(2,3,4,imshow(J3,map;title(' 梯度超过7的白亮图' ;J4=I; % 第四种图像增强K=find(G<=7;J4(K=255;subplot(2,3,5,imshow(J4,map;title(' 梯度未过7的白亮图' ;J5=I; % 第五种图像增强K=find(G<=7;J5(K=0;Q=find(G>=7;J5(Q=255;subplot(2,3,6,imshow(J5,map;title(' 梯度7为阈值分割的二值图' ;.3将该程序保存,并点击工具栏中Run 按钮,程序会自动运行,并显示出结果。
1 图像按照人眼的视觉特性可以分为可见图像和不可见图像。
Page 12 图像按照所含波段数可以分为单波段图像和多波段图像及超波段图像。
Page 13 图像按照空间坐标的连续性可分为模拟图像和数字图像。
Page 14 不可见的图像包括不可见光成像和不可见量按数学模型生成的图像。
Page 15 数字图像是一种空间坐标和灰度均不连续的,用离散数字表示的图像。
Page 16 数字图像处理可分为狭义图像处理、图像分析和图像理解三个层次。
Page 27 狭义图像处理是对输入图像进行某种变换得到输出图像,是一种图像到图像的处理过程,如图像增强等。
Page 28 模拟图像指空间坐标和亮度都是连续变化的图像。
Page 19数字图像处理即用计算机对图像进行处理。
Page 21 视网膜的表面分布有大量的光敏细胞,按照形状可以分为两类:锥状细胞和杆状细胞。
P112 人眼分辨率和被观察对象的相对对比度有关,当相对对比度小时,会导致人眼分辨率下降。
P123 在RGB彩色空间的原点上,若三个基色均没有亮度,则原点为黑色。
P144 图像中最大亮度和最小亮度的比值称为图像对比度。
P125 图像中最大亮度与最小亮度之差和最小亮度的比值称为相对对比度。
P126 物体的颜色是人的视觉器官感受光后在大脑的一种反映。
P137 一幅图像可以看成是空间上各点光强度的集合,若只考虑光的能量而不考虑光波长,则称为亮度图像。
P158 在彩色图像中,每个像素的颜色含有R,G和B三个分量。
P189 当两种或两种以上有色光同时照射到消色物体上时,物体呈现加色法效应。
P1410 BMP图像文件包括文件信息头,位图信息和位图数据三部分。
P3411 Windows在生成位图文件时,按照从左到右,从下到上的顺序记录位图的各个像素值。
P3612 描述数字图像的基本单元是像素。
P1613 图像噪声按其对图像的影响可分为加性噪声模型和乘性噪声模型两大类。
P4114 椒盐噪声的幅值基本相同,而噪声出现的位置是随机的。
数字图像处理常用方法
是基于图像的性质进行计算,利用数字图像处理方法来处理和分析数字图像信息。
数字图像处理包括图像采集、图像建模、图像增强、图像分割、图像特征提取、图像修复、图像变换等。
具体数字图像处理方法有:
1、图像采集:利用摄像机采集图像,可以采用光学成像、数字成像或其他技术技术来实现;
2、图像建模:利用数学模型将图像信息表达出来,有些模型可以用来确定图像的特征,而有些模型则能够捕捉图像的复杂细节;
3、图像增强:对采集的图像数据进行处理,包括图像的锐化、滤波、清晰度增强、局部像素增强等;
4、图像分割:根据指定的阈值将图像分成不同的区域,分割图像后可以获得更多的精确细节和信息;
5、图像特征提取:将图像信息中的有价值部分提取出来,提取的过程有多种算法,提取的结果均可以用来进行分类识别等;
6、图像修复:通过卷积神经网络,利用图像的实际内容和特征,自动修复受损图像;
7、图像变换:针对图像的数据结构,可以利用变换矩阵将图像像素坐标和分量进行变换,以获得新的图像。
电⼦信息⼯程《数字图像处理》总复习题(第1-7章)(1)第⼀章引⾔⼀.填空题1. 图像可以分为物理图像和虚拟图像两种。
其中,采⽤数学的⽅法,将由概念形成的物体进⾏表⽰的图像是虚拟图像。
2. 数字图像是⽤⼀个数字阵列来表⽰的图像。
数字阵列中的每个数字,表⽰数字图像的⼀个最⼩单位,称为像素。
3. 数字图像处理可以理解为两个⽅⾯的操作:⼀是从图像到图像的处理,如图像增强等;⼆是从图像到⾮图像的⼀种表⽰,如图像测量等。
4. 数字图像处理包含很多⽅⾯的研究内容。
其中,图像重建的⽬的是根据⼆维平⾯图像数据构造出三维物体的图像。
⼆.简答题1. 数字图像处理的主要研究内容包含很多⽅⾯,请列出并简述其中的4种。
①图像数字化:将⼀幅图像以数字的形式表⽰。
主要包括采样和量化两个过程。
②图像增强:将⼀幅图像中的有⽤信息进⾏增强,同时对其⽆⽤信息进⾏抑制,提⾼图像的可观察性。
③图像的⼏何变换:改变图像的⼤⼩或形状。
④图像变换:通过数学映射的⽅法,将空域的图像信息转换到频域、时频域等空间上进⾏分析。
⑤图像识别与理解:通过对图像中各种不同的物体特征进⾏定量化描述后,将其所期望获得的⽬标物进⾏提取,并且对所提取的⽬标物进⾏⼀定的定量分析。
2. 简述图像⼏何变换与图像变换的区别。
①图像的⼏何变换:改变图像的⼤⼩或形状。
⽐如图像的平移、旋转、放⼤、缩⼩等,这些⽅法在图像配准中使⽤较多。
②图像变换:通过数学映射的⽅法,将空域的图像信息转换到频域、时频域等空间上进⾏分析。
⽐如傅⾥叶变换、⼩波变换等。
3. 简述数字图像处理的⾄少4种应⽤。
①在遥感中,⽐如⼟地测绘、⽓象监测、资源调查、环境污染监测等⽅⾯。
②在医学中,⽐如B超、CT机等⽅⾯。
③在通信中,⽐如可视电话、会议电视、传真等⽅⾯。
④在⼯业⽣产的质量检测中,⽐如对⾷品包装出⼚前的质量检查、对机械制品质量的监控和筛选等⽅⾯。
⑤在安全保障、公安⽅⾯,⽐如出⼊⼝控制、指纹档案、交通管理等。
数字图像处理教学大纲一、课程基本信息课程名称:数字图像处理课程类别:专业必修课学分:X总学时:X授课对象:具体专业二、课程教学目标通过本课程的学习,使学生掌握数字图像处理的基本概念、原理和方法,具备运用相关知识和技术解决实际问题的能力。
具体包括:1、理解数字图像的获取、表示和存储方式。
2、掌握数字图像增强、复原、压缩、分割等基本处理技术。
3、能够运用编程工具实现简单的数字图像处理算法。
4、培养学生的创新思维和实践能力,为进一步学习和从事相关领域的工作打下坚实的基础。
三、课程教学内容(一)数字图像基础1、图像的感知和获取视觉系统的特性图像的形成与数字化图像的采样和量化2、数字图像的表示灰度图像彩色图像图像的矩阵表示3、数字图像的存储图像文件格式图像数据库(二)图像增强1、空域增强灰度变换直方图均衡化空域滤波2、频域增强傅里叶变换频域滤波(三)图像复原1、图像退化模型常见的退化原因退化函数的建立2、逆滤波原理与实现局限性3、维纳滤波基本原理算法实现(四)图像压缩1、图像压缩的基本原理信息论基础冗余度2、无损压缩霍夫曼编码算术编码3、有损压缩预测编码变换编码(五)图像分割1、阈值分割全局阈值局部阈值2、边缘检测梯度算子拉普拉斯算子Canny 算子3、区域分割区域生长区域分裂与合并(六)图像特征提取与描述1、颜色特征颜色直方图颜色矩2、纹理特征统计方法结构方法3、形状特征边界描述区域描述(七)图像识别1、模式识别基础分类器设计特征选择与提取2、图像分类与识别应用人脸识别车牌识别四、课程教学方法1、课堂讲授通过讲解理论知识,使学生掌握数字图像处理的基本概念、原理和方法。
2、实验教学安排一定数量的实验课程,让学生通过实践加深对理论知识的理解,提高编程和解决实际问题的能力。
3、案例分析结合实际应用案例,引导学生分析问题、解决问题,培养学生的创新思维和实践能力。
4、小组讨论组织学生进行小组讨论,促进学生之间的交流与合作,激发学生的学习兴趣和主动性。